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Abstract

The overwhelming majority of empirical research that uses cluster-robust inference
assumes that the clustering structure is known, even though there are often several
possible ways in which a dataset could be clustered. We propose two tests for the
correct level of clustering in regression models. One test focuses on inference about a
single coefficient, and the other on inference about two or more coefficients. We provide
both asymptotic and wild bootstrap implementations. The proposed tests work for
a null hypothesis of either no clustering or “fine” clustering against alternatives of
“coarser” clustering. We also propose a sequential testing procedure to determine the
appropriate level of clustering. Simulations suggest that the bootstrap tests perform
very well under the null hypothesis and can have excellent power. An empirical example
suggests that using the tests leads to sensible inferences.
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1 Introduction

The presence of within-cluster correlation can have very serious consequences for statistical
inference. Theoretical work on cluster-robust inference almost always assumes that the
structure of the clusters is known, even though the form of the correlation within clusters
is arbitrary. Unless it is obvious that clustering must be at a certain level, however, this
can leave empirical researchers in a difficult situation. They must generally rely on rules of
thumb, their own intuition, or referees’ suggestions to decide how the observations should
be clustered. To make this process easier, we propose a test for any given level of clustering
(including no clustering as a special case) against an alternative within which it is nested.
When two or more levels of clustering are possible, we propose a sequence of such tests.

There has been a great deal of research on cluster-robust inference in the past two decades.
Cameron and Miller (2015) is a very thorough survey that covers much of the literature up
to a few years ago. More recent surveys include MacKinnon (2019), MacKinnon and Webb
(2020), and Conley, Gongalves, and Hansen (2018), which considers a broader class of meth-
ods for dependent data. Areas that have received particular attention include: asymptotic
theory for cluster-robust inference (Djogbenou, MacKinnon, and Nielsen 2019; Hansen and
Lee 2019); bootstrap methods with clustered data (Cameron, Gelbach, and Miller 2008;
Djogbenou, MacKinnon, and Nielsen 2019; Roodman, MacKinnon, Nielsen, and Webb 2019);
and inference with unbalanced clusters (Imbens and Kolesar 2016; Carter, Schnepel, and
Steigerwald 2017; MacKinnon and Webb 2017; Djogbenou, MacKinnon, and Nielsen 2019).

Almost all of this literature assumes that the way in which observations are allocated to
clusters is known to the econometrician. This is quite a strong assumption. Imagine that a
dataset has many observations taken from individuals in different geographical locations. In
order to utilize a cluster-robust variance estimator (CRVE), the researcher needs to specify
at what level the clustering occurs. For example, there could possibly be clustering at the
zip-code, city, county, state, or country level. Even in this relatively simple setting, there
are many possible ways in which a researcher could ‘cluster’ the standard errors.

A few rules of thumb have emerged to cover some common cases. For instance, in the
case of nested clusters, such as cities within states, Cameron and Miller (2015) advocates
clustering at the larger, more aggregate level. In the case of randomized experiments, Athey
and Imbens (2017) recommends clustering at the level of randomization. Similarly, in the
case of experiments where treatment is assigned to groups in pairs, with one group treated
and one not treated, de Chaisemartin and Ramirez-Cuellar (2020) recommends clustering at
the pair level rather than the group level. While these rules of thumb are sometimes helpful,

they may or may not be correct in any particular case.



Getting the level of clustering correct is extremely important. Simulation results in
several papers have shown that ignoring clustering in a single dimension can result in rejection
frequencies for tests at the 5% level that are actually well over 50% (Bertrand, Duflo, and
Mullainathan 2004; Cameron, Gelbach, and Miller 2008) and confidence intervals that are too
narrow by a factor of five or more (MacKinnon 2019). Similarly, simulations in MacKinnon
and Webb (2020) show that clustering at too fine a level can result in gross size distortions.
On the other hand, clustering at too coarse a level (say state-level clustering when there is
actually city-level clustering) can lead to the problems associated with having few treated
clusters, which can be very severe (MacKinnon and Webb 2017, 2018), and can also reduce
power (MacKinnon and Webb 2020). Additionally, Abadie, Athey, Imbens, and Wooldridge
(2017) suggest that clustering can be too conservative in situations where there is neither a
clustered sample design nor cluster-specific treatment assignment.

In Section 3, we propose two tests for the cluster structure of the error variance matrix
in a linear regression model. They test the null hypothesis of a fine level of clustering (or of
no clustering at all) against an alternative hypothesis with a coarser level of clustering. The
tests are based on the difference between two functions of the scores for the parameter(s) of
interest. These functions are essentially the filling in the sandwich for two different cluster-
robust variance estimators, one associated with the null level of clustering and one associated
with the alternative level. Since the functions estimate the variance of the scores under two
different clustering assumptions, we refer to the tests as score-variance tests. A procedure
for sequential testing, described in Section 3.3, allows for determination of the appropriate
level of clustering without inflating the family-wise error rate when there are several possible
levels of clustering.

Ibragimov and Miiller (2016) also proposes a test for the appropriate level of clustering.
Their test, which involves simulation and is based in part on the procedure of Ibragimov
and Miller (2010), requires that the model of interest be estimable on a (coarse) cluster-by-
cluster basis. Unfortunately, this requirement is often not satisfied in difference-in-differences
or randomized experiments where only certain groups are treated, or more generally when
the regressor of interest is invariant within clusters. In contrast, our tests can be performed
in any setting where it is possible to compute a CRVE for the whole sample for each level
of clustering. The IM test, as we will refer to it, is described in detail in Appendix B.

The model of interest is discussed in Section 2. Our score-variance tests are described
in Section 3, including the bootstrap implementation and the sequential testing procedure.
Section 4 provides asymptotic theory for the two test statistics, the bootstrap tests, and the
sequential testing procedure. The size and power of the proposed tests are analyzed by Monte

Carlo simulations in Section 5. An empirical example that uses the STAR dataset (Finn



and Achilles 1990; Mosteller 1995) is discussed in Section 6. Finally, Section 7 concludes
and offers some guidance for empirical researchers. All mathematical proofs are given in

Appendix A, and additional simulation results are presented in Appendix C.

2 The Regression Model with Clustering

We focus on the linear regression model
y=XB+u, (1)

where y and u are N x 1 vectors of observations and error terms (or disturbances), and X is
an N x K matrix of covariates. The coefficients on the regressors are in the K x 1 parameter
vector .

Suppose that the data are divided into G clusters, indexed by ¢, where the ¢** cluster
has N, observations, so that N = Zle N,. Thus, there are G vectors y, and u, of size Ny,
along with G matrices X, each with N, rows and K columns. Using this notation, the OLS

estimate of 3 is
G
B=(X"X)"'"XTy=8+(X"X)'Xu=8+(X"X)" Z ) Ug, (2)

where By denotes the true value of 8. Now define the K x 1 score vectors s, = X gT ug,. We

assume that these score vectors satisfy E(s,) = 0 for all g and

E(SgS )_]I(g_g)‘/ga gaglzlv"‘7G7 (3)

where I(-) denotes the indicator function and Vj is a K x K variance matrix. If, in addition,

we assumed that the regressors were exogenous, we could write
E(u,|X) =0 and E(wul|X)=1(g=¢)2, g.9=1....C, (4)

where ©, is an N, x N, variance matrix that forms a diagonal block of Q@ = E(uu'|X).
However, since the tests we will propose in Section 3 do not require the regressors to be
exogenous, we maintain only the weaker assumption in (3).

It is clear from (2) that the asymptotic distribution of B depends on the properties of the

score vectors. An estimator of the variance matrix of B is given by the sandwich formula

—

ar(B) = (X' X)"'V(XTX)™, (5)



where V is an estimator of the variance matrix of the sum of scores, V = E(X Tuu' X).
The condition (3) implies that E(s,s,) = 0 whenever g # ¢'. In this case V' = Zle V,, so

that the usual estimator for V' under condition (3) is

V. =me XG: X, w,4) X, =m. XG: 848, . (6)
g=1 g=1
where @, contains the residuals for cluster g and 8, = X gT U, is the K x 1 vector of empirical
scores for cluster g. The scalar factor m, is a finite-sample correction, the most commonly
employed factor being m. = G/(G—1) x (N —1)/(N — K), which is designed to account for
degrees of freedom. Using V =V, in (5) yields the most widely-used CRVE for B. Asymp-
totic inference on regression coefficients using the resulting CRVE is studied by Djogbenou,
MacKinnon, and Nielsen (2019) and Hansen and Lee (2019).

Remark 1. In the special case in which each cluster has N, = 1 observation, we can use

Vit = f: X, X, = X "diag(d3, ..., %)X, (7)

i=1
where X is the i*" row of the X matrix and @; is the i*" residual. The variance matrix
obtained by setting V = Viet in (5) is the famous heteroskedasticity-consistent variance
matrix estimator (HCCME) of Eicker (1963) and White (1980). Of course, the matrix Ve
can be modified in various ways to improve its finite-sample properties (MacKinnon 2013),
the simplest of which is to multiply it by myue = N/(N — K). O

Remark 2. Abadie, Athey, Imbens, and Wooldridge (2017) have argued that whether or
not to cluster, and at what level, depends fundamentally on assumptions about the sampling
procedure. Our tests are based on what they call the “model-based” approach, as opposed to
the “design-based” approach that they develop in detail. The model-based approach makes
sense if we think of the sample as a random outcome from some sort of meta-population (or
DGP), and the coefficients of interest as features of that meta-population; see MacKinnon,
Nielsen, and Webb (2020) for additional details.

In contrast, the design-based approach makes sense when the investigator is concerned
with the characteristics of a finite sample from a meta-population, and the observed sam-
ple constitutes a substantial proportion of that finite sample. In this case, Abadie et al.
(2017) show that, depending on how treatment was assigned, it may be appropriate to use
heteroskedasticity-robust standard errors rather than cluster-robust ones even when the lat-

ter are substantially larger than the former. Our tests are not designed for such a setting. [



3 The Testing Procedure

The fundamental idea of our testing procedure is to compare two estimates of the variance of
the coefficient(s) that we want to estimate. We test the null hypothesis that a CRVE based
on a “fine” clustering structure is valid against the alternative that the CRVE needs to be
based on a “coarser” clustering structure. Since it is only the filling in the sandwich (5) that
differs across different clustering structures, we are actually comparing two estimates of the
variance matrix of the sum of scores. Our procedure is somewhat like the specification test
of Hausman (1978). The “fine” CRVE is efficient when there actually is fine clustering, but
it is invalid when there is coarse clustering. In contrast, the “coarse” CRVE is inefficient
when there actually is fine clustering, but it is valid in both cases.

In practical applications, the number of coefficients in (1), and hence the size of the
CRVE matrices, is often large, so comparing these matrices directly can be impractical.
Furthermore, it is usually only a small subset of the coefficients that is actually of interest.
Thus, suppose the regressors are partitioned as X = [X;, X3|, where X denotes the N x k
matrix of the regressors of interest and X, denotes the N x (K —k) matrix of other regressors.
Similarly, partition 87 = [B], B, ], where the coefficients corresponding to the regressors
of interest are in the k x 1 parameter vector B;. In practice, many coefficients correspond
to fixed effects and other conditioning variables that are not of primary interest, and these
are collected in By. If the coefficient vector of interest is actually a linear combination of
the elements of B; and B3,, we can redefine X as a nonsingular affine transformation of the
original X matrix, so that B; has the desired interpretation.

We regress each column of X; on X5 and define Z as the matrix of residuals from those

k regressions. The model (1) can then be rewritten as
y=2Zp+ X0 +u, Z = Mx, X, (8)

where My, = Iy — X»(X, X5) !X, is the orthogonal projection matrix that projects off
(or partials out) X5. The regressor matrices Z and X, are orthogonal, and the models (1)
and (8) have exactly the same explanatory power and the same errors, w. The coefficient
vector B in (8) is identical to the one defined in the previous paragraph, but the coefficient

vector 4 is different from B5. Using the orthogonality between Z and Xs, the OLS estimate
of By is, c.f. (2),

A

e
B=(Z"2)"'Zy=po+(Z"2)" Z (9)



To derive an estimate of the variance matrix of 81, we make use of the relations

Z=XQ=XA(1+o0p(1)) with

10
Q=[I;, — X, Xy(X, X5)']" and A = [I, —E5E5,]" = plimQ, (10)
where A is well defined and finite under Assumption 3 (to be stated below). Here Eio
and Z,, denote submatrices of the matrix E to which N~'X " X tends as N — oco. Then,

similarly to (5), we obtain the sandwich formula
Var(B,) = (2'2)7'8(2"Z) 7, (11)

where 3 is an estimate of
Y =A'VA, (12)

which depends on the clustering structure in the same way as V.

Our testing procedure is based on comparing two CRVE’s for ,31, corresponding to a
“fine” and a “coarse” clustering structure. To make the procedure operational, we formulate
the hypotheses in terms of the parameters of the model. To this end, we first define some
notation. There are G coarse clusters indexed by ¢ = 1,...,G. Within coarse cluster g, there
are M, fine clusters indexed by h = 1,..., M,. In total there are Gy = Zgzl M, fine clusters.
Fine cluster h in coarse cluster g contains IV, observations indexed by ¢ = 1, ..., Ng,. Coarse
cluster g therefore contains N, = Zthgl N,y observations, and the entire sample contains
N = Eg;:l Ny = Zle 224:91 Ngyp, observations. Further, we let X, and wug,; denote the
regressors and disturbance for observation ¢ within fine cluster A in coarse cluster g. We
then define the corresponding score as sg,; = X gThiUgm, the score for fine cluster h in coarse
cluster g as sy, = vazqf Sgni, and the score for coarse cluster g as s, = ZhM:gl Sgh-

Under the coarse clustering structure, the s, satisfy (3), so that in particular they are
uncorrelated across g. Under the fine clustering structure, the s, are themselves uncorre-

lated across h, for each g. That is, forall g =1,...,G,
E(sgnsyy) =I(h=h)Vy,, kb =1,...,M,, (13)

where each of the Vj, is a K x K matrix. Equations (3) and (13) embody the assumption
that the coarse and fine clustering structures are nested.
Now let 3. and 3¢ denote the matrix in (12) under the coarse and fine clustering struc-

tures, respectively. From (3), (12), and (13), these matrices are

G G M,
Y. = Z ¥, and ;= Z Z DI (14)
g=1 g=1h=1



where, as in (12),

,=A"V,A and ¥, =A"V,A. (15)

We consider the null and alternative hypotheses
Hy: lim 33 ' =1 and H;: lim 23" #1 (16)
N—o00 N—o00

The hypotheses are expressed in this way, rather than in terms of the difference between the
limits of normalized versions of 3 and 3., because the appropriate normalizing factors will,

in general, be unknown; see Djogbenou, MacKinnon, and Nielsen (2019).

Remark 3. In (16), we are not directly testing the fine clustering condition in (13). Instead,
we are testing an important implication of the clustering structure. Specifically, we test
whether 3, = 3¢, which implies that a valid CRVE for 3 is given by (11) with =3 O

Remark 4. An important null hypothesis is that the HCCME (7) considered in Remark 1
is in fact valid, and no CRVE is needed. We note that this hypothesis is a special case of

(16) in which each fine cluster has one observation, i.e. Ny, =1 for all g and h. O

3.1 Test Statistics

Our score-variance test statistics are based on comparing estimates ﬁ)f and ﬁlc obtained under
fine and coarse clustering, respectively. There are many ways in which one could compare
these k x k matrices. We focus on two quantities of particular interest, which define two test
statistics. The first is obtained for k = 1, so that interest is focused on a particular coefficient
that we are trying to make inferences about. This leads to a test statistic that has the form of
a t-statistic. The second is obtained for k£ > 1, in which case our test statistic is a quadratic
form involving all the unique elements of 3 and 3., as in White’s (1980) “direct test” for
heteroskedasticity. The first test is of course a special case of the second, but we treat it
separately because it is particularly simple to compute and may often be of primary interest.

In order to derive the test statistics, we write 20 and Sf using common notation. Let
Cohi = ATSghiy satisfying Zng-uth- = Qnghi = Cg;u-(l + 0p(1)>, (17)

denote the conditional score for observation ¢ within fine cluster h in coarse cluster g; see
(10). Let fghi = Z,/lign; denote the corresponding empirical conditional score. In what
follows, we will generally omit the qualification “conditional” since this is implied by the
notation. Similarly, let ¢, = vazgf Cyni and f’gh = vazgf éghi denote the score and empirical

score, respectively, for fine cluster h in coarse cluster g, and define the score and empirical



M, 2 My 2 .
score for coarse cluster g as {, = ZgTug = > 21 Con and ¢y = 3237 Cgn, respectively. Under

coarse clustering, the estimated 3. matrix corresponding to (6) is

R e, G G (Mg M, O\
SR SR T T ST (z cgh) (z cgh) B
g=1 g=1 h=1

g=1

Similarly, we can write, c.f. (14) and (15),

G My (Ngn Ngh y G M,
=mpy Y (Z Cghz) (Z éghz‘) =mgy Y égh A;L, (19)
g=1h=1 \i=1 i=1 g=1h=1
where my = G¢/(Gf — 1) x (N —1)/(N — K).

When interest focuses on just one coefficient, so that £ = 1, the matrix Z becomes the
vector z, and the empirical scores are scalars. Specifically, fghi = Zghillgn; and fgh = Zivzgf CAth-
denote the empirical scores for observation ¢ and fine cluster h, respectively. Then the

matrices (18) and (19) reduce to the scalars

G (Mg \? G My
62 = me Z Z Coh and 67 = mg Z Z Cg2h. (20)
g=1h=1
The quantities given in (18), (19), and (20) are all defined in essentially the same way. They

simply amount to different choices of empirical scores. When Ny, = 1, then 67 simplifies to

G My N,

Ghet =D D Z Conis (21)

g=1h=11i=1

which is just the sum of the squared empirical scores over all the observations.

