The Equity Premium and the One Percent∗

Alexis Akira Toda† and Kieran James Walsh‡

1Department of Economics, University of California, San Diego
2Darden School of Business, University of Virginia

First draft: March 2014
This version: May 24, 2018

Abstract

We show that in a general equilibrium model with heterogeneity in risk aversion or belief, shifting wealth from an agent who holds comparatively fewer stocks to one who holds more reduces the equity premium. Since empirically the rich hold more stocks than do the poor, inequality should predict subsequent excess stock market returns. Consistent with our theory, we find that when the income share of top earners in the U.S. rises, subsequent one year excess market returns significantly decline. This negative relation is robust to (i) controlling for classic return predictors such as the price-dividend and consumption-wealth ratios, (ii) predicting out-of-sample, and (iii) instrumenting with changes in estate tax rates. Cross-country panel regressions suggest that the inverse relation between domestic inequality and returns also holds outside of the U.S., with stronger results in relatively closed economies than in ones with low home bias (in which U.S. inequality predicts returns).

Keywords: equity premium; heterogeneous risk aversion; international equity markets; return prediction; wealth distribution.

JEL codes: D31, D52, D53, F30, G12, G17.

∗We benefited from comments by Daniel Andrei, Lint Barrage, Brendan Beare, Dan Cao, Vasco Carvalho, Peter Debaere, Graham Elliott, Nicolae Gărleanu, John Geanakoplos, Émilien Gouin-Bonenfant, Jim Hamilton, Gordon Hanson, Fumio Hayashi, Toshiki Honda, George Korniotis, Jiasun Li, Sydney Ludvigson, Semyon Malamud, Larry Schmidt, Allan Timmermann, Frank Warnock, Amir Yaron, and seminar participants at Boston College, Cambridge-INET, Carleton, Darden, Federal Reserve Board of Governors, HEC Lausanne, Hitotsubashi ICS, Kyoto, Simon Fraser, Tokyo, UBC, UCSD, Vassar, Washington State, Yale, Yokohama National University, 2014 Australasian Finance and Banking Conference, 2014 Northern Finance Association Conference, 2015 Econometric Society World Congress, 2015 ICMAIF, 2015 Midwest Macro, 2015 SED, 2015 UVa-Richmond Fed Jamboree, 2017 AFA, and 2017 ICEF. We especially thank Snehal Banerjee, Daniel Greenwald, Stavros Panageas, and Jessica Wachter for detailed comments. Earlier drafts of this paper were circulated with the title “Asset Pricing and the One Percent.”

†Email: atoda@ucsd.edu
‡Email: walshk@darden.virginia.edu
1 Introduction

Does the wealth distribution matter for asset pricing? Intuition tells us that it does: as the rich get richer, they buy risky assets and drive up prices. Indeed, over a century ago prior to the advent of modern mathematical finance, Fisher (1910) argued that there is an intimate relationship between prices, the heterogeneity of agents in the economy, and booms and busts. He contrasted (p. 175) the “enterpriser-borrower” with the “creditor, the salaried man, or the laborer,” emphasizing that the former class of society accelerates fluctuations in prices and production. Central to his theory of fluctuations were differences in preferences and wealth across people.

To see the intuition as to why the wealth distribution affects asset pricing, consider an economy consisting of investors with different attitudes towards risk or beliefs about future dividends. In this economy, equilibrium risk premia and prices balance the agents’ preferences and beliefs. If wealth shifts into the hands of the optimistic or less risk averse, for markets to clear, prices of risky assets must rise and risk premia must fall to counterbalance the new demand of these agents. In this paper, we establish both the theoretical and empirical links between inequality and asset prices.