Our first test is based on the difference between the two scalars in (20), namely,
0=62—52. (22)

The empirical scores fgh that appear in (20), and implicitly in (22), depend on the vector
z, which is the residual vector from regressing x; on Xs. Different choices for ; will yield
different empirical scores, and hence different test statistics.

Our second test is based on the difference between the & x k matrices f]c and flf. For

this test, we consider the vector of contrasts,

A

6 = vech(2, — ), (23)

where the operator vech(:) returns a vector, of dimension k(k + 1)/2 in this case, with all



the supra-diagonal elements of the symmetric k£ X k matrix argument removed.

In order to obtain test statistics with asymptotic distributions that are free of nuisance
parameters, we need to derive the asymptotic means and variances of 6 and é, so that we can
studentize the statistics in (22) and (23). To this end, suppose that we observe the (scalar)
scores in (17), which for fine cluster h in coarse cluster g are denoted ¢y, = Zf\;gf Cghi- Then

the analog of 0 is the contrast

G My, M,

= Z Z Z Cgh1§gh2' (24)

g=1hi=1 ho#hy

This is simply the sum of all the cross-products of scores that are in the same coarse cluster
but different fine clusters. Under the null hypothesis, clearly, # should have mean zero.

Under the null hypothesis, the variance of 6 in (24) is

G My, M, M, M,
02 :z_: Z Z 27; 27; Cgh1Cg€1Cgh2Cgf2) <25)

The expectation of any product of scores can only be nonzero, under the null, when their
indices are the same in pairs. This implies that either hy = 1 #£ ho = ly or hy = ly # hy = (5.

These cases are symmetric, and hence (25) is

G M,
Z Z Ughl ghz’ (26)

9=1 h1=1 ha#h1

where 07, = Var((g) is used to denote EQh in the scalar case; see (13), (15), and (17).
The sample analog of (26) is 22 1 Zhl 1 Zg‘;hl 692h1592h2; see (15) and (17). This sug-

gests the variance estimator

N 2 G My R
Var(f) = Z (Z ggh) —23° % g;*h. (27)
= g=1h=1

This equation avoids the triple summation in (26) by squaring the sums of squared empirical
scores, which then requires that the second term be subtracted.! Combining (22) and (27)
yields the studentized test statistic
0
To = —F—=_- (28)
Var(0)

n deriving (27), we have ignored the factors m. and mg, which are asymptotically irrelevant. Retaining
them would have led to a much more computationally burdensome expression.

10



In Section 4, we show that 7, is asymptotically distributed as N(0, 1).

Remark 5. The statistic defined in (28) yields either a one-sided or a two-sided test. Right-
tail tests may often be of primary interest, because we expect the diagonal elements of 3.
to exceed the corresponding elements of 3¢ when there is positive correlation within clusters
under the alternative. However, since this is not necessarily the case, two-sided tests based

on 72 may also be of interest. The asymptotic theory in Section 4 handles both cases. [

Remark 6. Consider again the special case in which the null is heteroskedasticity with no
clustering. When the elements of z display little intra-cluster correlation, the contrast 0,
and hence the absolute value of 7,, will tend to be small, even if the residuals display a great
deal of intra-cluster correlation. This is what we should expect, because in that case the
so-called Moulton (1986) factor, i.e., the ratio of clustered to non-clustered standard errors,
will be relatively small. Of course, the opposite will be true when the elements of z display

a lot of intra-cluster correlation. O]

Remark 7. It might seem that we could directly test for intra-cluster correlation by basing
a test on the residuals rather than the scores. This would involve replacing fgh in (20) by
ZZN;’{‘ Ugn;. Unfortunately, such a test will fail whenever there are cluster fixed effects. The
problem is that the residuals must sum to zero over every cluster that has a fixed effect.
This implies that either 62 = 0, when there are fixed effects at the coarse level, or both 62
and 67 equal 0, when there are fixed effects at the fine level. Since models that potentially
involve clustered disturbances very often include cluster-level fixed effects, it does not seem

interesting to investigate this sort of test. [

When k > 1, so that 6 is a vector, the variance estimator analogous to (27) is

G M, M, G M,
Var(9) =23 H, ( Sl @ > cghcgl) H - 235 H(Enlyyp © Cnyp ) HY . (29)
g=1 h=1 h=1 g=1h=1
Here Hj, is the so-called elimination matrix satisfying vech(S) = Hjvec(S) for any k x k
symmetric matrix S (Harville 1997, p. 354), and ® denotes the Kronecker product. A
studentized (Wald) statistic is then given by

75 = 0 Var(6)7'0. (30)

In Section 4, we show that 75 is asymptotically distributed as x?(k(k + 1)/2).
In this section, we have proposed two score-variance tests of (16). They both involve
comparing different variance estimates of the empirical scores, namely, the two scalars in

(20) for the 7, test and the matrices in (18) and (19) for the 7x, test. The former is a special

11



case of the latter, where all regressors except one have been partialed out. This special case
is interesting, because the 7, test can be directional and because many equations simplify
neatly in the scalar case.

As we show in Section 5, the finite-sample properties of our asymptotic tests are often
good but could sometimes be better, especially when the number of clusters under the
alternative is quite small. In such cases, we therefore recommend the use of bootstrap tests
based on the statistics (28) and (30), which often perform much better in finite samples; see

Section 5. These bootstrap implementations are described next.

3.2 Bootstrap Implementation

The simplest way to implement a bootstrap test based on any of our test statistics is to
compute a bootstrap P value, say P*, and reject the null hypothesis when it is less than the
level of the test. The bootstrap methods that we propose are based on either the ordinary
wild bootstrap (Wu 1986; Liu 1988) or the wild cluster bootstrap (Cameron, Gelbach, and
Miller 2008). These bootstrap methods are normally used to test hypotheses about 8, and
we are not aware of any previous work in which they have been used to test hypotheses
about the variances of parameter estimates. The asymptotic validity of the bootstrap tests
that we now describe is established in Section 4.2.

The key idea of the wild bootstrap is to obtain the bootstrap disturbances by multiplying
the residuals by realizations of an auxiliary random variable with mean 0 and variance 1. In
contrast to many applications of the wild bootstrap, the residuals in this case are unrestricted,
meaning that they do not impose a null hypothesis on 3. This is because we are not testing
any restrictions on 3 when testing the level of clustering. In the special case of testing the
null of heteroskedasticity, as in Remark 4, we use the ordinary wild bootstrap. When the null
involves clustering, we use the wild cluster bootstrap. Because the test statistics depend only
on residuals, the value of B in the bootstrap DGP does not matter, and so we set it to zero.

The b wild (cluster) bootstrap sample is thus generated by y** = w*®, where the vector

of bootstrap disturbances u*® has typical element given by either u;?“ = v;ﬁ’mﬂghi for the
wild bootstrap or uZ’,’n = v;‘zﬁghi for the wild cluster bootstrap. The auxiliary random

*b

variables vz,

and v;fz are assumed to follow the Rademacher distribution, which takes the
values +1 and —1 with equal probabilities. Notice that there is one such random variable
per observation for the wild bootstrap and one per cluster for the wild cluster bootstrap.
Other distributions can also be used; see Davidson and Flachaire (2008), Webb (2014), and
Djogbenou, MacKinnon, and Nielsen (2019).

The algorithm for a wild (cluster) bootstrap-based implementation of our tests is as

12



follows. It applies to both 7, and 7s. For simplicity, the algorithm below simply refers to
one test statistic, 7. However, it is easy to perform two or more tests at the same time, using
just one set of bootstrap samples for all of them. For example, if there are three possible
regressors of interest, we might perform four tests, one with £k = 3 based on 7y and three

with £ = 1 based on different versions of 7.

Algorithm 1 (Bootstrap test implementation). Let B >> 1 denote the number of bootstrap

replications, and let 7 denote the chosen test statistic.

1. Estimate the model (1), or equivalently the model (8), by OLS regression to obtain

the residuals u.
2. Compute the empirical score vector f and use it to compute 7.

3. Forb=1,...,B,

b — w* from the residual

(a) generate the vector of bootstrap dependent variables y*
vector w using the wild cluster bootstrap corresponding to the null hypothesis, or
the ordinary wild bootstrap if the null does not involve clustering.

(b) Regress y*® on X to obtain the bootstrap residuals 4**, and use these, together

with z or Z, to compute 7*°, the bootstrap analog of 7.

4. Compute the bootstrap P value P* = B~ S8 I(7* > 7).

As usual, if « is the level of the test, then B should be chosen so that (1—«)B is an integer
(Racine and MacKinnon 2007). Numbers like 999 and 9,999 are commonly used because
they satisfy this condition for conventional values of a. The power of the test increases in B,

but it does so very slowly once B exceeds a few hundred (Davidson and MacKinnon 2000).?

Remark 8. When 7 is defined as 7,, Algorithm 1 yields a one-sided right-tail test. When 7

is defined as |7,|, 72, or Tg, it yields a two-sided test; see Remark 5. O

Remark 9. We could use the ordinary wild bootstrap instead of the wild cluster bootstrap
in Algorithm 1, even when the null hypothesis involves clustering. The same intuition as
in Djogbenou et al. (2019) applies, whereby the ordinary wild bootstrap would lead to
asymptotically valid tests because the statistics are asymptotically pivotal. There may be
cases, like the ones considered in MacKinnon and Webb (2018) and/or ones in which the
number of fine clusters is small, in which the wild bootstrap would perform better than the

wild cluster bootstrap. However, we believe that such cases are likely to be rare. O

2If desired, bootstrap critical values can be calculated as quantiles of the 7*°. For example, when B = 999
and the 7*° are sorted from smallest to largest, the 0.05 critical value for a one-sided upper-tail test is number
(1 -0.05)(B+ 1) =950 in the sorted list.
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3.3 Choosing the Level of Clustering by Sequential Testing

In many applications, there are several possible levels of clustering. In such situations, we
suggest a sequential testing procedure. The statistical principle upon which we base our
testing procedure is the intersection-union (IU) principle (e.g., Berger and Sinclair 1984),
whereby a hypothesis is rejected if and only if the hypothesis itself, along with any hypotheses
nested within it, are all rejected. The IU principle leads naturally to a bottom-up testing
strategy for the level of clustering, whereby a model is chosen if and only if the model itself is
not rejected, but all models nested within it are rejected. Berger and Sinclair (1984) shows
that the TU principle does not imply an inflation of the family-wise rejection rate in the
context of multiple testing; that is, there is no accumulation of size due to testing multiple
hypotheses. We prove a similar result for our sequential procedure below.

Suppose the potential levels of clustering are sequentially nested, and denote their cor-
responding ¥ matrices by X, 3q,...,%,; see (5) and (14). Here we assume that ¥, corre-
sponds to no clustering, c.f. Remarks 1 and 4, and that, in addition, there are p potential
levels of clustering of the data. All these levels of clustering are assumed to be nested from
fine to increasingly more coarse clustering.

In this situation, following the IU statistical principle mentioned above, we reject clus-
tering at level m if and only if levels 0, ..., m are all rejected. That is, the natural testing
strategy here is to test clustering at level m against the coarser level m + 1 sequentially, for
m=20,1,...,p—1, and choose the level of clustering in the first non-rejected test. Algorith-

mically, we perform the following sequential testing procedure.

Algorithm 2 (Nested sequential testing procedure). Let m = 0. Then:
1. Test Hy: A}i_r)rlooEmE;#I = I against H;: A}i_r)rlooEmE;#I # 1.
2. If the test in step 1 does not reject, choose m = m and stop.
3. If m = p —1 and the test in step 1 rejects, choose m = p and stop.

4. If m < p — 2 and the test in step 1 rejects, increment m by 1 and go to step 1.

We can equivalently state the sequential testing problem in Algorithm 2 as a type of

estimation problem. Specifically,

m = min{m € {0,1,...,p} such that Hy: plim¥,, ¥, | = I is not rejected}. (31)

N—oo

Of course, the 7 resulting from Algorithm 2 and from (31) will be identical.
Because each individual test will reject a false null hypothesis with probability converg-

ing to one, this procedure will (at least asymptotically) never choose a level of clustering
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that is too fine. In other words, 7 defined in either Algorithm 2 or (31) will be (nearly) con-
sistent. Precise asymptotic properties of the proposed sequential procedure are established
in Section 4.3, and finite-sample performance is investigated using Monte Carlo simulation

methods in Section 5.3.

3.4 Inference about Regression Coefficients

The ultimate purpose of using score-variance tests is to make more reliable inferences about
the coefficient(s) of interest, that is, 81 in (8). This may or may not involve some sort of
formal pre-testing or model averaging procedure. We intend to provide a detailed treatment
of this important issue in future work. In this subsection, we briefly discuss the key issues.

For simplicity, suppose we are attempting to construct a confidence interval for f;, the
(scalar) coefficient of interest, when there are just two levels of clustering, fine and coarse.
Without a testing procedure, an investigator must choose between fine and coarse clustering
on the basis of prior beliefs about which level is appropriate, perhaps informed by the
observed standard errors associated with the two levels of clustering. With the testing
procedures of this paper, an investigator can instead choose the level of clustering based
on the outcome of a score-variance test. This involves picking a level a for the test and
deciding whether to use a one-sided or a two-sided test. We form the interval based on
coarse clustering when the score-variance test rejects, and we form the interval based on fine
clustering when it does not reject.

Of course, this procedure can never work as well as the infeasible procedure of simply
choosing the correct level of clustering. Since it involves pre-testing, it inevitably suffers
from some of the classic problems associated with pre-testing (e.g., Leeb and Potscher 2005).
When there is actually fine clustering, the pre-test will sometimes make a Type I error and
reject, leading to an interval that is too long. When there is actually coarse clustering, the
pre-test will sometimes make a Type II error and fail to reject, leading to an interval that is
too short. We report the results of some preliminary simulation experiments that compare

confidence intervals based on several alternative procedures in Appendix C.5.

4 Asymptotic Theory

In Section 4.1, we derive the asymptotic distributions of the two score-variance test statistics
under the null hypothesis and show that they are divergent under the alternative. Then
we prove the validity of the bootstrap implementation (Section 4.2) and prove asymptotic

results for the sequential testing procedure (Section 4.3). We first state and discuss the
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assumptions needed for our proofs, which may be found in Appendix A.
Assumption 1. The sequence sy, = Zfiglh X Jitighi is independent across both g and k. [

Assumption 2. For all g, h, it holds that E(sy,) = 0 and Var(sg,) = Vp;,. Furthermore,

sup, 5, E|[8gnil|** < oo for some A > 1. O

Assumption 3. The regressor matrix X satisfies sup, , ; El| Xgni||* < oo and N7' X T X L

=, where 2 is finite and positive definite. O

Assumption 4. Let wyiy(+) and wyax(+) denote the minimum resp. maximum eigenvalue of
. _ M, _
the argument. Then inf Nghlwmin(Egh) > 0 and sup,, ; Wmnax (Egh(zh:"l 3on) 1) < 1. O
Assumption 5. For )\ defined in Assumption 2, the cluster sizes satisfy
3—1/A
N sup, Ngsup, , Ny, /
M 2
Engl Wmin ( Zh:gl 2gh)

2 2
sup, N, sup, , Ng,

— 0. O]
Z;;:l Wmin ( 224291 Egh)

5 — 0 and

Assumption 1 is the assumption of (at most) “fine” clustering, which implies that the
null hypothesis in (16) is satisfied, even without taking the limit. In fact, it is slightly weaker
than that, because we do not make the stronger assumption that all observations in any fine
cluster are independent of those in a different fine cluster; we only assume that the cluster
sums are independent across fine clusters. The moment conditions in Assumption 2 and the
multicollinearity condition in Assumption 3 are standard in linear regression models.

Next, the conditions in Assumption 4 rule out degenerate cases. The minimum eigen-
value condition rules out perfect negative correlation between scores within fine clusters.
The maximum eigenvalue condition ensures that the variance of a single fine cluster cannot
dominate the sum of the variances within a coarse cluster. It is basically satisfied if M, > 1
for all g. The latter holds by construction of the test statistics, because any coarse cluster
with M, = 1 will not contribute to é, and hence not to the test statistic.

The conditions in Assumption 5 restrict the amount of heterogeneity of cluster sizes that
is allowed under both the null and the alternative. Neither the fine cluster sizes nor the coarse
cluster sizes are required to be bounded under these conditions, which allow the cluster sizes
to diverge with the sample size. The first condition is used in the proofs to replace residuals
with disturbances and for convergence of the variance. The second condition trades off
moments and cluster size heterogeneity to rule out the possibility that one cluster dominates
the test statistic in the limit in such a way that the central limit theorem does not apply;
technically, it is used to verify Lyapunov’s condition for the central limit theorem. When

A — 00, the second condition is implied by the first.
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Under Assumptions 1 and 4, the denominators of both conditions in Assumption 5 are

bounded from below by Z?Zl N 92 > cN inf, N,, and a sufficient condition for Assumption 5 is

A 3A-1
supy Ny \ (sup, Ny sup, N, \" [sup, , N2
N? E v — 0 and g SN — 0. (32
o <infg Ng> < N W ind, N, NA-1 (32)

If the cluster sizes are bounded under the alternative, i.e. sup, N, < oo, then (32) is easily
satisfied. Note that sup, Ny/N — 0, and hence G — oo, is implied by Assumption 5,
and it is therefore not stated explicitly. Moreover, Assumption 5 allows the possibility that

sup, j, Ngn = sup, Ny, in which case the conditions simplify accordingly.

Remark 10. Consider again the important special case in which the scores are independent,
but heteroskedastic under the null (or more generally that cluster sizes are bounded under
the null, i.e. sup, ), Ngn < 00). We consider two examples. First, let N, = N® for g =
1,...,G and G = N'=* We can interpret a small as many small clusters and « large as few
large clusters (under the alternative). In this relatively homogeneous case, (32), and hence
Assumption 5, is satisfied for any ov < 1. Second, let N, = N« for g = 1,...,G; with G fixed,
and suppose N, is bounded for ¢ = G4,...,G. We interpret this as a small (fixed) number
of large clusters and many small clusters under the alternative. In this very heterogeneous

case, the two conditions of (32) are satisfied when av < 1/2 and o < 1—1/\, respectively. [

The denominators of both terms in Assumption 5 show that these conditions trade off
intra-cluster dependence and cluster-size heterogeneity. That is, the sufficient condition in
(32) can be relaxed somewhat when there is more correlation within fine clusters. Intu-
itively, the greater the amount of intra-cluster correlation, the less information large clusters
provide relative to small clusters, which allows the large ones to be relatively larger without
dominating the limit; a similar tradeoff was found in Djogbenou et al. (2019). Technically,
the reason in our case is that the lower bound for the denominators in Assumption 5 can be
made larger, for a given fine clustering structure, by assuming more correlation within fine

clusters. We illustrate this tradeoff in the following remark.

Remark 11. Assumption 4 could be strengthened to assume that infy j JV, g_,fwmin(Egh) > 0.
Then the denominators in Assumption 5 would be bounded from below by N inf, N, inf,; N, ;h,

so that a sufficient condition for Assumption 5 would be

2
s.upg’h Ngp S'ng Ng\ (sup, Ny X SuPﬁvhlj\igh — 0. (33)
inf, , Ny, inf, N, N NV

For example, if a random effects model is assumed under the null, i.e., 841 = Mg +€gni, where

Ngn and ey, are independent across all subscripts with 2) finite moments, then (33) would
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be sufficient for Assumption 5. The same would be true for many factor-type models. [

When sup,, ;, Ng, < 00, as in Remark 10, the conditions (32) and (33) are identical. Thus,

the distinction between (32) and (33) is only relevant when sup, ;, Ny is unbounded.

Remark 12. We note from (15) that another sufficient condition for Assumption 5 could be
obtained by replacing 3, with Vj;,, because wmin(Vyn) < Wmin(2gn). While this would be
attractive in the sense that Vy, is defined directly in terms of the scores sy, it would result
in a much stronger assumption. Suppose, for example, that X; and X, are (asymptotically)
orthogonal, such that ¥ equals the diagonal block of V' corresponding to X,'u. Suppose
also that X and w are both finely clustered, but X is independent. Then X, satisfies the
condition in Remark 11, while V, only satisfies the corresponding condition in Assumption 4,

and hence using V;, in Assumption 5 would lead to a stronger condition. [

Remark 13. Consider the following prototypical setup for clusters that are relatively ho-
mogeneous, but possibly unbounded, in size. Suppose the coarse clusters have size N, = N
for g = 1,...,G = N'"® and for each g, the fine clusters have size Ny, = NJ for h =
1,....,M, = N;_T That is, when « () is large, there are few but large coarse (fine) clus-
ters. Conversely, when a () is small, there are many small coarse (fine) clusters. In this
case, (32) is satisfied if (27 + 1) <1 and ay < (A —1)/(3X — 1). On the other hand, (33)
is much weaker and is satisfied if « < 1 and ay <1 —1/A\. O

Remark 14. The sufficient condition in (32) applies because the observations could possibly
be generated independently, regardless of the null and alternative hypotheses. On the other
hand, as explained in Remark 11, the weaker sufficient condition in (33) is obtained when
there is more substantial clustering in the data-generating process. This is relevant for
the sequential testing procedure. At any given step in that procedure, the previous step
concluded that clustering is at least at the level of the null hypothesis of the current step,
which implies that the condition in (33) and Remark 11 applies. O

4.1 Theory for Asymptotic Tests

Theorem 1. Let Assumptions 1-5 be satisfied. Then, as N — oo, it holds that

Var(6)/26 -5 N(0, 1), Var(0) 'Var(0) =51, and
~ Y 4N, Varlh) p, .
Var(f) Var(0)
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Remark 15. Observe that the statement of the asymptotic distributions in Theorem 1
only concerns quantities that are self-normalized. For example, in the scalar case, these are
either 4 divided by its true standard error or the estimated variance of 6 divided by the true
variance. This is because the appropriate rates of convergence are not known in general; see
the discussion below (16). O

The asymptotic distributions of the test statistics follow immediately from Theorem 1:

Corollary 1. Let Assumptions 1-5 be satisfied. Then, as N — oo, it holds that
d 2 d
s — X (k(k + 1)/2) and 1, — N(0,1).

We next consider the asymptotic behavior of the test statistics under the alternative.
Because Assumption 1 implies that Hy is true, that assumption is not made. Instead, we

impose the following conditions:
Assumption 6. The sequence s, = X Ju, = Zgil Sgp is independent across g. ]

Assumption 7. The cluster sizes satisfy

sup, .7\793/2]\71/2
ZgGZI wmin<zg>

Assumption 6 is the assumption of (at most) coarse clustering. This assumption is very

— 0. O

general, and departures from the null could be very small and inconsequential. In order for
our tests to be able to detect departures from the null hypothesis, with probability converging
to one in the limit, we need to impose sufficient correlation within the coarse clusters. That is,
we need X, = Z;\L{"’:l ZhM;’:l E(Cgn,Cgp,) to be sufficiently large, in aggregate. This condition
is embodied in Assumption 7.

Remark 16. As in Remark 11, there is a tradeoff between cluster size heterogeneity and
correlation, in this case correlation within coarse clusters. Specifically, under Assumption 4,
the denominator in Assumption 7 is bounded from below by Zle Ny = N, and hence a
sufficient condition for Assumption 7 is

sup, N7

= 0. (34)

Suppose instead that Assumption 4 were strengthened to assume that inf, N~ 2Wmin(2y) > 0
(as in Remark 11, this could be due to a random effects model or a factor-type model). That

is, more correlation is assumed within the coarse clusters, so that there is a stronger departure
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from the null hypothesis. In this case, the denominator in Assumption 7 is bounded from

below by Zle N, 92 > inf, NgN. Therefore, a sufficient condition for Assumption 7 is

3

sup, NV p

——9 9 4. 35

inf, N2N (35)
With relatively homogeneous coarse clusters as in Remark 13, i.e. coarse clusters where
sup, Ny and inf, N, are of the same order of magnitude, the condition (35) reduces to

sup, Ny /N — 0, which is clearly minimal and implied by Assumption 5. O

Theorem 2. Let Assumptions 2-7 be satisfied, and suppose Hy in (16) is not true. Then,
as N — oo, it holds that
Ty 45 400 and |1, -5 +oo.

It follows immediately from Theorem 2 that tests based on either of our statistics reject

with probability converging to one under the alternative. That is, they are consistent tests.

4.2 Theory for Bootstrap Tests

We now demonstrate the asymptotic validity of the bootstrap implementation of our tests.
To this end, let 7 denote either of our statistics, and let the cumulative distribution function
of 7 under Hy be denoted Py(7 < x). The corresponding bootstrap statistic is denoted 7*.
As usual, let P* denote the bootstrap probability measure, conditional on a given sample,

and let E* denote the corresponding expectation conditional on a given sample.
Theorem 3. Let Assumptions 2-6 be satisfied with X\ > 2, and assume that E*|[v*]* < co.
Then, as N — oo, it holds for any € > 0 that

P(Sup ‘P*(T* <z)— Bt < x)‘ > e) — 0.
zeR

First, note that the bootstrap theory requires a slight strengthening of the moment
condition since at least four moments are now required. Second, Theorem 3 shows that the
bootstrap P values in Algorithm 1 are asymptotically valid under Assumption 1 and Hy.
Third, note that neither the null hypothesis nor Assumption 1 is imposed in Theorem 3.
Thus Theorems 1-3 together show immediately that the bootstrap tests are consistent. We

summarize these results in the following corollary.

Corollary 2. Let Assumptions 2-5 be satisfied with X > 2, and assume that E*[v*|** < oo.
As N — o0, it holds that:

(i) If Assumption 1 is satisfied and Hy is true, then P-4 U(0,1), where U(0,1) is a

uniform random variable on [0, 1].
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(i) If Assumptions 6 and 7 are satisfied and Hy is not true, then P* —25 0.

4.3 Theory for Sequential Testing Procedure

We next provide a theoretical justification for the sequential testing procedure in Algorithm 2.

14

Theorem 4. Suppose Assumption 1 is satisfied when the “fine” clustering level in (16) is
m =mg € {0,1,...,p} (and hence also for m > my), and suppose Hy in (16) is not true
for cluster levels m < mg. Suppose also that Assumptions 2-5 and 7 are satisfied, and let o

denote the nominal level of the tests. As N — o0, it holds that
(1) if mog < p—1 then P(m < my—1) — 0, P(im =my) — 1—a, and P(ih > my+1) — «,

(i) if mo = p then P(im < my—1) — 0 and P(ih = my) — 1.

The results in Theorem 4 show that 7 defined in Algorithm 2 or (31) is nearly consistent,
in the sense that it is asymptotically correct with probability converging to 1 — o when
mo < p—1 and with probability converging to 1 when my = p. It is worth emphasizing that
the sequential procedure will never “under-estimate” the cluster level, at least asymptotically,

in the sense that m < my with probability converging to 0.

5 Simulation Experiments

Most of the papers cited in the second paragraph of Section 1 employ simulation experiments
to study the finite-sample properties of various methods for cluster-robust inference. To our
knowledge, all of these papers use some sort of random effects, or single-factor, model to
generate the data. The key feature of these models is that all of the intra-cluster correlation
for every cluster g arises from a single random variable, say £, that affects every observation
within that cluster equally. This yields disturbances that are equi-correlated within each
cluster. Although this type of model is convenient to work with and can readily generate
any desired level of intra-cluster correlation, it cannot be used when a regression model has
cluster fixed effects. The fixed effects completely explain the £, so that, no matter how highly
correlated within each cluster the disturbances may be, the residuals are uncorrelated.
Investigators very often wish to test whether it is valid to use standard errors that are
robust to heteroskedasticity but not to intra-cluster correlation in regression models that
have cluster fixed effects. It is always valid to use heteroskedasticity-robust (HR) standard
errors for such models when the intra-cluster correlation of either the disturbances or the
regressors arises solely from a random effects model. Therefore, the null hypothesis of our

tests is satisfied, and they will have no (asymptotic) power. Of course, this is the desired
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outcome both in the statistical sense, because the null is satisfied, and in the practical sense,
because cluster-robust (CR) standard errors are not needed.

In practice, HR and CR standard errors often differ greatly in models with cluster fixed
effects; see, for example, Bertrand et al. (2004), MacKinnon (2019), and Section 6. Therefore,
whatever processes are generating intra-cluster correlation in real-world data must be more
complicated than simple random effects models. Since we wish to investigate models with
cluster fixed effects, we need to employ a data-generating process (DGP) for which cluster
fixed effects do not remove all of the intra-cluster correlation. To this end, the DGPs for
both the regressors and the disturbances in our experiments employ .J correlated random
factors per cluster instead of just one. The idea is that the observations within each cluster
all depend on one of these J unobserved factors. In practice, we set J = 10, but the results
are qualitatively the same for other reasonable values of J.

Consider first the generation of the disturbances, u,, for g = 1,...,G. These are gener-
ated with one level of clustering, so there is no need to distinguish fine and coarse clusters.

Specifically, the disturbance vector for cluster g is generated by the factor model
u, = We€, +weey, €,~N(0,1,), g=1,...,G, (36)

where €, is an idiosyncratic noise term and &, = [,1,...,&,s]" is a J-vector of unobserved
random factors. The N, x J loading matrix W, has (i, 7)™ entry wg]l(j = [(t—=1)J/Ny|+ 1),
where |-| denotes the integer part of the argument. We normalize wg—l—w? = 1. When J =1,
W, is a vector of ones (prior to normalization), and clearly (36) is the random effects model.
In practice, we choose IV, so that it is a multiple of J, and hence precisely N,/.J observations
in each cluster depend on each of the J unobserved factors. The most important parameter
here is we, which is the weight on the unobserved factor. When w, = 0, there is no intra-
cluster correlation.

If the &;; in (36) were independent, the only within-cluster correlation would arise from
columns in W; with multiple non-zero entries. We generate additional correlation within
cluster g by letting the factors {,; be correlated across j. Specifically, we let {,; follow a

stationary first-order autoregression with unconditional variance 1, given as

ggl ~ N((); 1)7 gg] = ng,j—l + €gj5 €g5 ™~ N<Oa 1- p2)a j = 27 R Ja (37)

where p? < 1. Although the average intra-cluster correlation increases with p, the value of p
should not be too large, because the &,; for each g become more similar as p increases. When
p is very close to 1, the DGP consisting of (36) and (37) becomes hard to distinguish from a

random effects model, so that the fixed effects remove most of the intra-cluster correlation.
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Note that (36) and (37) make no reference to fine and coarse clusters. As stated, they
could be used to generate either finely or coarsely clustered data. When there is coarse
clustering, we order the observations so that, when all clusters are the same size, every fine
cluster contains an equal number of observations that depend on each of the factors. For
example, when each coarse cluster contains 200 observations, each fine cluster contains 50
observations, and there are J = 10 factors, every coarse (or fine) cluster will have 20 (or 5)
observations that depend on each of the factors. This ensures that, when there is coarse
clustering, there will be the same level of correlation both within fine clusters, and across
fine clusters within each coarse cluster.

For example, in an analysis of house prices where the fine and coarse clusters corresponded
to small and large geographic areas, the factors in (36) and (37) might correspond to streets
of different types. In an analysis of wages where the clusters corresponded to plants or firms,
the factors might correspond to occupations. However, there is no need to interpret the DGP
in this way. It is simply a way to generate scores that display intra-cluster correlation even
in the presence of fixed effects.

We described the generation of the disturbances above. Except in the experiments of
Appendix C.4, the regressors X are generated in the same way, but they are always coarsely
clustered. This ensures that, if the disturbances are either independent (we = 0), finely
clustered, or coarsely clustered, the scores will also be independent, finely clustered, or
coarsely clustered, respectively. When the DGP in (36) and (37) is applied at the coarse level
with we > 0 and p > 0, there is at least some correlation between every pair of observations
within each coarse cluster, and consequently also between every pair of observations within
each fine cluster. If instead (36) and (37) are applied at the fine level, then there is correlation
between every pair of observations within each fine cluster, but there is no correlation (or
dependence) across fine clusters. Importantly, cluster fixed effects at either the coarse or fine
levels do not eliminate these correlations, although they will usually reduce their magnitude.

In all experiments, the regressors in X are generated independently. This implies that
there is no correlation among the coefficients. It might seem that the extent of any such
correlation would be important for the properties of the 7 tests. However, that is not the
case. We find numerically that the 7y statistic is invariant to any transformation of X that
does not change the subspace spanned by its columns. Thus there is no loss of generality in

generating the regressors in X; independently.
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5.1 Performance under the Null Hypothesis

Our first set of experiments is designed to investigate the rejection frequencies of asymptotic

and bootstrap score-variance tests under the null hypothesis. The model is

k

Yghi = Y BeXogni + Xo,gn0 + Ughi, (38)
=1

where the regressors Xy, are generated independently across ¢ by (36) and (37) at the coarse

level with we = 0.7, J = 10, and p = 0.5. The additional regressors in Xy 4, are either a

constant term or a set of cluster fixed effects at the fine level. The number of coarse clusters,

which in this section we denote by G, is allowed to vary. In the first set of experiments,

there are always four fine clusters in each coarse cluster, so that Gy = 4G...

Figure 1 shows rejection frequencies at the 0.05 level for asymptotic tests for k = 1,...,5,
which implies that the number of degrees of freedom for the tests is 1, 3, 6, 10, or 15.
Panels (a) through (c) show rejection frequencies when the model includes fine-level fixed
effects. Tests of no clustering versus fine clustering, in Panel (a), always over-reject less
severely than the other tests. Tests of no clustering versus coarse clustering, in Panel (b),
appear to over-reject considerably more severely, but this is mainly because there are not
as many coarse clusters. When G. = 16, for example, rejection frequencies for tests of no
clustering versus coarse clustering are very similar to those for tests of no clustering versus
fine clustering when G¢ = 16. The modest differences arise because the coarse clusters are
four times as large as the fine clusters and because the fixed effects are at the fine level.

For small and moderate values of G., tests of fine against coarse clustering, in Panel (c),
over-reject more severely than do the other tests. When k is large and G, is small, the
over-rejection can be quite extreme. However, as can most clearly be seen in Panel (d), the
performance of these tests improves more rapidly with the number of clusters than does the
performance of the other tests.

The most striking feature of Figure 1 is that over-rejection increases sharply with k.
This should not have been a surprise in view of the fact that, like the information matrix
test (White 1982), the 7x test has degrees of freedom that are O(k?). Davidson and Mac-
Kinnon (1992) found a similar tendency for the rejection rate of the information matrix test
(in particular, the popular NR? form of it) to increase rapidly with k.

In Panel (d), for just a few cases, we compare the rejection frequencies for models that
have fine-level fixed effects with ones for corresponding models that just have a constant
term. For all values of GG, the rejection frequencies seem to be slightly smaller for the latter
models than for the former ones.