This paper has two main contributions. First, we theoretically explore the asset pricing implications of general equilibrium models with heterogeneous agents. In a two period economy populated by Epstein-Zin agents with arbitrary risk aversion, belief, and wealth heterogeneity, we prove there exists a unique equilibrium and that in this equilibrium increasing wealth concentration in the hands of stockholders leads to a decline in the equity premium. Although the inverse relationship between wealth concentration and risk premia under heterogeneous risk aversion has been recognized at least since Dumas (1989) and recently emphasized by Garleanu and Panageas (2015), in order to test the existing theory one needs to identify the preference types, which is challenging. In contrast, we show that it is sufficient to identify the portfolio types (for example, agents that have larger portfolio shares of stocks). It does not matter why some agents hold more stocks: while we prove that high risk tolerance or optimism are sufficient conditions for investing more in stocks, it could also be due to other reasons such as low participation costs. We calibrate our two period model, as well as an infinite horizon extension, and illustrate that the wealth distribution can have a quantitatively large effect on the equity premium.

Second, we empirically explore our theoretical predictions. Given the empirical evidence that the rich invest relatively more in stocks, rising inequality should negatively predict subsequent excess stock market returns. Consistent with our theory, we find that when the income share of the top 1% income earners in the U.S. rises, the subsequent one year excess stock market return falls on average. That is, current inequality appears to forecast the subsequent risk premium of the U.S. stock market.

For a number of reasons including the apparent high persistence of top income and wealth shares, we employ a stationary component of inequality, “KGR” (capital gains ratio), which we define to be the difference between the top 1% income share with and without realized capital gains income, divided by the bottom 99% income share. We use data and theory to argue that KGR is a reasonable proxy for capital wealth and income inequality. Regressions of the year t to $t+1$ excess return on the year t top 1% income share indicate a
strong and significant negative correlation: when KGR rises by one percentage point, subsequent one year excess market returns decline on average by about 2–4%, depending on the controls included (Table 2). Overall, our evidence suggests that the top 1% income share is not simply a proxy for the price level, which previous research shows correlates with subsequent returns, or for aggregate consumption factors: the top 1% income share predicts excess returns even after we control for some classic return predictors such as the price-dividend ratio (Fama and French, 1988) and the consumption-wealth ratio (Letttau and Ludvigson, 2001). Our findings are also robust to the inclusion of macro control variables, such as GDP growth. Using five year excess returns or the top 0.1% or 10% income share also yields similar results, although the predictability is really due to the top 1% (Table 4).

The empirical literature on return prediction is not without controversy. While many papers find evidence for return predictability (Ang and Bekaert, 2007), and some point out econometric issues such as small sample bias when regressors are persistent (Nelson and Kim, 1993; Stambaugh, 1999) and problems with overlapping data (Valkanov, 2003; Boudoukh et al., 2008). In an influential study, Welch and Goyal (2008) show that excess return predictors suggested in the literature by and large perform poorly out-of-sample. How does the top 1% share fare out-of-sample? Using the methodologies of McCracken (2007) and Hansen and Timmermann (2015), we show that including the top 1% as a predictor significantly decreases out-of-sample forecast errors relative to using the historical mean excess return (Table 5). That is, top income shares predict returns out-of-sample as well.

Our finding that inequality predicts future returns is consistent with our theory, robust to the inclusion of controls and the construction of KGR, and thus interesting in its own right. But, does more inequality actually cause lower returns, and is KGR actually reflecting inequality? To address causality, we use tax rate changes as an instrument. Since contemporaneous and lagged changes in top estate tax rates explain a substantial portion of the variation in KGR (Table 6), we estimate the effect of inequality on returns using generalized method of moments (GMM) with instrumental variables (Table 7). Including KGR, industrial production growth, and the log price-earnings ratio as endogenous explanatory variables and using lags of top estate tax rate changes and the log price-earnings ratio as instruments, top income shares are still significant in predicting excess returns. This finding addresses another concern, which is that part of the variation in KGR is not due to inequality but rather from the timing of realizing capital gains or other omitted variables. Including one-year-ahead changes in capital gains tax rates as an additional instrument, we separately identify how the timing and inequality components predict returns (Table 8). The coefficient on the inequality component is negative and significant, while the timing coefficient is insignificant.