The bootstrap versions of the tests perform very much better than the asymptotic ones.
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Figure 1: Rejection frequencies for asymptotic 7 tests at 0.05 level

Rej. Rate Rej. Rate
0.307 0.30,
k
0.20- 0.20,
Jk=5 -
0.15 ]]2:431 0.15 L
0.10q~= 0.10+
k=2 L
0.05 k=1 0.05
0.037 - 1 1 T T — Gt 0-034 - 1 1 — —1 Ge
12 16 24 32 48 64 96 160 256 3 4 6 8 1216 24 32 48 64
(a) None vs. fine, fine FEs (b) None vs. coarse, fine FEs
Rej. Rate Rej. Rate
k=5 F vs. C, fine FE§ ———
0.80- 0.804 F vs. C, constant ---------
N vs. C, fine FE§ ———
\ N vs. C, constant ------------
0.60 0.60 3 N vs. F, fine FEs ———
3 N vs. F, constant ----------
0.40+ 0.40+
0.30+ 0.30+
0.20+ 0.20+4
0.15+ 0.15+
0.104 0.104
0.05 0.05
0-03 — I I I — G 0-034 1 I I I —1 Ge
3 4 6 8 1216 24 32 48 64 3 4 6 8 1216 24 32 48 64
(c) Fine vs. coarse, fine FEs (d) Fine FEs or constant

Notes: The data are generated by (38) with independent standard normal disturbances and 1 < k < 5.
G denotes the number of coarse clusters. There are Gy = 4G, fine clusters. Each fine cluster contains 100
observations, so that N = 400G.. There are 400,000 replications.

Figure 2 is based on experiments similar to those that underlie Figure 1, but with 200,000
replications instead of 400,000 because they are much more expensive. Panel (a) shows
rejection frequencies at the 0.05 level for the wild bootstrap test of no clustering against
coarse clustering described in Section 3.2. These appear to be equal to 0.05 plus random
noise. For clarity, there are only three values of k, namely, 1, 2, and 4. Panel (b) shows
rejection frequencies at the 0.05 level for the wild cluster bootstrap test of fine against coarse
clustering. With fixed effects, the bootstrap tests perform quite well (compare Panel (c) of
Figure 1), but they always over-reject slightly. With just a constant term, on the other hand,

the bootstrap tests perform very well even for G.. as small as 3. Note that this corresponds to
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Figure 2: Rejection frequencies for bootstrap 7 tests at 0.05 level
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Notes: The data are generated by (38) with independent standard normal disturbances. G. denotes the
number of coarse clusters. There are Gy = 4G, fine clusters. Each fine cluster contains 100 observations, so
that N = 400G.. Panel (a) uses the ordinary wild bootstrap, and Panel (b) uses the wild cluster bootstrap.
There are 200,000 replications and 399 bootstraps.

Gt = 12, so that, in this case, each wild cluster bootstrap sample is based on 12 values of v*®.

The bootstrap tests can be computationally demanding when the sample size is large,
particularly for larger values of k. This is especially true for tests where the null hypothesis
is no clustering, because the calculations in (18), (19), and (29) involve score vectors of which
the size is the number of clusters under the null hypothesis. This number is N for tests of
no clustering but only Gy for tests of fine clustering.

In some additional experiments that are not reported, we find that asymptotic tests in
models with coarse-level fixed effects work a bit better than the same tests in models with
fine-level fixed effects, but not as well as in models with just a constant term. The same
pattern is observed for bootstrap tests of fine versus coarse clustering, especially for larger
values of k. It is not surprising that performance should be a bit better when the number
of fixed effects is reduced by a factor of four.

In all the experiments reported here, the disturbances in the DGP are independent.
For the tests of fine against coarse clustering, this is unnecessarily restrictive. In some
additional unreported experiments, we allow there to be intra-cluster correlation at the fine
level. Interestingly, we find that asymptotic tests of fine against coarse clustering perform
a bit better as the amount of fine-level intra-cluster correlation increases, which is in line
with Remark 11. On the other hand, bootstrap tests perform a bit worse. The differences

are always very small, however.
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Figure 3: Power of two-sided bootstrap 7, tests when there is fine clustering
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Notes: The data are generated by (38) with two regressors. There are 8 coarse clusters, 32 fine clusters,
and 3200 observations. The disturbances have fine clustering, with p = 0.5 and weight w, between 0.0 and
1.0. There are 400,000 replications and 399 bootstraps.

5.2 Performance under the Alternative Hypothesis

In the next set of experiments, we turn our attention to power, initially focusing on the
special case of the 7, test for a single coefficient. The model actually contains two regressors,
which are independent and have the same distribution. Including an additional regressor
seems to have very little effect on the properties of the tests.

Figure 3 shows the power of four bootstrap 7, tests (no clustering against fine and
no clustering against coarse, with and without fine-level fixed effects) at the 0.05 level as
functions of we when there is fine clustering, with G. = 8, Gy = 32, and N = 3200. Since the
null hypothesis is true for tests of fine against coarse clustering, we do not show results for
them. The null hypothesis is false for the tests of no clustering, and it is evident that they
have power which increases monotonically with we. As expected, the tests have more power
for the models with just a constant term than for the models with fine-level fixed effects.

Since clustering is actually at the fine level, it should be no surprise that the tests against
fine clustering have more power than the tests against coarse clustering. The numerator of

the test statistic, §, equals either 62 or 62, both given in (20), minus 62, given in (21). In
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Figure 4: Power of two-sided bootstrap 7, tests when there is coarse clustering
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Notes: The data are generated by (38) with two regressors. There are 8 coarse clusters, 32 fine clusters,
and 3200 observations. The disturbances have coarse clustering, with p = 0.5 and weight w¢ between 0.0
and 1.0. There are 400,000 replications and 399 bootstraps.

the case of the test for fine clustering, all of the (g4, that are implicitly being tested have non-
zero means, but in the case of the test for coarse clustering only the ones that correspond to
the same fine clusters do so. In other words, the test for coarse clustering incorporates many
additional terms that are zero in expectation, when compared to the test for fine clustering,
and consequently it has less power.

Figure 4 is similar to Figure 3, but there are two panels and the DGP now has coarse
clustering. This means that, except when we = 0, the null hypothesis is false for all the
tests. In Panel (a), there is only a constant term, and in Panel (b) there are coarse-level
fixed effects. As before, any given test for a model with fixed effects has less power than the
corresponding test for a model without fixed effects. In both panels, the test of no clustering
against coarse clustering has the most power, followed by the test of fine against coarse
clustering, followed in turn by the test of no clustering against fine clustering.

This ranking of the tests is quite different from the ranking in Figure 3, as it should
be. Intuitively, the ranking follows from the fact that different numbers of terms with non-
zero means contribute to the power of the tests. The test of no clustering against coarse
clustering incorporates the largest number of terms that are non-zero in expectation under
the alternative but not under the null. The test of no clustering against fine clustering omits

many of these terms, because they do not belong to the same fine clusters. In contrast,
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Figure 5: Power of two-sided bootstrap 7, tests with fixed effects and coarse clustering
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Notes: The data are generated by (38) with two regressors. There are either 8 coarse clusters with varying
numbers of observations per cluster, or there are between 2 and 32 coarse clusters with 400 observations per
cluster. The disturbances have coarse clustering, with p = 0.5 and w¢ = 0.4. There are 400,000 replications
and 399 bootstraps.

because the test of fine against coarse clustering has a different null, the terms that are non-
zero in expectation and belong to the same fine clusters no longer contribute to power.

It is also of interest to see what happens to power as the sample size increases. There
are many different ways in which this can happen. One of them is for the number of clusters
to increase, with cluster sizes held constant. Another, which however does not satisfy the
assumptions of Theorem 2, is for the number of observations per cluster to increase, with
the number of clusters held constant. Figure 5 shows the power of the three bootstrap 7,
tests as a function of NV for both ways of increasing the sample size. All models include fixed
effects at the fine level; power would be somewhat higher if they only included a constant
term. Interestingly, power seems to increase with N at roughly the same rate for both ways
of increasing the sample size.

In Figures 3-5, we report power only for bootstrap tests. The power functions for the
asymptotic tests look very similar, and the figures would be too crowded if they were added.
In these experiments, the power of the asymptotic tests is always higher than that of the

bootstrap tests, but of course this apparently greater power is spurious and due to the fact
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Figure 6: Power of asymptotic 75 tests (fine vs. coarse) as a function of k
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Notes: The data are generated by (38). Disturbances are clustered at the coarse level, with parameters
p = 0.5 and we between 0.1 and 0.3. There are 40 coarse clusters, 320 fine clusters, 32,000 observations, and
400,000 replications. Tests are at the 0.05 level.

that the asymptotic tests over-reject noticeably under the null. We present additional results
about the power of bootstrap and asymptotic tests in Appendix C.1, where we also compare
the power of one-sided and two-sided tests.

In the remainder of this subsection, we focus on the 75 tests for k£ > 1 coefficients. Since,
by Corollary 1, these tests are asymptotically distributed as x?(d) under the null hypothesis,
where d = k(k + 1)/2, we expect their distribution under the alternative hypothesis to be
approximately x*(d,A), where A is a noncentrality parameter that might be expected to
increase with k if the scores were actually clustered for every coefficient.

In order to investigate this conjecture, we perform a set of experiments in which k varies
from 1 to 5 and there is coarse clustering, the extent of which depends on the parameter we.
In the hope that asymptotic approximations will be reasonably accurate, the model has 40
coarse clusters, 320 fine clusters, and 32,000 observations. We focus on tests of fine against
coarse clustering. Panel (a) of Figure 6 shows rejection frequencies for asymptotic 7 tests
at the 0.05 level as a function of £ for five values of we. It is evident that power increases
with both w¢ and k. Both relationships are inevitably nonlinear, because power is bounded
above by 1 and below by (approximately) 0.05.

Panel (b) of Figure 6 is more revealing than Panel (a). The horizontal axis is the same,
but the vertical axis shows A, the estimated noncentrality parameter. For each value of k

and we, A is computed as the mean of the 400,000 test statistics minus d. If the statistics
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Figure 7: Outcomes for sequential two-sided bootstrap tests at 0.05 level
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Notes: The data are generated by (38) with clustered disturbances at either the coarse level (left panel) or
the fine level (right panel), for we between 0.0 and 1.0. There are 8 coarse clusters, 32 fine clusters, and 6400
observations. Bootstrap tests use B = 999, and there are 200,000 replications. The two solid red curves
separate the three outcomes of the sequential procedure (N, F, and C). The dashed blue curve shows the

outcome of a direct test of N against C.

were actually distributed as y2(d, A), then A would be an unbiased estimate of A. It can be
seen from the figure that, to a very good approximation, A is linear in k. In fact, it is almost
proportional to k.

Of course, the clustering of the regressors is important. In our experiments, every regres-
sor is clustered in the same way. That is why A is almost proportional to k. If instead the
regressors were such that, say, the scores for coefficient 1 were clustered but the scores for
other coefficients were not, then we would expect the 7, test based on coefficient 1 to have

more power than the 7x test based on two or more coefficients.

5.3 The Sequential Testing Procedure

Our next set of experiments concerns the sequential testing procedure of Section 4.3, using
bootstrap tests. These experiments are quite similar to the ones in Figures 3 and 4, except
that there are 6400 observations instead of 3200. There are also 999 bootstrap samples
instead of 399, in order to reduce the (already quite small) power loss caused by using a finite
number (Davidson and MacKinnon 2000). Because both these changes to the experimental
design increase computational cost, the number of replications is now 200,000. The model

always contains fine-level fixed effects, and all of the tests are at the 0.05 level.
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In Panel (a) of Figure 7, there is coarse clustering in the DGP, except when we = 0. In the
latter case, as expected, the procedure chooses no clustering (N) almost exactly 95% of the
time, fine clustering (F') almost exactly 4.75% of the time, and coarse clustering (C) almost
exactly 0.25% of the time. These results illustrate why the sequential testing algorithm does
not inflate the Type I error. In this case, the true null is rejected almost exactly a% of the
time. Amongst the replications with false positives, the test concludes that fine clustering
is appropriate about (1 — «)% of the time and that coarse clustering is appropriate the
remaining a% of the time.

As wg increases, the procedure chooses N less and less often. Initially, it chooses both C
and F more frequently. For F, the highest percentage is 10.16% when w, = 0.20. At that
point, the procedure is already choosing C 17.51% of the time. As w; increases further, it
chooses C more and more often, at the expense of both N and F. When w, = 1, the largest
possible value with our DGP, it chooses C 98.49% of the time, N 1.41%, and F just 0.01%.

Figure 7 does not show the outcomes of sequential tests of the model with just a constant
term, because it would make the figure too hard to read. Since these tests are more powerful
than the same tests in the model with fixed effects, the correct level of clustering is always
chosen more often, for any value of we.

The sequential procedure inevitably has less power than testing no clustering directly
against coarse clustering. The outcome of testing N directly against C at the 0.05 level is
shown by the blue dashed curve in Panel (a). The gap between this curve and the one that
separates the F' and C regions shows the power loss from using the sequential procedure.
This power loss arises for two reasons. First, the test of N against F has less power than
the test of N against C; see Figure 4. Second, even when N is correctly rejected against F,
the latter is sometimes not rejected against C. When the investigator finds coarse clustering
more plausible than fine clustering, it may therefore make sense to test no clustering directly
against the former rather than to employ the sequential procedure.

In Panel (b) of Figure 7, there is fine clustering in the DGP, except when we = 0. The
sequential procedure again works very well. As wg increases, it chooses no clustering a
rapidly diminishing fraction of the time, which drops to essentially zero for we > 0.6. For
larger values of wg, it incorrectly chooses coarse clustering about 4.9% of the time.> Once
again, the outcome of testing N directly against C is shown by the blue dashed line. This
test works much less well than the sequential procedure, often failing to reject the false

hypothesis that the disturbances are not clustered. Again, this is expected from the results

3This is just under the nominal level of the test for F against C and reflects the fact that the bootstrap
test tends to under-reject very slightly when there is actually fine clustering. Recall that there are only 8
coarse and 32 fine clusters in these experiments, so it should not be a surprise that even the bootstrap test
does not work quite perfectly.
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in Figure 3; compare the two dashed lines in that figure.

5.4 The Ibragimov-Miiller Test

The only existing test for the level of clustering of which we are aware was proposed by
Ibragimov and Miiller (2016) and is described in detail in Appendix B. The IM test is based
on estimating the model separately for every coarse cluster. Unfortunately, this is impossible
to do whenever treatment is invariant within clusters. Even when it is possible to do it for
some clusters, it may not be possible to do it for all of them. For example, in a difference-
in-differences context, any cluster that is always treated or never treated will have to be
omitted. Especially when many of the explanatory variables are dummies, there may also be
perfect collinearity at the cluster level between the regressor of interest and some explanatory
variables, or just among some of the latter. This is never a problem for our tests, because
they do not require the model to be estimated on a cluster-by-cluster basis.

For our DGP, the IM test may be used to test either no clustering or fine clustering against
coarse clustering. Since its performance seems likely to depend on the numbers of coarse and
fine clusters, our simulations focus on varying these numbers. Because the IM test is one-
sided, we compare it with a one-sided (upper tail) version of the 7, test rather than with
the two-sided version studied so far. We do not consider sequential testing, because an IM
test of no clustering against fine clustering assumes fine-level fixed effects, while an IM test
of fine against coarse clustering assumes coarse-level fixed effects. Thus the sequence of IM
tests is not nested, and consequently it is impossible to perform sequential IM tests for the
same regression model. In contrast, our sequential tests always keep the model unchanged,
including the level of the fixed effects, if any.

In the first set of experiments, the null hypothesis is true, N = 9600, the value of G_ is 4,
8, or 12, and the number of fine clusters per coarse cluster varies. Figure 8 shows rejection
frequencies for three tests of fine against coarse clustering. As in Figure 2, the bootstrap 7,
test works nearly perfectly. In the worst case, it rejects just 5.57% of the time. In contrast,
the IM test over-rejects moderately, and the asymptotic 7, test over-rejects somewhat more
seriously. These experiments differ in several respects from the ones in Figures 1 and 2. The
sample size is three times as large, the fixed effects are at the coarse instead of the fine level,
and the tests are one-sided instead of two-sided. For cases where GG, and Gy are the same as
before, the asymptotic tests now reject somewhat more often, and the bootstrap tests reject
less often. We do not report rejection frequencies for tests of no clustering against coarse
clustering because the IM test, like the bootstrap 7, test, always seems to work very well;

see Figures C.2 and C.3 in Appendix C for some examples.
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Figure 8: Rejection frequencies for one-sided tests of fine against coarse clustering
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Notes: The data are generated by (38). There are 9600 observations and 4, 8, or 12 coarse clusters,
together with various numbers of fine clusters per coarse cluster. There are coarse-level fixed effects, and the
disturbances are uncorrelated. The only regressor has coarse clustering, with p* = 0.5 and wg = 0.7. There
are 400,000 replications, 399 bootstraps, and 9,999 simulations for the IM tests. Tests are at the 0.05 level.

The next set of experiments concerns power as a function of the parameter wg, which
determines how much intra-cluster correlation the disturbances display. Panel (a) of Figure 9
shows four power functions for tests of no clustering against coarse clustering. There are
two DGPs and two tests, namely, the IM test and the bootstrap 7, test. Not surprisingly,
both tests have more power when there are more clusters, even though the sample size is
unchanged. The IM test always has somewhat less power than the bootstrap score-variance
test. Since both tests perform more or less perfectly under the null hypothesis, this lower
power is clearly not spurious. For a large range of values of we, the difference in power when
G. = 8 is between 6 and 9 percentage points.