Further suggestive evidence that KGR reflects inequality comes from the
portfolios of the rich. Using the wealth composition estimates from Saez and Zucman (2016), we show that rising KGR is associated with subsequent increases in the share of equities owned by the rich (Table 10). The share of bonds, however, does not significantly change, which is consistent with our theory that rising inequality increases relative demand for risky assets.

We uncover a similar pattern in international data on inequality and financial markets: post-1969 cross-country fixed-effects panel regressions suggest that when the top 1% income share rises by one percentage point, subsequent one year market returns significantly decline on average by 1%. However, this effect is not uniform across countries. Our theory suggests that for relatively “closed” economies such as emerging markets with high levels of investment home bias, the domestic top 1% share should matter for asset pricing because domestic agents account for a substantial proportion of the universe of investors. However, for small open economies with low home bias, the inequality amongst global investors (proxied by U.S. KGR) should matter because domestic agents comprise only a small fraction of investors. Consistent with our theory, we find that the interaction terms between top income shares and home bias measures significantly predict stock returns. In an economy with complete home bias, a one percentage point increase in the top 1% income share is associated with a subsequent 2.8% decline in stock market returns. In a small open economy (no home bias), a one percentage point increase in U.S. KGR is associated with a subsequent decline in stock market returns of 4.7%.

1.1 Related literature

For many years after Fisher, in analyzing the link between individual utility maximization and asset prices, financial theorists either employed a rational representative agent or considered cases of heterogeneous agent models that admit aggregation. The original capital asset pricing model (CAPM) actually allowed for substantial heterogeneity in endowments and risk preferences across investors. (See Sharpe (1964), Lintner (1965a,b), and Geanakoplos and Shubik (1990) for a general and rigorous treatment.) However, their form of quadratic or mean-variance preferences admitted aggregation and obviated the role of the wealth distribution. Largely inspired by the limited empirical fit of the CAPM and asset pricing puzzles that arise in representative-agent models, since the 1980s theorists have extended macro/finance models to consider meaningful investor heterogeneity. Such heterogeneous-agent models fall into two groups.

In the first group, agents have identical standard (constant relative risk aversion) preferences but are subject to uninsured idiosyncratic risks. Although the models of this literature have had some success in explaining returns in calibrations, the empirical results (based on consumption panel data) are mixed and may even be spuriously caused by the heavy tails in the cross-sectional consumption distribution (Toda and Walsh 2013, 2017b). In the second group, markets are complete and agents have either heterogeneous CRRA preferences or identical but non-homothetic preferences. In this class of models the marginal rates of substitution are equalized across agents and a “representative agent”

in the sense of Constantinides (1982) exists, but aggregation in the sense of
Gorman (1954) fails. Therefore there is room for agent heterogeneity to matter
for asset pricing.

Gollier (2001) studies the asset pricing implication of wealth inequality
among agents with identical preferences. He shows that more inequality in-
creases (decreases) the equity premium if and only if agents’ absolute risk toler-
ance is concave (convex). In particular, wealth inequality has no effect on asset
pricing when agents have hyperbolic absolute risk aversion (HARA) preferences,
for which the absolute risk tolerance is linear. He and Hatchondo (2008) also
validate the model and find that the effect of wealth inequality on the equity
premium is small.

Dumas (1989) solves a dynamic general equilibrium model with constant-
returns-to-scale production and two agents (one with log utility and the other
CRRA). He shows (Proposition 17) that when the wealth share of the less risk
averse agent increases, then the risk-free rate goes up and the equity premium
goes down. Although this prediction is similar to ours, he imposes an assumption
on endogenous variables (see his equation (8)).

Following Dumas (1989), a large theoretical literature has studied the asset
pricing implication of preference heterogeneity under complete markets. All of
these papers characterize the equilibrium and asset prices by solving a planner’s
problem. However, this approach is not suitable for conducting comparative
statics exercises of changing the wealth distribution, for two reasons. First, al-
though by the first welfare theorem, for each equilibrium we can find Pareto
weights such that the consumption allocation is the solution to the planner’s
problem, since in general the Pareto weights depend on the initial wealth dis-
tribution, changing the wealth distribution will change the Pareto weights, and
consequently the asset prices. But in general it is hard to predict how the Pareto
weights change. Second, even if we can predict how the Pareto weights change,
there is the possibility of multiple equilibria. In such cases the comparative stat-
ics often go in the opposite direction depending on the choice of the equilibrium.
Thus our results are quite different since we prove the uniqueness of equilibrium
and derive comparative statics with respect to the initial wealth distribution.