Panel (b) of Figure 9 shows power functions for tests of fine versus coarse clustering
for the same experiments. When G, = 4 and G; = 16, the IM test over-rejects under the
null, and it apparently has more power than the bootstrap score-variance test. Because of
the over-rejection, this higher power is spurious. When G. = 8 and Gy = 128, both tests
perform extremely well under the null hypothesis, and the bootstrap score-variance test now
has greater power than the IM test. The difference is between 3 and 6 percentage points for
a large range of values of we.

On the basis of these, admittedly limited, experiments, we tentatively conclude that the

IM test generally performs well under the null, but not as well as the bootstrap version of
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Figure 9: Power of one-sided bootstrap 7, and IM tests at 0.05 level
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Notes: The data are generated by (38) with two regressors. There are 6400 observations and either 4 coarse
and 16 fine clusters or 8 coarse and 128 fine clusters. The disturbances have coarse clustering, with we
varying on the horizontal axis, and there are coarse-level fixed effects. The regressor of interest has coarse

clustering, with p* = 0.5 and wg = 0.7. There are 200,000 replications and 999 bootstraps.

our test. When both tests have the correct rejection frequency under the null, the bootstrap
score-variance test seems to have somewhat more power. This is for cases where cluster-by-
cluster estimation of the original model is possible for all clusters. When that is not possible,
as in the STAR example of Section 6, our test and the IM test are actually testing different

hypotheses, because the interpretation of the coefficients differs across clusters.

5.5 Additional Experiments

In additional simulation experiments that are discussed in Appendix C, we modify the de-
sign of these experiments in several ways. In particular, we consider DGPs for which there
is heteroskedasticity in Appendix C.2 and ones for which the clusters vary in size in Ap-
pendix C.3. We also study a model in which the regressors are all dummy variables, taken
from the STAR example of Section 6, in Appendix C.4. The principal conclusions of this
section, and of Appendix C, can be summarized as follows.

Asymptotic score-variance tests perform well under the null hypothesis in many cases, but
they can over-reject noticeably when either the total number of coarse clusters or the number
of fine clusters per coarse cluster is small. This is particularly true for the experiments of
Appendix C.4, where the combination of coarse-level fixed effects, dummy regressors, and few

fine clusters per coarse cluster sometimes leads to severe over-rejection. The asymptotic tests
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can also under-reject, sometimes severely, when cluster sizes vary a lot; see Appendix C.3.
Bootstrap score-variance tests generally work very well. The only case in which they do
not work almost perfectly is for some of the experiments in Appendix C.4, where they never-
theless perform very much better than the asymptotic tests. When they can be calculated,
IM tests of no clustering generally perform well, but IM tests of fine against coarse cluster-
ing can over-reject substantially in some cases. The power of all the tests is often very good.
The sequential testing procedure seems to perform very well when the sample size and intra-

cluster correlations are large enough for each of the sequential tests to have good power.

6 Empirical Example

We now illustrate the use of our score-variance tests, and of the IM test suggested by Ibrag-
imov and Miiller (2016), in a realistic empirical setting. Our example employs the widely-
used data from the Tennessee Student Teacher Achievement Ratio (STAR) experiment (Finn
and Achilles 1990; Mosteller 1995). We use these data to estimate a cross-sectional model
similar to one in Krueger (1999). The STAR experiment randomly assigned students either
to small-sized classes, regular-sized classes without a teacher’s aide, or regular-sized classes
with a teacher’s aide. We are interested in the effect of being in a small class, or being in a
class with an aide, on standardized test scores in reading.

We estimate the following cross-sectional regression model:
read-one,,; = a + [ysmall-class,. + [, aide-class,. + :c;rcié + Uges (39)

The outcome variable read-one,,; is the reading score in grade one of student 7 in classroom ¢
in school s. We are interested in 3, and f3,, which are the coefficients for the small-class and
aide-class dummies. Small-class equals 1 if a student attended a small class in grade one
and equals 0 otherwise; aide-class is constructed in the same way for classes with or without
teacher’s aides. Additional control variables are collected in the vector of regressors ;.
These include dummy variables for whether the student was male, non-white, or received free
lunches, as well as a dummy variable for whether the student’s teacher was non-white. They
also include the teacher’s years of experience and the student’s reading score in kindergarten.
Finally, there are dummy variables for the student’s quarter of birth, the student’s year of
birth, and the teacher’s highest degree. There are thus 17 coefficients in total, not counting
the constant term or the school fixed effects, if any.

OLS estimates for the model (39) are presented in the top half of Table 1. The model is
estimated both without school fixed effects (left panel) and with school fixed effects (right
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Table 1: STAR Example

Without School FE With School FE
Estimation HR  CR-class CR-school HR  CR-class CR-school
small f, 9.211  9.211 9.211 8.095  8.095 8.095
s.e. 1.631  3.203 3.178 1.538 2.322 3.127
t-stat. 5.649  2.876 2.899 5.263 3.486 2.589
aide Ba 6.245 6.245 6.245 4.170 4.170 4.170
s.e. 1.661 3.260 2.790 1.569 2.109 2.422
t-stat. 3.759  1.916 2.238 2.658 1.977 1.722
Without School FE With School FE
Cluster tests stat. asy. P boot P stat. asy. P boot P IM P
small Hy vs Hy 28.388  0.000 0.000 12.757 0.000 0.000 —
Hy vs Hg 16.409  0.000 0.000 18.308 0.000 0.000 0.251
Hg vs Hg  —0.101  0.920 0.925 4.366 0.000 0.004 0.000
ailde Hy vs Hp 25.693  0.000 0.000 7.625 0.000 0.000 —
Hyx vs Hg 10.102  0.000 0.000 7.696 0.000 0.000 0.438

Hr vs Hy —1.765  0.080 0.084 1.871 0.061 0.344 0.000
both Hy vs Hgr 1075.469  0.000 0.000 180.448 0.000 0.000 —

Hy vs Hg  322.367  0.000 0.000 385.950 0.000 0.000 —

Hg vs Hg 5.215  0.157 0.171 28.673 0.000 0.011 —

Notes: There are 3,989 observations and either 330 (classroom) or 75 (school) clusters. Values of the 7,
statistic (for “small” and “aide”) or the 7s statistic (for “both”) are shown under “stat.” All other numbers
in the lower panel are P values. For the 7, tests, asymptotic P values are two-sided and based on the N(0, 1)
distribution. For the 75 tests, they are based on the x?(3) distribution. Bootstrap tests use B = 99,999. IM
tests use S = 9,999.

panel). Tt is impossible to use classroom fixed effects, because treatment was assigned at the
classroom level. Three sets of standard errors and t-statistics are reported for each variant of
the model. One set is heteroskedasticity-robust (HR). The other two sets are cluster-robust
(CR) at either the classroom level or the school level. Because treatment was assigned at
the classroom level, it seems plausible that clustering at that level would be appropriate.
However, since there are multiple classrooms per school, and students from the same school
probably have many common characteristics and peer effects, it might also seem natural to
cluster at the school level instead of the classroom level.

Unfortunately, the dataset does not contain a classroom indicator. One was created by
using the information on the school ID, teacher’s race, teacher’s experience, teacher’s highest
degree, teacher’s career ladder stage, and treatment status. It is possible that this procedure

occasionally grouped two classes into one class, when two teachers in the same school had
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exactly the same observable characteristics. However, since the largest observed class had
only 29 students, this seems unlikely to have happened often. Moreover, it would not be a
problem, because the true classes would always be nested within the larger, assumed class.
What would be a problem is if classes were incorrectly partitioned, but this cannot happen.

Without school fixed effects, the estimate for the impact of being in a small class on test
scores is Bs = 9.211. Based on an HR standard error of 1.631, the t-statistic for the null
hypothesis that 8, = 0 is 5.65. When we instead use CR standard errors clustered at the
classroom level, the standard error for (, increases to 3.203, and the t-statistic decreases to
2.88. Finally, when we use CR standard errors clustered at the school level, the standard
error is 3.178, and the t-statistic is 2.90. The CR t-statistics provide quite strong evidence
against the null, but not as strong as the evidence from the HR t¢-statistics. If one were to
rely on the rule of thumb always to use the largest standard error, then one would want to
cluster at the classroom level. However, if one instead relied on the rule of thumb to cluster
at the coarsest possible cluster, then one would want to cluster at the school level.

When we estimate the model with school fixed effects, Bs = 8.095, so it has not changed
much. The HR t-statistic is now 5.26, the classroom-level CR t-statistic is 3.49, and the
school-level CR t-statistic is 2.59. Thus, with school fixed effects, the “largest-standard-
error” and “coarsest-clusters” approaches both suggest clustering at the school level.

The pattern is largely similar for the effect on test scores of being in a class with an
aide. The estimate is Ba = 6.245 without fixed effects and Ba = 4.170 with fixed effects. The
standard errors and t-statistics are shown in the bottom part of the top half of Table 1. The
only surprising thing is that, without fixed effects, the CR standard error clustered at the
school level (2.790) is smaller than the one clustered at the classroom level (3.260).

The lower panel of Table 1 shows the values of our test statistics, and the associated
asymptotic and bootstrap P values, for the two coefficients of interest. It also shows results
for the IM test for the model with school fixed effects, when that test can be calculated;
see Appendix B. For each specification, we consider three hypotheses: Hy is no clustering
with possible heteroskedasticity (HR), Hg is classroom-level clustering (CR-class), and Hg
is school-level clustering (CR-school). These are nested as Hy € Hg C Hs.

For testing Hy against Hg (that is, HR against CR-class), our tests, both asymptotic
and bootstrap, very strongly reject the null in all cases. IM tests cannot be computed for
this hypothesis, because the procedure requires the model to be estimated classroom by
classroom, and the two treatment variables are invariant at that level; see Appendix B.

For testing Hy against Hg (that is, HR against CR-school), all our tests also very strongly
reject the null in all cases. This is not surprising in view of the results for testing Hy against

Hg. Since there is overwhelming evidence against Hy when tested against Hg, and classrooms
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are nested within schools, there is inevitably also strong evidence against Hy when tested
against Hg. IM tests can be computed when testing against Hg, but only for the model
with school fixed effects. For both coefficients, the IM tests suggest that Hy should not be
rejected. This is inconsistent with the results of the score-variance tests and surprising in
view of the standard errors reported in the top part of the table.

The results for testing Hr against Hg differ considerably depending on the model, the
coefficient(s) of interest, and the testing procedure. For small-class, the 7, test fails to
reject when there are no school fixed effects, but it rejects quite strongly when there are.
This makes sense, because the CR-class and CR~school standard errors are almost the same
without fixed effects but quite different with them. The IM test also rejects in the latter
case. For aide-class, the 7, test rejects Hgr at the 10% level without fixed effects but fails to
reject with them. The IM test rejects strongly in this case.

Many of the differences between the score-variance tests and the IM test in Table 1
probably arise because calculating the latter for the model (39) is tricky. The problem is that
estimating all the coefficients for every one of the 75 schools is infeasible. For 34 schools, it
is impossible to estimate at least one of 5 and 3, (17 schools in the case of 35 and 21 schools
in the case of f,). This means that the IM tests have to be based on either 58 or 54 coarse
clusters, instead of all 75. Additionally, the other regressors that are included vary across
clusters, so that the coefficients S, and [, may have different interpretations for different
clusters. The IM tests may effectively be testing different null hypotheses than the score-
variance tests, which are always based on estimates for the entire sample.

The 7v tests for both coefficients reject in all but one case. The only exception is the test
of Hr against Hg in the model with just a constant. This is not surprising, because neither
of the 7, tests is significant in that case.

For the model with just a constant, the asymptotic and bootstrap P values are quite
similar. However, for the model with fixed effects, the latter are often considerably larger
than the former for the tests of Hy against Hgr and Hy against Hg. Although it cannot
be seen in the table, this is true even when the bootstrap P values are 0.000, because the
bootstrap critical values are much larger than the asymptotic ones. For example, the test
statistic for Hy against Hg for 3, is 7.625. The asymptotic critical value is, of course, 1.96,
but the bootstrap critical value is 3.48.

It may be surprising that a bootstrap distribution should differ so greatly from its asymp-
totic counterpart when there are 330 classroom clusters. With 75 school fixed effects and 17
regressors, several of which vary only at the classroom level, the asymptotic critical values
are evidently not to be trusted. Interestingly, when we perform a Monte Carlo experiment

that combines the actual data for all regressors with independent, normally distributed dis-
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turbances (in Appendix C.4), the 0.05 critical value for the test of Hy against Hg for f, is
3.77. This is very much larger than the asymptotic critical value and much closer to the
bootstrap critical value of 3.48. This suggests that, for datasets where key regressors often
vary at the fine cluster level, it can be very important to bootstrap when there are coarse-
level fixed effects. When the number of fine clusters per coarse cluster is small, even boot-
strap tests may tend to over-reject somewhat for tests of Hg against Hg; see Appendix C.4.

In summary, our score-variance tests suggest that clustering at either the classroom or
school level is essential, because the null hypothesis of no clustering is always strongly rejected
against both alternatives. Whether we should cluster at the school or classroom level is not
so clear. With just a constant term, the sequential testing procedure, using either asymptotic
or bootstrap tests, suggests that we should choose Hg. However, with fixed effects, we should

apparently choose Hpg if interest focuses on (3, but we should choose Hg otherwise.

7 Conclusion

Most empirical research that uses cluster-robust inference assumes that the level of clustering
is known. When this strong assumption fails, the consequences can be serious. Clustering
at too fine a level can result in tests that over-reject severely and confidence intervals that
under-cover dramatically. However, clustering at too coarse a level can lead to loss of power
and to confidence intervals that vary greatly in length across samples and are, on average,
excessively long.

We have proposed two direct tests for the level of clustering in a linear regression model,
which we call score-variance tests. Both tests are based on the variances of the scores for
two nested levels of clustering, because it is these variances that appear in the “filling” of the
sandwich covariance matrices that correspond to the two levels. Under the null hypothesis
that the finer level is appropriate, many of these variances are zero. The test statistics are
functions of the empirical counterparts of those variances. Tests based on them can be used
either to test the null of no clustering against an alternative of clustering at a certain level
or to test the null of “fine” clustering against alternatives of “coarser” clustering. We have
also proposed a sequential procedure which can be used to determine the correct level of
clustering without inflating the family-wise error rate.

It is often assumed that including group fixed effects in a model makes it unnecessary to
use a CRVE. However, this is demonstrably false in many cases (Bertrand et al. 2004; Mac-
Kinnon 2019). Whenever it is appropriate to include fixed effects at a certain level, it may
well also be appropriate to cluster at that level. Investigators should either do that routinely

or test whether they need to do so by using our score-variance tests.
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The simplest of our two tests is based on the statistic 7,. It has the form of a t-statistic
and tests whether the variance of a particular coefficient estimate is the same for two different
levels of clustering. It will be attractive whenever interest focuses on a single coefficient, and
it can be implemented as either a one-sided or a two-sided test. The second variant, based
on the Wald-like statistic 7, tests whether the covariance matrix of a vector of coefficient
estimates is the same for two different levels of clustering. It is necessarily two-sided.

Our tests can be implemented as either asymptotic tests or as wild bootstrap tests. In
Section 4 and Appendix A, we derive the asymptotic distribution of our tests, prove that
they are consistent tests, and also prove the validity of the wild bootstrap implementations.
In the simulation experiments of Section 5, the asymptotic tests often work well for tests
of a single coefficient, but they can be seriously over-sized for tests of several coefficients.
The problem is most severe when testing a moderate number of fine clusters against a small
number of coarse clusters. For the empirical example of Section 6, where several regressors,
including the key ones, vary only at the fine-cluster level, the asymptotic tests seem to be
quite over-sized when there are school fixed effects. In contrast, the wild bootstrap versions
perform very well under the null hypothesis in almost all cases.

Unlike the IM test proposed in Ibragimov and Miiller (2016) and described in Appendix B,
our tests do not require cluster-by-cluster estimation, which is impossible in many cases; see
e.g. Section 6. In most of the simulation experiments of Section 5.4, where cluster-by-cluster
estimation is always feasible, our tests seem to be a little more powerful than the IM test.

Both our simulation results and the empirical example suggest that the tests can have
excellent power. In many cases, with both actual and simulated data, the value of the test
statistic is so far beyond any reasonable critical value that we can reject the null hypothesis
with something very close to certainty even without bothering to use the bootstrap. However,
when our tests are used as pre-tests to choose the level of clustering, they inevitably make
some Type I errors when the true clustering level is fine, and they inevitably make some
Type II errors when the true clustering level is coarse but the sample size and the extent
of coarse clustering are not large enough for rejection to occur all the time. The Type I
errors lead to confidence intervals that over-cover, and the Type II errors lead to confidence
intervals that under-cover; see Appendix C.5.

The score-variance tests we have proposed are intended to provide guidance for applied
researchers. In our view, it should be routine to test any proposed level of clustering, in-
cluding no clustering, against a coarser alternative whenever such an alternative is plausible.
This is especially important when investigators are considering the use of heteroskedasticity-
robust standard errors or clustering at a very fine level, such as by individual or by family.

When there are three or more plausible levels of clustering, including no clustering at all, it

41



will often be attractive to employ the sequential procedure proposed in Section 3.3. In prac-
tice, it may be safest to report inferences based on more than one level of clustering, along

with the outcomes of score-variance tests, as we did in Section 6.

Appendix A: Proofs of Main Results

A.1 Proof of Theorem 1

We give the proof for 7, only, so that, in particular, the matrices A and @ become the vectors
a and q. The proof for 7y is essentially the same but with more complicated notation. Also,
because the factors m. and m¢ both converge to 1, we can ignore them in the proof.