Garleanu and Panageas (2015) study a continuous-time overlapping gener-
ations endowment economy with two agent types with Epstein-Zin preferences.
Unlike other papers on asset pricing models with heterogeneous preferences, all
agent types survive in the long run due to birth/death, and they also solve the
model without appealing to a planner’s problem. As a result, all endogenous
variables are expressed as functions of the state variable, the consumption share
of one agent type. They find that the concentration of wealth to the more
risk tolerant type (“the rich”) tends to lower the equity premium. When the
preferences are restricted to additive CRRA, then the relation between the con-
sumption share and equity premium (more precisely, market price of risk) is
monotonic (see their discussion on p. 10). Thus our results are closely related
to theirs but different since we prove more general comparative statics results
(though in two period models).

Our model is also related to the work on limited asset market participation,
such as Basak and Cuoco (1998), Guvenen (2009), Chien et al. (2011, 2012).

(2012), Longstaff and Wang (2012), Bhambra and Uppal (2014), and the references therein.
and Chabakauri (2013, 2015). In these papers some agents do not participate in certain asset markets or face portfolio constraints, which affects the asset prices beyond the heterogeneity in preferences or beliefs. In our model we also have hand-to-mouth laborers, but since they do not participate in any asset market, we prove that their presence affects only the risk-free rate and not the equity premium (Theorem 2.2).

Although the wealth distribution theoretically affects asset prices, there are few empirical papers that directly document this connection. To the best of our knowledge, Johnson (2012) and Campbell et al. (2016) are the only ones that explore this issue. Using incomplete markets models, they show that top income shares or top income growth innovations are cross-sectional asset pricing factors. However, they do not explore the ability of top income shares to predict excess market returns (our main empirical result).

Lastly, our study is related to the findings of Greenwald et al. (2016), who identify innovations to wealth ($e_{a,t}$) that explain much of the variation in the stock market and significantly predict low subsequent excess returns. In an equilibrium model, they show that $e_{a,t}$ captures the risk tolerance of a representative stockholder. Interestingly, there is substantial correlation between $e_{a,t}$ and our inequality predictor variable KGR. Since in heterogeneous risk aversion models without aggregation, rising wealth concentration can effectively decrease the risk aversion of the corresponding representative stockholder/planner, an interpretation of $e_{a,t}$ is that it reflects the wealth share of relatively risk tolerant stockholders vs. more risk averse ones.

2 Wealth distribution and equity premium

In this section we present a theoretical model in which the wealth distribution across heterogeneous agents affects the equity premium. In Section 2.1, we consider a static model with agents that have heterogeneous but homothetic preferences and prove the uniqueness of equilibrium. In Section 2.2, we prove in a two period model that shifting wealth from a bondholder to a stockholder pushes down the equity premium. Appendix A contains all proofs. Appendix B analyzes an infinite horizon extension of this model.

2.1 Uniqueness of equilibrium

Consider a standard general equilibrium model with incomplete markets consisting of I agents and J assets (Geanakoplos, 1990). Time is denoted by $t = 0, 1$: agents trade assets at $t = 0$ and consume only at $t = 1$. At $t = 1$, there are S states denoted by $s = 1, \ldots, S$. Let $A = (A_{sj}) \in \mathbb{R}^{SJ}$ be the $S \times J$ payoff matrix of assets, $U_i : \mathbb{R}^S \rightarrow \mathbb{R}$ be agent i’s utility function, and $n_i \in \mathbb{R}^J, c_i \in \mathbb{R}_+^S$ be agent i’s endowment vectors of asset shares at $t = 0$ and consumption goods in each state. By removing redundant assets, without loss of generality we may assume that the matrix A has full column rank.

4 Campbell et al. (2016) do explore market return prediction in their online appendix, but they uncover no relationship between the income of the rich and subsequent stock returns. Our findings are different likely because they use income instead of the income share and since they detrend top income linearly.
5 We thank Daniel Greenwald for discovering this.

6
Given the asset price $q = (q_1, \ldots, q_J)' \in \mathbb{R}^J$, agent i’s utility maximization problem is

$$\begin{align*}
\text{maximize} & \quad U_i(x) \\
\text{subject to} & \quad q'y \leq q'n_i, \ x \leq e_i + Ay,
\end{align*}$$

where $x \in \mathbb{R}_+^S$ denotes consumption and $y = (y_1, \ldots, y_J)' \in \mathbb{R}^J$ denotes the number of asset shares. $q'y \leq q'n_i$ is the $t = 0$ budget constraint. $x \leq e_i + Ay$ is the $t = 1$ budget constraint. A general equilibrium with incomplete markets (GEI) consists of asset prices $q \in \mathbb{R}^J$, consumption $(x_i) \in \mathbb{R}_+^S$, and portfolios $(y_i) \in \mathbb{R}^{JI}$ such that (i) agents optimize and (ii) asset markets clear, so $\sum_{i=1}^I n_i = n := \sum_{i=1}^I n_i$.

We make the following assumptions.

Assumption 1 (Homothetic, convex preferences). For all i, $U_i : \mathbb{R}_+^S \to \mathbb{R}$ is continuous, strictly quasi-concave, homogeneous of degree 1, differentiable on \mathbb{R}_+^S, and $\nabla U_i(x) \gg 0$ with the Inada condition $\partial U_i(x)/\partial x_s \to \infty$ as $x_s \to 0$.

Assumption 2 (Tradability of endowments). Agents’ endowments are tradable: for all i, e_i is spanned by the column vectors of A.

Assumption 2 holds, for example, if markets are complete (A is the identity matrix), but it does not need to be so. Under this assumption, since there exists $y_i \in \mathbb{R}^J$ such that $e_i = Ay_i$, by redefining e_i to be zero and n_i to be $n_i + y_i$, without loss of generality we may assume $e_i = 0$, i.e., agents are endowed only with assets.

Assumption 3 (Collinear endowments). Agents have collinear endowments: letting $n = \sum_{i=1}^I n_i$ be the aggregate endowment of assets, we have $n_i = w_i n$, where $w_i > 0$ is the wealth share of agent i, so $\sum_{i=1}^I w_i = 1$. Furthermore, $An \gg 0$.

Since $e_i = 0$ by assumption, the aggregate endowment of goods is An. Hence the assumption $An \gg 0$ simply says that aggregate endowment is positive. While the collinearity assumption is strong, it is indispensable in order to guarantee the uniqueness of equilibrium: Mantel (1976) shows that if we drop collinear endowments, then even with homothetic preferences “anything goes” for the aggregate excess demand function, and hence there may be multiple equilibria. With multiple equilibria, comparative statics may go in opposite directions, depending on the choice of equilibrium.

Under these assumptions, we can prove the uniqueness of GEI and obtain a complete characterization.

6 See Toda and Walsh (2017a) for concrete examples of multiple equilibria with canonical two-agent, two-state economies.
Theorem 2.1. Under Assumptions 1–3, there exists a unique GEI. The equilibrium portfolio \((y_i)\) is the solution to the planner’s problem

\[
\begin{aligned}
&\text{maximize} & & \sum_{i=1}^{I} w_i \log U_i(Ay_i) \\
&\text{subject to} & & \sum_{i=1}^{I} y_i = n.
\end{aligned}
\] (2.2)

Letting

\[
\sum_{i=1}^{I} w_i \log U_i(Ay_i) + q' \left(n - \sum_{i=1}^{I} y_i \right)
\]

be the Lagrangian with Lagrange multiplier \(q\), the equilibrium asset price is \(q\).