Recall the contrast § = ZG 1 Zhl 1 ZhM;#hl CghiCgh, defined in (24). To prove the first

result of the theorem, we show that

éi L50 and (A.1)
Var(0)
v:r(e) ~45 N(0, 1). (A.2)

Under Assumptions 1 and 2, it holds that o] = St 07,. From (26) and Lemma A .4 we

then find that
G My My

Var() =2 > > Oghl gh2 > CZO’ (A.3)

g=1h1=1 ho#h

It follows from Lemma A.2(i) and (A.3) that the left-hand side of (A.1) is

sup, p, Ngnsup, Ng\
OP ( (ZG . O_4)1/2 — OP(1>
9=1%

by the first condition of Assumption 5. This proves (A.1).

To prove (A.2), we write
G My
0 = Z Z Wyh, with Wy = QCgh Z Cg], (A4)

g=1h=1

where we note that wg, is a martingale difference sequence with respect to the filtration
For = 0({Cmntm=1, .g-1n=1,..Mpms {Cgn tn=1,...n), i-e. E(wgn|Fyn—1) = 0. Then (A.2) follows
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from the martingale central limit theorem (e.g., Brown 1971, Theorem 2) if

G My

Var(6) Y > Elwg,[** — 0 for some A > 1, (A.5)
g=1h=1
G My

Var(0) ™ S0 3 E(w?, |Fynor) — L. (A.6)

g=1h=1

We first prove the Lyapunov condition in (A.5). We find E[(g|** < eNZ by (17) and
Lemma A.1. We also find that

h—1 A h—1 Mg
<CcE| Y ¢ <c Z(Eg”)m <c Z(N;;)l/A <cN)sup Ny, (A7)
7=1 7j=1 j=1 g:h

where the first inequality is Marcinkiewicz-Zygmund, the second is Minkowski, and the third

is due to Lemma A.1. Thus, we obtain the bound

2A

E|wgn]* < < cN; N/\ sup Ngh, (A.8)
and hence
G M,
>3 Elwg [ < csup Nt sup N}N. (A.9)
g:1 h:l g:

Combining (A.3) and (A.9), the Lyapunov condition in (A.5) is satisfied by the second
condition of Assumption 5.
We next prove convergence of the conditional variance in (A.6). Because Var(f) equals
Z 1Zh 1 BE(w},), we decompose E(w§h|.7:gh 1) — E(w2,) = qugn + qagn, Where qi g, =
02, ShTH(CE — 02) and qogn = 02, S0 S0l (i Cgse- Then (ALG) follows if
G M,

Var(0) ™' Y ggn 50 form=1,2 (A.10)

g=1h=1

For m = 1, we reverse the summations and find that ZhMgl Qgh = z,’fgl T1,gh, Where
T1,gh = (ggh — agh) ZJ a1 ag] is mean zero and mdependent across both g and h. We prove
convergence in Ly-norm. We find E|ry gu|* < cE[CnM(E) Y i1 020 < N2 N o) =
cNp 2A 2)‘ using Lemma A.1 and Z i agj = ag. By the Marcinkiewicz-Zygmund and Minkowski

2 /2
1nequahties we find that E’ Z?Zl D rl,gh‘ < c( Zngl Z,]l/igl(E|7’1,gh|’\)2/A) / , and hence

G My G My 30/2 G /2
erlgh < C(ZZ ) < sup N; supN!;\m(Za;‘) .
g=1h=1 g=1h=1 g:h 9 g—1
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Combining this with the bound (A.3), the result (A.10) for m = 1 follows if

sup ]\fg?’fb\/2 sup Ng’\/2 < EG: 0‘5) v — 0,
g:h 9 g=1
which is satisfied by the first condition of Assumption 5
For m = 2, we use symmetry and reverse the summations to find Zthgl G2,gh = ZhM:gl T2,gh
where ro g, = 2(gn Zh Bt agjl J2 1C9]2 = Wgp Z;wjhﬂ agj is a martingale difference se-
quence with respect to Fy,. We prove convergence in mean square. By (A.8) with A = 1 the

variance is E(r3 ) < E(w,)o; < ¢NJ, Ngsup, j, Ngpoy, and hence

G Mg G Mg
E(ZZTZ,gh> => > E(r3,) <csupNhsupNQZa
g=1h=1 g=1h=1 g=1
Combining this with the bound (A.3), the result (A.10) for m = 2 follows by the first
condition of Assumption 5. This completes the proof of (A.6) and hence of (A.2).
It remains to show the second part of Theorem 1. This follows directly from Lemma A.4

by application of Assumption 5 to the remainder terms.

A.2 Proof of Theorem 2

As in the proof of Theorem 1, we give the proof for 7, only, and we ignore the asymptotically
irrelevant factors m. and m;. Under the conditions of Theorem 2, and specifically under
Assumption 6, we find from (14) that 3. = Y5, 02, However, it is important to note that,
under the conditions of Theorem 2, o2 = Var({,) # St o2
We decompose the test statistic as follows:
g Zg1§<ée+9 BO) E(9)>
Ym0y Loy Yo

—

Vaur(é)l/2 Var(6)1/2

where we note that E(0)/ 25:1 0 = (X. — Xf)X_ ! is non-zero in the limit under the alter-

C

native hypothesis, H; in (16). Thus, it suffices to prove that

0—FE(0 6—0 Var(9)1/2
OB pg B20 pg g YO 2, (A11)
Zg 19 Zg 19 Zg 19

For the first result in (A.11), we prove convergence in mean square. The second moment
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of the numerator is

E(Q — E(9)>2 = Var(d) = é\/ar ( Zg Z Cghlggm) = é\/ar (Cﬁ — ligl(gzh>

h1=1 hao#h,

IN

G
CZN; gcsupNg’N, (A.12)
g=1 g

where the second equality is by Assumption 6 and the penultimate inequality is by Lemma A.1
(applying the Cauchy-Schwarz inequality to the covariance terms). Hence, 6§ — E(0) is
Op(sup, N32N 1/2) which proves the first result in (A.11) by Assumption 7. The second re-
sult in (A.11) follows directly from Lemma A.2(ii) and Assumption 7. Finally, by the same
methods as applied in the proof of (A.43), we find that

G My

Z Z Z gh1 gh2 = (SquhsupNN)
9,

g=1h1=1 ho#h

which proves the third result in (A.11) by Assumption 7.

A.3 Proof of Theorem 3

As in the proofs of Theorems 1 and 2, we give the proof for 7, only. The proof for 7v is
essentially the same but with slightly more complicated notation. The bootstrap probability
measure is denoted P* and expectation under this measure is denoted E*. We define the
bootstrap contrast 6* = Z " Zhl 1 Zh#hl ohi Cony» and similarly the bootstrap variance
estimator, and so on.
We prove the bootstrap analog of Theorem 1, but under the conditions of Theorem 3,
which will establish the required result. Specifically, for all x € R and all € > 0, we prove that
P*(e* < :v) L. o(x) and P*<| Var(0")
Var* (6*) Var(6*)

as N — oo, where ®(x) denotes the cumulative distribution function of the standard normal
distribution. Clearly, (A.13) implies that P*(7* < z) — ®(z). From Corollary 1 we have
the result that Py(7, < z) — ®(x). Because ®(z) is everywhere continuous, the desired

> e) L0, (A.13)

result then follows by application of the triangle inequality and Polya’s Theorem.

Thus, we need to prove (A.13). We first note that, even though Assumption 1 is not
imposed, it nonetheless holds by construction that, under the bootstrap probability mea-
sure P*, the bootstrap data are clustered according to the fine structure in Assumption 1.

Therefore, the proof of (A.13) largely follows that of Theorem 1. One main difference is that
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03 = Var((,) # 224:91 agh because Assumption 1 is not imposed in Theorem 3.
We first establish the bootstrap equivalent of the lower bound in (A.3),

G My 2
Var*(6*) > c(l + 0p(1)> > <Z 0§h> : (A.14)
g=1 “h=1
where we have used the fact that o in (A.3) needs to be replaced by (Zh y 02p,)% under

the assumptions of Theorem 3. To prove (A.14), we first use (j, = Cghv
independent across both g and h, such that, c.f. (26) and (27),

ohy Where vy, is

G M,

Var®(6*) = Var* (Z > Z Cgthghz) Qi % Z Cghlgqhg Var( )).

g=1 h1=1 hao#h, 9=1 h1=1 ho#h;

The result in (A.14) now follows from Lemma A.4 by application of Assumption 5 to the
remainder terms.

We next prove the following four results, which imply (A.13). For all z € R and all € > 0,

%LQ (A.15)

P (| ot
<%ﬂ myi%% (A.16)
i

Var(@*) P
Al
Var (67) > 6) — 0, (A.17)
Var(6*) — Var(6*) P
P Al
( Var (8 > e) — 0, (A.18)

as N — oo. The proofs of (A.15) and (A.16) are nearly identical to the corresponding proofs
of (A.1) and (A.2). Similarly, the proofs of (A.17) and (A.18) are nearly identical to the
corresponding proofs of (A.39) and (A.38). We therefore merely highlight the differences.
First, (A.15) follows by Markov’s inequality and application of Lemma A.3, the lower
bound (A.14), and Assumption 5.
Consider now (A.16). Under the bootstrap probability measure, wy;, = 2(;, Z;’;ll g 18 a

martingale difference sequence with respect to the filtration

To verify the bootstrap equivalent of the Lyapunov condition, we apply the same proof as
for (A.5). Replacing E with E*, the bounds (A.7)—(A.9) hold under the bootstrap measure
with the right-hand sides being Op of the indicated order by (A.24), (A.29), (A.30), and
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Lemma A.1. Thus, in particular,

G M,

YOS B, = Op<sup Ng’,’t\’l sup NgN>,

g=1h=1 g:h 9
which together with (A.14) and Assumption 5 verifies the Lyapunov condition for (A.16).
For the proof of convergence of the conditional variance, we apply the same proof as for
(A.6) with r} o, = ({3 — AQQ,L) Zj-\/[:ghﬂ cand 7y, = wh, Z] 941 C2;. For both terms we prove
mean square convergence (because A 2 2). The arguments are nearly identical to those in
the proof of (A.6), with all bounds being Op of the indicated order, using (A.24), (A.29),
(A.30), and Lemma A.1. This completes the proof of (A.16).

For the proof of (A.17), we follow the proof of (A.39) and obtain g5 ,;, = ({7 — AQQh) Shr R,

We then apply the same proof as for g3 g, with A = 2. Specifically, we find that there exists

a set A* with P*(A*) -5 1, and on this set we have

My 2
Var'(45,0) = O (V3 (Lo o) ).
h—1

where we used again (A.24), (A.29), (A.30), and Lemma A.1. Because g3, is a martingale
difference sequence, the proof of (A.17) is concluded in the same way as that of (A.39).
Finally, we prove (A.18). As in (A.43)—(A.47), we write Var(f*) — Var(6*) as

G My, M, Nghy Nghy

A

ﬂ 51 22 Z Z A; ; +§gh1<gh2 Z Zghlz Z Zghz] (A.19)

g=1hi— 1h27éh1
G M, Nghy

ﬁl Z Z Z Cghz Z Zshw’ (A'20>

g=1 h1=1 ho#h;

G My My Nghy Ngn, ) Nghy )
AP Y S (G X o G 2 )l X e (A2D)
g= 1h1 1h275h1 ]=1 =1
G My Mg N9h1 Ngho ) 2
&ZZZ%QL@QM@- (A2
=1 h1=1 ha#hy = i=1

For (A.19), (A.21), and (A.22), we use (A.30) and (A.36) together with Lemma A.1, and
find that
G Mg M,

E*‘(A.lg)]:0p< sup N X > Y. N gh1 ) Op(supNhsupN)

g=1h1=1 ho#hs

By the same argument, we also find the same bound for (A.21) and (A.22). Using (A.14) and

the first condition of Assumption 5 shows the required result for these terms. For (A.20),
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we apply the Cauchy-Schwarz inequality as in (A.48),

3 ( 5" g;h2)2>. (A.23)

g=1 Nho=1

(A.20)% < 64(51 — Bro) (s1’1p Xh: ghﬂf(f:l ( % C;f%j)(

hi1=1

The first two factors on the right-hand side satisfy (A.36) and (A.30), respectively. The
third factor is non-negative, and, under the bootstrap probability measure, it has a mean
which is Op(Zle( Mo N;h)2) = Op(sup,;, Ngpsup, NyN) using (A.24), (A.29), (A.30),
and Lemma A.1. The last factor is non-negative and, under the bootstrap probability mea-
sure, it has a mean which is OP<ZQ I(Zh 100 ) using again (A.24), (A.29), (A.30), and
Lemma A.1. The proof for (A.23) is now completed in the same way as that of (A.48). This
completes the proof of (A.18) and hence of Theorem 3.

A.4 Proof of Theorem 4

The result that P(m < mg—1) — 0 is a direct consequence of Theorem 2 for the asymptotic
tests and of Corollary 2(ii) for the bootstrap tests. In case (ii), where my = p, there is
nothing more to prove. In case (i) we have my < p — 1. Because P(ih < my — 1) — 0,
the sequential procedure will reach the test of the null hypothesis m = mg with probability
converging to one. This is a test of a true null, so we find from Corollary 1 and Corollary 2(i)

that P(7i = my) — 1 — «, which proves the theorem.

A.5 Auxiliary Lemmas

Lemma A.1. Let Assumption 2 be satisfied. Then
su’? N;,fEH.sth’f =0(1) and Sl;p ]\79_§I*]H.s;g||g =0(1) forl1l<E<2A\
9:

Proof. This is Lemma A.2 of Djogbenou, MacKinnon, and Nielsen (2019). O]

Lemma A.2. Let Assumptions 2/ be satisfied. Let @ be defined by (23) and also define
0= ZQG 1Zh1 1Zh27éh1 vech(Cyn, ghz); c.f. (24). Then
(i) Under Assumption 1, |0 — @] = Op(sup, j, Ngnsup, Ny).

(ii) Under Assumption 6, |0 — 0| = Op(N'/2 sup, N2/2).

Proof. We give the proof in the scalar case only. The proof for the multivariate case is nearly

identical but with more complicated notation.
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First recall that z and X5 are orthogonal by construction, such that

~

Cghi = Zghillghi = Zghillghi — Zghi(él — B10) = Cgrni(1 +0p(1)) — Zghi(gl — B10), (A.24)

where the second equality is by (17). Consequently, fgh = (gn(140p(1))—3; "f Z;hz(ﬂl Bio)-

In all applications of (A.24), we will omit the factor (1 4+ op(1)) since it is asymptotically
irrelevant. From (20), (22), and (24), we then find the difference

i% > (Z S 510)(fzghm ~hw)  (A29)

1hi=1hoth, © i=1
G M, Nghy

- 22 Z Z Coha Z Zghgl — Bip)- (A.26)

g=1 h1=1 ha7#h1

Using (17) we find that 31— = (21 2)~ Zf M Zgntgn = (27 2)71q" ZQG D Sgh-
Under Assumption 1 we have

G My G My G My
Var (323 s ) = 303 Var(sp) <e 325 N SeNsupNy (A21)
g=1h=1 g=1h=1 g=1h=1

using Assumption 2 and Lemma A.1. Similarly, under Assumption 6,

G M, G M, G a
Var (Z Z sgh> = Z Var ( Z sgh> = Z Var(s,) < c Z N; < c¢Nsup N,. (A.28)
g=1h=1 g=1 h=1 g—1 P g

Hence, using also Assumption 3,

‘Bl — Biol = Op <N_1/2 sulg) Ngl}iz) under Assumption 1,
g?

R (A.29)
|61 — Brol = Op (N’l/2 sup Ngl/z) under Assumption 6.
9
We also need the simple bounds
Ngh Ngh
sup Ny Z 2o = sup NS aTXgThnghZ-a(l +o0p(1)) = Op(1) and
' =t (A.30)

supN ! i Z Zoni =

h=11i=1

which follow from (10) and the uniform moment bound in Assumption 3. Using (A.30), we
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find that the absolute value of the right-hand side of (A.25) is bounded by
(51—51 0 Z ( Z Z ng) 51—51 0 OP(Z N, > 51—51 0) OP<N SUPN ) (A-31)
h=11i=1

which proves the result for (A.25) using (A.29).
Next, we write (A.26) as

G My Nghqg

(A26) = —2>° % (o Z > zg,m — B10) (A.32)
g=1h1=1 h2 1 i=1
G My

+2) > Con Z Zghz — Bro)- (A.33)

g=1h=1 =1

Under Assumption 1, (A.27), (A.29), and (A.30) show that |(A.32)| = Op(sup,, s Ngnsup, Ny)
and that |(A.33)] = Op(sup,, Nz,), noting in both cases that (A.27) also holds with s,
replaced by |(yn|. This proves the result for (A.26) under Assumption 1.