Chipman (1974) shows that under complete markets, heterogeneous homothetic preferences, and collinear endowments, aggregation is possible and hence the equilibrium is unique. Our Theorem 2.1 is a stronger result since we prove the same for incomplete markets and we also obtain a complete characterization of the equilibrium portfolio as a solution to a planner’s problem. Uniqueness is important for our purposes because it rules out unstable equilibria and thus allows for the below unambiguous comparative statics regarding the wealth distribution.

2.2 Comparative statics

So far we assumed that there is no consumption at \(t = 0\), but we can obtain similar results to Theorem 2.1 with consumption at \(t = 0\) by interpreting \(t = 0\) as a new “state” denoted by \(s = 0\). Furthermore, we can introduce an agent type that does not participate in the asset market. Let \(e_s\) \((s = 0, 1, \ldots, S)\) be the aggregate endowment in state \(s\). Suppose that there is a hand-to-mouth agent \(i = 0\) (whom we call the laborer) that is endowed with goods but does not trade assets. Let \(1 - \alpha_t\) be the fraction of aggregate income earned by the laborer at time \(t\). Then the endowment of agent \(i \geq 1\) (whom we call the capitalist) in state \(s\) is \(\alpha_t w_i e_s\), where \(t = 0\) if \(s = 0\) and \(t = 1\) if \(s \geq 1\). In order to derive implications for asset pricing, we specialize the economy in Section 2.1 as follows.

Assumption 4 (Epstein-Zin with unit EIS). Agent \(i\)’s utility function is Epstein-Zin with unit elasticity of intertemporal substitution (EIS):

\[
\log U_i(x) = (1 - \beta_i) \log x_0 + \frac{\beta_i}{1 - \gamma_i} \log \left(\sum_{s=1}^{S} \pi_{is} x_s^{1-\gamma_i} \right),
\] (2.3)

where \(x_0\) is consumption at \(t = 0\), \(x_s\) is consumption in state \(s\) at \(t = 1\), \(\beta_i \in (0, 1)\) is the discount factor, \(\gamma_i > 0\) is RRA (the case \(\gamma_i = 1\) corresponds to log utility as usual), and \(\pi_{is} > 0\) is agent \(i\)’s subjective probability of state \(s\).

See Kehoe (1998) and Geanakoplos and Walsh (2018) for further discussion of uniqueness in the presence of heterogeneous preferences.
In terms of the financial structure, suppose that there are only two financial assets, a stock (a claim to the aggregate endowment) and a risk-free bond. By interpreting $t = 0$ as state $s = 0$, there are effectively three assets, the other being a claim to $t = 0$ consumption. Therefore the asset structure is as follows.

Assumption 5. Let $e_s > 0$ ($s = 0, 1, \ldots, S$) be the aggregate endowment of goods in state s. The asset payoff matrix and the aggregate endowment of capitalists’ assets are given by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e_1 & 1 \\ \vdots & \vdots & \vdots \\ 0 & e_S & 1 \end{bmatrix}, \quad n = \begin{bmatrix} n_1 \\ \vdots \\ n_S \end{bmatrix} = \begin{bmatrix} \alpha_0 \epsilon_0 \\ \alpha_1 \\ 0 \end{bmatrix}.$$

Under these assumptions, we can show that a redistribution of wealth from a bondholder to a stockholder reduces the equity premium, while redistribution between laborers and capitalists does not affect the equity premium. To make the statement precise, we introduce some additional notation.

Taking $t = 0$ consumption as the numéraire, let P be the ex-dividend price of the stock (the value of the claim $(0, e_1, \ldots, e_S)'$) and R_f the gross risk-free rate (reciprocal of the value of the claim $(0, 1, \ldots, 1)'$). Since the risk-free asset is in zero net supply, the aggregate wealth of capitalists at $t = 0$ is $\alpha_0 \epsilon_0 + \alpha_1 P$.