Under Assumption 6, we apply the Cauchy-Schwarz inequality,

, G N2/ G, My Neho o o\1/2
|(A.32)|§2|B—50\<2_:1C92> (;(ZZ%Z)) ’

o a M, 1/2 Z 11‘/2191 Ngh 2\!1/2
](A.33)|§2‘5_5O‘<chgzh> (ZZ<Zzghz> > :
g=1h=1 9=l h=1

For both (A.32) and (A.33) we apply (A.29) to the first factor, Lemma A.1 to the second
factor, and (A.30) to the third factor on the right-hand sides. This shows that (A.32) is
Op(sup, NY/2N'/?) and that (A.33) is Op(sup, , Ngn sup, NJ/2N*/2), which proves the results
for (A.32) and (A.33), and hence for (A.26), under Assumption 6. O

Lemma A.3. Let Assumptions 2—4 and 6 be satisfied. Let 0* = Zf 1 Zhl 1 Zh#hl vech(¢,, o)
and 0* = Z? 1 Zhl 1Zh2¢h1 vech(¢}, Con,). Then

E*|6* — 0%|| = Op(su%) Ny, sup Ng>.
9, 9

Proof. The proof is very similar to that of Lemma A.2. Again, we give the proof in the scalar

case only since the multivariate case is nearly identical but with more complicated notation.
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We first write

G My M, Nony Nghs

=25 5 (XA D) (X A -B) s

g=1 h1=1 ha#h; i=1
G Mg My Nghy R

=23 > > G Z 22, (B = B). (A.35)

g=1h1=1 hohy

As in (A.27), we find that

G My G My G M,
Var* <Z Z C;h) = Var* (Z Z Cghvgh) Z Z Cgh - OP (N Sup Ngh)7
g=1h=1 g9=1h=1 g=1h=1

where the second equality uses independence of vy, across g and h and the third equality
uses (A.24), (A.29), (A.30), and Lemma A.1. It follows that

A

Var* (3" — ) = Op< supN ) (A.36)

Using (A.30) and (A.36), we find that E*|(A.34)] = Op(sup, , Ngnsup, Ny) as in (A.31). By
the same argument, see also (A.32)—(A.33), we find that Var* (A.35) = Op(sup, ;, N3, sup, N7
[

Lemma A.4. Let Assumptions 2-/ be satisfied and let Var(0) be given by (29). Suppose
also that either (1) Assumption 1 or (ii) Assumption 6 and X\ > 2 is satisfied. Then, for an
arbitrary conforming, non-zero vector § and § ' Hy = b" = [b] @ b] ],

G Mg M,

Var(870) =23 " 3 b Eyu,bib) Bgn,by = Op (N sup N sup Ngp ')
g=1 h1=1 ho#hs

G Mg M, 1/2
—|—Op(supN hsupN ) —i—Op(supNhsupN (Z Z Z b, Eghlblb—rzgh2b2) )
g,h g,h

g=1 h1=1 ha=1

and
G My G My M,
> Z by Zgn, biby Synybz > ¢ 37 Y by Tgn, baby Ty b,
g=1 h1=1 ho#h; g=1hi1=1 ha=1

—

Proof. We give the proof of the first result for the univariate case, where Var(é) is given by
(27), and we show that

G Mg My
Var 22 Z Z Jghl gh2 —Op(Nl/)‘supN supNs,fl/))
9=1h1=1 ha#hy
A.
My 2\1/2 (A.37)
+Op<supNhsupN)—l—OP(SUPNhSUPN (Z(Z gh> ) )
g:h g,h g=1 “h=1
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The proof for the multivariate case is nearly identical, but with more complicated notation.
We decompose the left-hand side of (A.37) as

G My

M, o
2 Z Z Z (C§h1C§h2 - <§h1<§h2) (A.38)

g=1h 1h2;£h1
G

Z Z Z Cgh1cgh2 gh1 gh2) (A.39)

g=1 h1=1 ha#h;
We first prove the result for (A.39) under Assumption 1. We use (26) and (27) to write

G My
(A39) =43 > (q1n + d3n), (A.40)

g=1h=1
where qygn = 02, X021 ((2
have already proven in (A.10) that ¢ 5, = Op(supghN ) sup, NY2(325, 0)/2). The se-

quence gz 4, is a martingale difference with respect to the filtration Fy, defined just below

oi—0a;) and gsgn = () — Jgh) Z? oi- Under Assumption 1 we

(A.4). When 1 < X\ < 2, we prove convergence in Ly-norm. By the von Bahr-Esseen inequal-

. A —
ity, Bl S5 S0 gsgn| < 255 0 Elgsgnl®, where Elgs g < El¢u B[Szt ¢2
which was analyzed in (A.7). The remainder of the proof for ¢s, with 1 < A < 2

Y

is identical to that of the Lyapunov condition in (A.5), showing that Zle ZhM:gl Q3.9h =
Op(NY*sup, Ny sup,, , Ng?’h_l/k).

Next, suppose A > 2. We find that Z?;ll g2j < Zj-\/[:gl 92]- is a non-negative random variable,
and hence is of order Op(E Z;-V[:gl o) = Op(Xi o 02,). That is, there exists a constant
K < 0o and a set A with P(A) — 1 on which ¥~ ¢2; < Ky 02,. Then, on the set A,

97

h—1 2 My 2
B(¢2 0| Fyn1) = Var(CZ,) ( T g§j> < K? ( 3 agh) Var(c,), (A.41)
=1 h=1
and therefore .
g 2
Var(gs gn) < cN;h< > U§h> (A.42)
h=1

by Lemma A.1. Using (A.42) and the fact that ¢34, is a martingale difference sequence, it
follows that, on the set A,

G My G M, 9
ar(ZZ%m) =Y > Var(gsgn) < csupNhsupN (Z%h) ,

g=1h=1 g=1h=1

This shows the required result for gs 4, on the set A when A > 2. Because P(A) — 1, this
completes the proof for (A.39) under Assumption 1.
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We now prove the result for (A.39) under Assumption 6 and A > 2. We again apply the
decomposition in (A.40). Define Q,, , = = g gh for m = 1,3, which are both independent
across g by Assumption 6. For @);, we note that Z] 1 03] < Eﬁ-w:gl agj and apply the
Cauchy-Schwarz inequality such that

@) < (Soot ) B( X6 eal) < (S ean) (S m -oan)

where last factor on the right-hand side is O(sup, j, Ng, sup, N7) by Lemma A.1. Because

Q1,4 has mean zero and is independent across g, it follows that

MQ
Var ( EG: Ql,g) = zG: E(Qfg) < c¢sup N;h sup N; EG: ( > 0§h>2,
g=1 g=1 g:h g g=1 “h=1
which proves the result for Q)1 4. For (3, we note that there exists a constant K < oo and
a set A with P(A) — 1 such that, on A, it holds that Z?; 2 < KZ] 10 . We can then
apply the same proof as for ()1 ,. This completes the proof for (A.39) under Assumption 6.

To prove the result for (A.38), we use (27) and (A.24) to write

G My, M,

(A38) =2 Z Z Z (éghlégfu + Cghlcgh2)(€gh1€9h2 - Cgh1C9h2)

9=1h1=1 ha#hs

G My, M, Nghy Nghsy

610 Z Z Z Cghlcghg + Cgh1Cgh2 Z Zgh17, Z Zghg] <A43)

9=1 hi=1 ha£hy
G My M, Nghz

—Bo) D> > Cgthghz + Cghy Cghs ) gy Z Zghgz (A.44)
g=1 h1=1 hao#h;
By another application of (A.24) followed by straightforward application of (A.29), (A.30),
and Lemma A.1, it follows that (A.43) is of order Op(sup, ), N3, sup, N7).
For (A.44), we apply again (A.24) and write

G My, M, Nony

(A 44) = 8 /61 610 Z Z Z Cgh1Cgh2 Z Zghgz (A45)

g=1h1=1 hothy

G My M, Nghz Nghy Nghy
=60 > Y (Cghl > i+ Cons D z§h1j>(ghl > 22, (A46)
9=1 h1=1 hahs i=1 j=1 =1
G M M Nghl Ngh2 9
— B1o) Z Z Z Cghl( Z gh1j>< Z Z§h2i> . (A.47)
9=1 hi=1 hath: - P

Direct application of (A.29), (A.30), and Lemma A.1 shows that (A.46) is Op(sup, j, N, sup, N7)

53



and that (A.47) is Op(N~"/?sup, , N2 n SUD, N5/2) Op(sup, , Nz, sup, N7). Finally, for the
right-hand side of (A.45), we apply the Cauchy-Schwarz inequality,

(A45)> < 64(B1 — i) (Z ( Z gh1 Nzé ghﬂ)2> (i < %_ C“’h2>2>

<oiii— (s > ) (S (S a))(S( X o)) n

As in (A.41), we find that the penultimate factor on the right-hand side of (A.48) is
bounded by a constant times Yo (M 02,)? on a set A with P(A) — 1. The last fac-
tor on the right-hand side of (A.48) is a non-negative random variable and hence is of or-
der Op(E zle(z,ﬁ”gl Con)?) = OP(Z?:I E(}) = Op(Nsup, N,;) by Lemma A.1. Combining
these results and using (A.29) and (A.30), we find that

(A.45) = Op <Sup Ny sttp Ny ( Z ( Z ) )1/ 2) ,

g=1

which proves the required result for (A.45), and hence for (A.44) and (A.38).

To prove the second result of the lemma we write the left-hand side as

G My M, G My
233 N b By, biby Bnbo — 2> 0> b Eb1b) by
g:1 h1:1 hg*l g:1 h=1
G Mg M My T T
i 9 b X ,nbib) X b
SE030 30 STE I ASE I (R LA UL
9=1h1=1 ha=1 Zhl 1Zh2 1b z3.c1h1b1b2 Z]ghzb2

> 2% % S b5, bib) Sy (1 SUp; by 29hb2>
- 1 h1Y1Y9 ho U2 - )
g=1h1=1ho=1 ! ! ZhM:g1 b;Ethz
where the inequality is due to ZhM:gl b X,,b1b) X ,,by < (supy, by X,nbs) ZM‘] b; X,.b;. The
result follows because sup,, , by X ,nb2/(by Zthgl 3 gnba) < sup, j Winax (X gh(zhzl o))< 1
by Assumption 4. O]

Appendix B: The IM Test

A few simulation results for the IM test of Ibragimov and Miiller (2016) were presented in
Section 5.4. In this appendix, we describe that test. Let G denote the number of coarse
clusters for which it is possible to estimate (3, the coefficient of interest, on a cluster-by-
cluster basis. Note that this may well be smaller than the original number of coarse clusters.

Since the Bg are estimated separately for every coarse cluster, there are effectively coarse-level
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fixed effects. Suppose that cluster-by-cluster estimation yields estimates Bg forg=1,...,G.

Then a natural estimate of the variance of the average of the cluster-by-cluster estimates is
1 & o, 1 &
Ve=——> (8,—B)?, where ==Y 3, (B.1)
G-1,7 G

This is the usual estimate of the variance of a sample average based on G observations.
When there is either no clustering or clustering at a finer level, the variances of the /@g

can be estimated using either an HCCME or a CRVE for each coarse cluster separately. If

we suppose for simplicity that all of the k regressors except the one of interest have been

partialed out, leaving just one regressor, then the CRVE estimate based on fine clustering is

. M, N,—1 s
agf = i : Ng — k(w;mg) °y w;hughu;h:cgh, (B.2)
9 g h=1

where x4 is the vector of observations on the regressor for coarse cluster g, &, is the subvector
of x, for fine cluster h, and @y, is the corresponding subvector of the residual vector .
Similarly, the heteroskedasticity-robust estimate would be

2 Ng T 2 & 2 2
Ughet = N. — k(wg w!]) nghiughiv (B3>
g =1

2
gf

and 6§het would usually be obtained by taking the appropriate diagonal elements of either a
CRVE or an HCCME for the model estimated using data for coarse cluster g.

Let 6, denote the square root of either 6§het or 6§f, depending on whether the null

where x4, and g4y are elements of @y, and g, respectively. Of course, in practice, &

hypothesis is no clustering or fine clustering. Then generate a large number of realizations,
say S, of G’ independent random variates z,, that follow the standard normal distribution.

For each simulation, compute

1 & 1 & _
Yos = 69245, g=1,...,G, Yy==> Y., and Vi=—-) (Y,,—Y,)’ (B4)
G = G-17

Notice that V; is one realization of a random variable that might reasonably be expected
to have approximately the same distribution as the variance of B when there is either no
clustering or fine clustering.

The IM test is based on comparing Vj from (B.1) with the empirical distribution of the
Vs from (B.4). The P value for a one-sided test is simply

P = ;iH(VS > V). (B.5)

s=1
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Thus the test will reject whenever Vj, the direct estimate of the variance of 3 from the
cluster-by-cluster estimates, is larger than most of the realizations of Vi, which depend on
the estimates 6, that assume either fine clustering or no clustering. Although the IM test
requires simulation to calculate the V;, it is not expensive to compute, because the model is
not re-estimated during the simulations.

There are two serious practical limitations of the IM test. The first is that, in many
cases, it is not possible to compute the Bg for every coarse cluster. The second is that, even
when they can all be computed, the full model may not be estimable for each coarse cluster,
so the interpretation of the Bg may differ across clusters. For instance, when including fixed
effects for categorical variables, not all types may be found within each coarse cluster. Both

these problems are encountered in the empirical example of Section 6.

Appendix C: Additional Simulations

In this appendix, we present the results of a number of additional simulation experiments. In
Appendix C.1, we compare the power of bootstrap and asymptotic score-variance tests. The
former appear to have less power only because the latter over-reject under the null hypoth-
esis. Appendices C.2 and C.3 deal with rejection frequencies under the null for asymptotic,
bootstrap, and IM tests. In the former subsection, we study the effects of heteroskedasticity.
In the latter, we study the effects of cluster sizes that vary, sometimes to an extreme extent.
In such cases, the performance of the three tests can differ markedly. Next, we perform a
few simulation experiments in Appendix C.4 that use the actual clusters and regressors for
the STAR example, in order to explain some of the empirical results in Section 6. Finally, in
Appendix C.5 we perform some experiments where the score-variance test is used as a pre-

test to select the level of clustering prior to conducting inference on regression coefficients.

C.1 Power of Asymptotic and Bootstrap Score-Variance Tests

In Figures 3 and 4, we reported simulation results for the power of the bootstrap versions of
our score-variance tests. In this section, we perform some additional experiments in which
we study the power of both the asymptotic and bootstrap versions. We also change the
experimental design. The DGP for the disturbances is now the same in all experiments (see
the notes to Figure C.1), but the DGP for the regressor of interest varies. For this regressor,
the weight on the random factors in (36), which we denote wg, is allowed to vary between 0
and 1. When it is 0, the null hypothesis is true, because the scores are uncorrelated within

clusters, even though the disturbances are correlated. As wg increases, the scores become
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Figure C.1: Power of two-sided 7, tests when there is coarse clustering

Rej. Rate Rej. Rate

10 - ——— Asymptotic, N = 2000 10 - Asymptotic, N =2000 ==

0.9 [ — Bootstrap, N = 2000 0.9 e Bootstrap, N = 2000 ’
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0.6 ] 0.6 -

0.5 0.5-

0.4- 0.4-

0.3 ] 0.3 i

0.2 ] Asymptotic, N = 1000 —— 0'2: /'/ Asymptotic, N = 1000 ——

0.1 = Bootstrap, N = 1000 -------- 0.1+ = Bootstrap, N = 1000 --------
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0.0 01 02 03 04 05 06 07 08 09 10 0.0 01 02 03 04 05 06 07 08 09 1.0

(a) No clustering vs. coarse (b) Fine vs. coarse

Notes: The data are generated by (38). There are 5 coarse clusters, 20 fine clusters, fine-level fixed effects,
and either 1000 or 2000 observations. The disturbances have coarse clustering, with p = 0.5 and weight
we = 0.7. The regressor of interest also has coarse clustering, with p” = 0.5 and wy varying. There are
400,000 replications and 999 bootstraps.

more correlated, and the power of the tests increases.

Figure C.1 shows power functions for asymptotic and bootstrap tests of two hypotheses
for two sample sizes. Because there are only five coarse clusters, the bootstrap tests per-
form very much better under the null and consequently appear to have less power. This is
particularly noticeable in Panel (b), where the asymptotic tests of fine against coarse clus-
tering over-reject rather severely. Of course, the additional power of the asymptotic tests is
entirely spurious; see Davidson and MacKinnon (2006).

Not surprisingly, all the tests have more power when N = 2000 than when N = 1000
because, under the current experimental design, additional observations contribute infor-
mation even within clusters. The gaps between the bootstrap and asymptotic power func-
tions are also a bit smaller for the larger sample size. However, based on the theory of Sec-
tions 4.1 and 4.2, the bootstrap and asymptotic power functions do not necessarily coincide

as N — oo unless the numbers of coarse and fine clusters also tend to infinity.

C.2 Heteroskedasticity

Although Theorems 1 and 3 explicitly allow for heteroskedasticity of unknown form, all the
simulations up to this point have involved disturbances that are homoskedastic conditional

on the regressors. One might reasonably worry that the finite-sample performance of our
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Figure C.2: Rejection frequencies for one-sided tests with heteroskedasticity

Rej. rate Rej. rate
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0-10 i IM fine vs. coarse__________ 0 i Asy. fine vs. coarse
0.08 : Asy. none vs. coarse 0-08 : Asy. none vs. coarse
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(a) Ge = 4,Gy = 16 (b) Ge = 8,Gr =64

Notes: The data are generated by (C.1). There are 6400 observations and either 4 or 8 coarse clusters.
The regressors have coarse clustering, with p* = 0.5 and wg = 0.7. There are 400,000 replications and 399
bootstraps. IM tests use 999 simulations.

score-variance tests may depend on the extent and pattern of heteroskedasticity. In this
section, we provide evidence that this seems to be the case only to a very limited extent.

In these experiments, the data are generated using a modified version of (38),

Yghi = Bo + b1 Xighi + F2Xogni + Dgid + exp (7(50 + B1 Xgni + 62X29hi))ughi7 (C.1)

where the regressors are Xgp;, for j = 1,2, Dy, are fixed effects at the fine cluster level, and
the disturbances ug;; are generated as before. In our experiments, we set 3y = f; = 32 = 1.
The values of these parameters did not matter previously. We also set 6 = 0, so that the
DGP in (C.1) does not include cluster fixed effects, but the model that is actually estimated
does include them at the fine level. The regressors are generated with the same pattern of
coarse clustering as in Figure 1, and the disturbances are independent. When v = 0, the
DGP in (C.1) reduces to a special case of (38) with no fixed effects. As 7 increases, the
heteroskedasticity becomes stronger.

Figure C.2 shows rejection frequencies for several tests as functions of v, which varies
between 0 (homoskedasticity) and 1 (substantial heteroskedasticity). In Panel (a), the num-
bers of coarse and fine clusters are very small, at just 4 and 16. In Panel (b), they are some-
what larger, at 8 and 64. For comparability with the IM test, and also for readability, the
figure reports results for one-sided tests. Two-sided asymptotic tests perform considerably
better than one-sided ones, but their dependence on + is similar. In Panel (b), the former

perform almost as well as the IM test for fine against coarse clustering.
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Figure C.2 shows that rejection frequencies for asymptotic tests depend on v, but the
dependence is quite modest. In Panel (b), where there are 64 fine clusters, both of the
IM tests show considerably greater dependence on v than do the asymptotic score-variance
tests. In contrast, the bootstrap score-variance tests seem to perform perfectly in all cases.
At least in these experiments, their excellent performance seems to be completely invariant
to v, G¢, and Gy.

C.3 Varying Cluster Sizes

The assumptions of Theorems 1 and 3 explicitly rule out too much variability in cluster sizes.
However, it is not clear just how much variability can be tolerated in finite samples. In this
section, we study the performance of our score-variance tests and of the IM test when cluster
sizes are not constant by allowing the number of fine clusters per coarse cluster to vary.

In our experiments, there are always 80 fine clusters, each of which contains 50 obser-
vations, so that there are 4000 observations in total. There are 8 coarse clusters, with the
number of fine clusters per coarse cluster allowed to vary. The number of ways in which 80
fine clusters can be allocated among 8 coarse clusters is very large, and so we restrict atten-
tion to two special cases. Our score-variance tests can be computed even when some of the
coarse clusters contain just one fine cluster. This may be important in practice, because,
for example, some countries may be divided into states or regions and others may not. In
contrast, IM tests of fine versus coarse clustering are impossible to compute in this case, be-
cause doing so would require the computation of a fine-cluster CRVE for each coarse cluster,
which is impossible when there is just one fine cluster.

Figure C.3 shows rejection frequencies for one-sided tests with coarse-level fixed effects.
Only results for tests of no clustering against coarse clustering and fine against coarse clus-
tering are shown, because the way in which fine clusters are allocated among coarse clusters
has no impact on tests of no clustering against fine clustering. In Panel (a), there are always
four large coarse clusters and four small ones. The number of fine clusters per large coarse
cluster ranges from 10 to 19, so that the number of observations per large coarse cluster
varies from 500 to 950. The number of fine clusters per small coarse cluster therefore ranges
from 1 to 10, and the corresponding number of observations from 50 to 500. In Panel (b),
there is just one large cluster and seven small clusters. The size of the large cluster varies
from 850 to 3650 out of the 4000 total observations.

In Panel (a), the asymptotic score-variance tests over-reject moderately when all clusters
are the same size, but the over-rejection becomes less serious as the large and small clusters

differ more in size. The bootstrap score-variance tests always work perfectly, even when
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Figure C.3: Rejection frequencies for one-sided tests with varying coarse cluster sizes
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(a) Coarse clusters: 4 large, 4 small (b) Coarse clusters: 1 large, 7 small

Notes: The data are generated by (38). There are 4000 observations and 80 fine clusters. The regressors
have coarse clustering, with p* = 0.5 and wg = 0.7. There are 400,000 replications and 399 bootstraps. IM

tests use 999 simulations.

the small clusters contain just one fine cluster. Note that the figure actually shows results
for both bootstrap tests (none vs. coarse and fine vs. coarse), but they are impossible to
distinguish. The IM test of no clustering generally works very well, but it over-rejects a
little as the variability of cluster sizes becomes more extreme. In contrast, the IM test of
fine clustering always over-rejects, and it does so very severely in the right-hand side of the
figure. The curve for this test ends early, because the test cannot be computed when each
coarse cluster contains just one fine cluster.

When the single large cluster is not too large, all the tests work about as well in Panel (b)
as in Panel (a). Even when it is very large, the IM tests actually work somewhat better in
Panel (b) than in Panel (a), although the patterns in both panels are similar. In contrast,
the asymptotic score-variance tests under-reject very severely when the large cluster is very
large. In fact, they never reject at all in the most extreme case, when the large cluster
contains 91.25% of the observations. Amazingly, the bootstrap score-variance tests always
perform extremely well. In the very worst case, for no clustering against coarse clustering,
the bootstrap test rejects 5.21% of the time.

Based on these results, we tentatively conclude that bootstrap score-variance tests can be
used safely even when cluster sizes vary enormously. In contrast, asymptotic score-variance
tests seem to be much more sensitive to variation in cluster sizes. However, having few
clusters (as in Panel (a) of Figure C.2) seems to be more harmful to the asymptotic test
than having cluster sizes that vary within reason. IM tests of no clustering against coarse

clustering also work well even when cluster sizes vary extremely, but IM tests of fine against
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Table C.1: Rejection Rates for Monte Carlo Experiments Using STAR Data

Without School FE With School FE
Asymptotic Bootstrap Asymptotic Bootstrap
No clustering in DGP:
small Hy vs Hy 5.11 5.02 63.62 5.13
Hy vs Hg 4.75 4.98 5.52 4.98
Hg vs Hg 5.39 5.01 48.97 8.11
aide Hy vs Hy 5.15 5.00 70.71 5.12
Hy vs Hg 4.80 5.01 5.67 5.02
Hgr vs Hg 5.38 4.98 48.81 7.31
both Hy vs Hy 4.82 4.99 66.77 5.09
Hy vs Hg 5.05 5.02 6.51 5.04
Hg vs Hg 5.74 5.03 68.81 9.00
Classroom clustering in DGP:
small Hg vs Hg 5.39 4.98 53.57 9.07
aide Hg vs Hg 5.48 5.05 51.43 7.65
both Hg vs Hg 5.80 5.06 73.06 9.95

Notes: There are 3,989 observations and either 330 (classroom) or 75 (school) clusters. All numbers are
either asymptotic or bootstrap rejection rates for tests at the 0.05 level, expressed as percentages. For the 7,
tests, denoted “small” and “aide,” asymptotic P values are two-sided and based on the N(0, 1) distribution.
For the 75 tests, denoted “both,” they are based on the x?(3) distribution. Bootstrap tests use B = 399,
and there are 400,000 replications.

coarse clustering tend to over-reject seriously in such cases.

C.4 Simulations Using the STAR Dataset

Some of the empirical results for the STAR model in Section 6 suggest that score-variance
tests can be unreliable when key regressors vary at the fine-cluster level and there are fixed
effects at the coarse level. In order to investigate this phenomenon, we perform some addi-
tional Monte Carlo experiments. All of the regressors and the two clustering structures (by
classroom and school) are identical to the ones in the empirical example. The only thing
that varies across replications is the disturbance term, to which we add the fitted value to
generate the dependent variable.

In the first set of experiments, the disturbance term is a vector of 3989 independent
standard normal random variates. Thus the hypothesis of no clustering (Hy) is correct.
Rejection rates are shown in the first part of Table C.1. When there are no school fixed

effects, all the asymptotic tests work very well, and all the bootstrap tests work extremely
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well. However, when school fixed effects are included in the regression, the asymptotic tests
for Hy against Hg and for Hg against Hg over-reject severely. The bootstrap tests, on the
other hand, work very much better than the asymptotic ones. For the tests of no clustering,
they work essentially perfectly. However, for the tests of Hg against Hg, even the bootstrap
tests over-reject somewhat. In the worst case, for the test of both coefficients jointly, they
reject 9% of the time.

In the second set of experiments, the DGP has classroom-level (fine) clustering. The
disturbances are generated by a random-effects model at the classroom level (recall that the
fixed effects are at the school level), with parameters chosen so that the average correlation
within each classroom is 0.20. This is actually a bit smaller than the average correlation
estimated directly from the residuals for the model (39), which is 0.23.* Not surprisingly,
the tests of Hy against both forms of clustering reject essentially all the time, so we do not
report results for them. The last part of Table C.1 contains rejection rates for the tests of
Hg against Hg, for which the null hypothesis is true. For the model with fixed effects, the
rejection rates in this part are always somewhat higher than the corresponding ones for the
first experiment. However, the patterns across the various tests are very similar.

It is not hard to see why some of the tests perform poorly when there are school fixed
effects. Because of the fixed effects, the residuals for each school must sum to zero. With
only 4.4 classrooms per school, on average, this creates substantial negative correlation for
the residuals within each classroom. This negative correlation apparently interacts with the
aide and small regressors, after they have been projected off the fixed effects and the other
regressors, to create negative intra-classroom correlation in the empirical scores. Conse-
quently, the 7, statistics for Hy against Hg have means that are large and negative (—2.23
for small and —2.41 for aide). The same phenomenon causes the 7, statistics for Hg against
Hg to have means that are large and positive (1.95 for both small and aide). This accounts
for the over-rejection by the asymptotic tests.

As can be seen from the last column of Table C.1, the ordinary wild bootstrap for tests
of Hy against Hr does an excellent job of compensating for the poorly-centered distribution
of the asymptotic test statistics. However, the wild cluster bootstrap for the tests of Hg
against Hg does not work nearly as well. The problem is apparently that, with an average
of only 4.4 classrooms per school, the wild cluster bootstrap has difficulty mimicking the
pattern of within-cluster correlations of the empirical scores.

These arguments suggest that the tests which do not perform well in Table C.1 would

perform better if the schools were larger, i.e. had more classrooms. We investigated this

4This estimate is for the model with just a constant term. For the model with fixed effects, the estimate
is much lower (0.078), but it is surely biased downwards.
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conjecture by making the schools about twice as large, on average. All of the rejection rates
that were not already near 5% improved dramatically. For example, the asymptotic rejection
rate for the 7 tests of Hg against Hg dropped from 68.81% in the table to 17.68%, and the
bootstrap rejection rate dropped from 9.00% to 5.43%. Having more classrooms per school
reduces the intra-cluster correlations of the empirical scores very substantially. This makes
the asymptotic tests perform better. It also allows the wild cluster bootstrap to mimic those

correlations more accurately, which improves the performance of the bootstrap tests.

C.5 Making Inferences about a Regression Coefficient

In Section 3.4, we briefly discussed pre-test procedures for making inferences about a single
regression coefficient when clustering may be either fine or coarse. In this subsection, we
investigate these procedures by means of simulation experiments. For simplicity, and because
it is a common case, the level of fine clustering is no clustering at all, so that the corresponding
variance matrix is robust only to heteroskedasticity of unknown form.

The model is a variant of (38), with two regressors plus cluster fixed effects, so that
K = G + 2. The values of wg and p for the regressors are 0.8 and 0.5. The disturbances are
generated by

ugi = (0 + (1 =) "2 ((1 = n)egi + nesy), (C2)
where the € are i.i.d. standard normal and the e, are generated in the same way as the
regressors, but with we = 0.4, rescaled to have variance 1. The parameter 1 determines the
amount of intra-cluster correlation. When n = 0, the disturbances are not clustered. The
initial scaling factor ensures that Var(u,) =1 for all .

In the experiments, we vary n from 0 to 1. When n = 0, the correct variance estimator
to use is the heteroskedasticity-robust (HR) one with V' = Vi in (5) and (7), multiplied as
usual by the factor N/(N — K). For any other value of 7, there is intra-cluster correlation, so
that we should use the cluster-robust (CR) one with V' = V;; see (5) and (6). Of course, the
investigator is assumed not to know 7, or indeed (C.2), and it may therefore be attractive
to employ a pre-test estimator.

For two reasons, the two pre-test estimators we study are based on one-sided tests. The
first reason is that one-sided tests are more powerful than two-sided tests when there actually
is clustering, so that the former make fewer Type II errors. We did obtain results for two-
sided pre-test estimators, but for larger values of 1 they were clearly inferior to the one-sided
ones that we report. The second reason is that, even when the difference between VarC(Bl)
and Varhet(ﬁl), the variances based on the true variance matrices of the sums of scores, is

positive, it is quite possible for the variance estimate \7a\rc(31) to be smaller than @het(ﬁl).
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Figure C.4: Root mean squared errors of various standard error estimates
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Notes: The regressors are generated by (38) with coarse clustering, and the disturbances are generated by
(C.2). There is no clustering when 1 = 0. There are 5000 or 20,000 observations and 10 or 20 clusters. The
pre-test estimators are based on one-sided tests. There are 400,000 replications. The “true” standard errors
relative to which the RMSEs are computed are based on 400,000 estimates of Bl.

Indeed, this happens frequently in our experiments when 7 is small. Thus we believe that
investigators will rarely wish to reject HR in favor of CR when the CR standard error is
smaller than the HR one.

It is natural to think of the choice among the HR standard error of Bl, the CR standard
error, or a pre-test estimator of the standard error, as an estimation problem. Thus, it seems
reasonable to compare them on the basis of root mean squared error (RMSE). Figure C.4
shows the RMSEs of HR, CR, and two pre-test estimators of the standard error of Bl, the
first coefficient in (38). These are based on experiments with 400,000 replications for two
values of G' (10 and 20) and two values of N (5000 and 20,000).

The results in Figure C.4 are striking. In all three panels, the RMSE of the HR standard
error is the smallest of the four for n ~ 0, while the RMSE of the CR standard error is the
largest. However, the HR RMSE rises very sharply for n greater than about 0.1 or 0.2, and
it rapidly becomes so large than it cannot be plotted on the same axes as the other RMSEs.
Note that it does have an “S” shape, like the other estimators, although this cannot be seen
in the figure. The CR RMSE also increases with 7, but to a much more moderate extent.

Both bias and variance contribute to the RMSEs of all the estimators. For HR, the
variance is always fairly small, and the bias is zero when 1 = 0, but the bias becomes large
and negative for moderate to large values of 7, accounting for most of the RMSE. In contrast,
the variance of CR is always much larger than the variance of HR, and the bias is also larger

for small values of n. But, although both bias and variance increase with 7, it is always the
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Figure C.5: Coverage of various confidence intervals
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(C.2), so that there is no clustering when 17 = 0. There are 2 regressors plus G fixed effects. There are 5000
or 20,000 observations and 10 or 20 clusters. The pre-test estimators are based on one-sided tests. There

are 400,000 replications.

latter that dominates, and the RMSE increases much more slowly than that of HR.

The two pre-test estimators perform as we might expect them to. For small values of 7,
their RMSEs are much smaller than the CR ones, but substantially larger than the HR ones,
because of Type I error. In this case, the pre-test at the .05 level performs better than the
pre-test at the .10 level, because it necessarily makes fewer Type I errors. In contrast, for
large values of 7, the pre-test standard errors perform very slightly worse than the CR ones,
but very much better than the HR ones. Since this is caused by Type II error, the pre-test
at the .05 level inevitably performs slightly worse than the pre-test at the .10 level.

The extent to which the pre-test standard errors have larger RMSEs than the HR ones
for small values of 17 seems to be about the same in the three panels, but the range of values
of n over which this occurs is considerably smaller in Panel (¢) than in the other two panels
because N is four times as large. In contrast, the extent to which the pre-test standard errors
have slightly larger RMSEs than the CR ones for large values of ) varies across the three
panels. It is greatest in Panel (b), where the score-variance tests evidently have less power for
G =20 and N = 5000 than they do for either a smaller value of G, in Panel (a), or a larger
value of N, in Panel (c¢). In the latter case, the CR and pre-test standard error estimators
are effectively identical for 7 > 0.4, presumably because the tests reject almost all the time.

Figure C.5 shows the coverage of confidence intervals based on the four standard errors
(HR, CR, and pre-test at two levels) and the same cases studied in Figure C.4. The CR
intervals always under-cover somewhat, especially in Panel (a) where G = 10, because the CR

standard errors are biased downwards. The under-coverage, like the bias, becomes slightly
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worse as 7 increases. Coverage would have been closer to 95% if we had used the wild cluster
bootstrap, but that would have been computationally very demanding to simulate. On the
other hand, the coverage of the HR intervals is almost exactly 95% when n = 0, but they
always under-cover for n > 0, and the under-coverage is very severe for most values of 7.

The pre-test intervals over-cover very slightly when n = 0, which is a consequence of
Type I errors in the pre-tests. However, they under-cover slightly more than the CR intervals
for many values of 1 because of Type II errors. This is exactly what we would expect to see
in view of the results in Figure C.4. The results in Figure C.5 suggest that, as is often the
case for pre-testing, it may be desirable for the level of the pre-test to be quite high, perhaps
even higher than .10.

By construction, the pre-test intervals are never shorter than the HR intervals, and the
CR intervals are longer than the HR intervals on average. However, with small values of 7,
it is quite common to encounter samples for which the CR interval is shorter than the HR
and pre-test intervals. This means that CR intervals can be misleadingly short, especially
when G is small. However, that is not the reason for the under-coverage by CR intervals
that is evident in Figure C.5, which is caused by the downward bias of the CR standard
errors. The wild cluster bootstrap could undoubtedly be used to obtain more reliable CR
intervals (Djogbenou et al. 2019; Roodman et al. 2019). It could almost certainly also be

used to obtain more reliable pre-test intervals, and this will be the subject of future work.
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