Since the wealth share of capitalist i is w_i, the budget constraint is

$$y_{i1} + Py_{i2} + \frac{1}{R_f}y_{i3} = w_i(\alpha_0 \epsilon_0 + \alpha_1 P). \quad (2.4)$$

Let

$$\phi_i = \begin{bmatrix} \phi_{i1} \\ \phi_{i2} \\ \phi_{i3} \end{bmatrix} = \frac{1}{w_i(\alpha_0 \epsilon_0 + \alpha_1 P)} \begin{bmatrix} y_{i1} \\ Py_{i2} \\ y_{i3}/R_f \end{bmatrix}$$

be the vector of capitalist i’s portfolio shares.

Now we can state our main theoretical result.

Theorem 2.2. Under Assumptions 3–5, the followings are true.

1. There exists a unique equilibrium. Letting $y_i = (y_{i1}, y_{i2}, y_{i3})'$ be capitalist i’s equilibrium asset holdings, we have

$$y_{i1} = \frac{w_i(1 - \beta_i)}{\sum_{i=1}^I w_i(1 - \beta_i)} \alpha_0 \epsilon_0, \quad (2.5)$$

and $(y_{i2}, y_{i3})_{i=1}^I$ solves

maximize $$\sum_{i=1}^I \frac{w_i \beta_i}{1 - \gamma_i} \log \left(\sum_{s=1}^S \pi_{is}(e_s y_{i2} + y_{i3})^{1 - \gamma_i} \right)$$

subject to $$\sum_{i=1}^I y_{i2} = \alpha_1, \quad \sum_{i=1}^I y_{i3} = 0. \quad (2.6)$$

The equilibrium consumption allocation is given by $x_{i0} = y_{i1}$ and $x_{is} = e_s y_{i2} + y_{i3}$ for $s = 1, \ldots, S$.

9
2. The equilibrium price-dividend ratio is given by

\[
\frac{P}{e_0} = \frac{\alpha_0}{\alpha_1} \frac{1}{1 - \sum_{i=1}^I w_i \beta_i} \sum_{i=1}^I w_i \beta_i .
\]

(2.7)

Consequently, shifting wealth from an impatient agent (low \(\beta_i\)) to a patient agent (high \(\beta_i\)) increases the price-dividend ratio.

3. Let \(R = (e_1/P, \ldots, e_S/P)'\) be the vector of gross stock returns, \(\pi = (\pi_1, \ldots, \pi_S)'\) be any probability, and \(\mu = \pi'(\log R - \log R_f)\) be the log equity premium. Then \(\mu\) is independent of the capitalists’ income shares \(\alpha_0, \alpha_1\). Shifting wealth from an agent who invests relatively more in the risk-free asset (high \(\phi_3\)) to an agent who invests relatively less (low \(\phi_3\)) reduces the log equity premium.

The intuition for Theorem 2.2 is as follows. In an economy with financial assets, the equilibrium prices and risk premia balance the agents’ preferences and beliefs. Since the stock is the only saving vehicle in the aggregate (because the risk-free asset is in zero net supply), shifting wealth to a patient agent increases the demand for stocks, and hence its price rises. If wealth shifts into the hands of the natural stockholder (either the risk tolerant or optimistic agent), everything else fixed, the aggregate demand for the stock increases. Hence for markets to clear, the risk premium must fall to counterbalance the new demand of these agents.

A surprising aspect of Theorem 2.2 is that the equity premium is independent of the capitalist/laborer income shares \(\alpha_0, \alpha_1\) and depends only on the wealth distribution among capitalists, \(\{w_i\}_{i=1}^I\). The intuition is that while \(\alpha_0, \alpha_1\) affect the overall level of asset prices and the risk-free rate by changing the relative income between \(t=0, 1\), they do not affect the equity premium because assets are held only by capitalists; the equity premium balances the relative demand of stocks and bonds, which depends only on the capitalists’ wealth distribution.

Who is the natural bondholder in Theorem 2.2? We can answer this question by reducing the individual problem to a static optimal portfolio problem. Due to unit EIS, we have \(y_1 = (1 - \beta_i)w_i(\alpha_0 e_0 + \alpha_1 P)\). Therefore the budget constraint (2.4) simplifies to

\[
P y_2 + \frac{1}{R_f} y_3 = w_i \beta_i (\alpha_0 e_0 + \alpha_1 P).
\]

Let \(\theta_i = \frac{\phi_2}{\phi_2 + \phi_3} = \frac{P y_2}{w_i \beta_i (\alpha_0 e_0 + \alpha_1 P)}\) be capitalist \(i\)'s portfolio share of stocks within savings. With a slight abuse of notation, let \(e_1 = (e_1, \ldots, e_S)' \in \mathbb{R}_+^S\) be the vector of aggregate endowments at \(t = 1\). Then the vector of gross returns is \(R = e_1/P\). Since agents have Epstein-Zin utility, the consumption-saving decision and the portfolio decision can be separated. By homotheticity, the optimal portfolio problem reduces to

\[
\max_{\theta} E_i[u_i(R \theta + R_f (1 - \theta))],
\]

where \(u_i\) is the Bernoulli utility with relative risk aversion \(\gamma_i\) (i.e., \(u_i(x) = x^{1-\gamma_i} - \frac{1-\gamma_i}{1-\gamma_i} \log x\) if \(\gamma_i \neq 1\) and \(u_i(x) = \log x\) if \(\gamma_i = 1\)) and \(E_i\) is the expectation under agent \(i\)'s belief.
The following propositions show that when agents have heterogeneous risk aversion or beliefs, the portfolio share of the risky asset θ_i is ordered as risk tolerance or optimism. To define optimism, we take the following approach. First, by relabeling states if necessary, without loss of generality we may assume that states are ordered from bad to good ones: $e_1 < \cdots < e_S$. Consider two agents $i = 1, 2$ with subjective probability $\pi_i > 0$. We say that agent 1 is more pessimistic than agent 2 if the likelihood ratio $\lambda_s := \pi_{1s}/\pi_{2s} > 0$ is monotonically decreasing: $\lambda_1 \geq \cdots \geq \lambda_S$, with at least one strict inequality.

Proposition 2.3. Suppose Assumptions 3–5 hold and agents have common beliefs. If $\gamma_1 > \cdots > \gamma_I$, then $0 < \theta_1 < \cdots < \theta_I$.

Proposition 2.4. Suppose Assumptions 3–5 hold and agents 1, 2 have common risk aversion. Assume that agent 1 is more pessimistic than agent 2 in the above sense. Then $\theta_1 < \theta_2$.

Combining Theorem 2.2 together with either Proposition 2.3 or 2.4 provided that two agents have the same discount factor (hence the same $\phi_{i1} = 1 - \beta_i$), shifting wealth from a more risk averse or pessimistic agent to a more risk tolerant or optimistic agent reduces the equity premium. In particular, if the rich are relatively more risk tolerant, optimistic, or simply more likely to buy risky assets (for example due to fixed stock market participation costs), rising inequality should forecast declining excess returns.

Theorem 2.2 tells us that the wealth distribution qualitatively affects asset prices, but does it matter quantitatively? To address this issue we compute a numerical example calibrated at annual frequency. For simplicity we ignore the laborers, so $\alpha_0 = \alpha_1 = 1$. We specialize the above economy to one with two agents denoted by $i = A,B$. For preference parameters, let $\rho_i > 0$ be the discount rate of agent i and define the discount factor by $\beta_i = e^{-\rho_i}$. We set $(\rho_A, \rho_B) = (0.015, 0.06)$ and $(\gamma_A, \gamma_B) = (1.5)$, so we can interpret type A as the “rich” (patient, risk tolerant) and type B as the “poor” (impatient, risk averse). These preference parameters as well as the dividend growth distribution are taken from the infinite horizon calibration in Appendix B. Given these parameters, we can easily solve for the equilibrium by numerically solving the planner’s problem (2.6). Figure 1 shows the results.

![Figure 1: Wealth distribution and asset prices.](image)

Figures [a] and [b] show the log equity premium and the log risk-free rate,
respectively. Consistent with Theorem 2.2, increasing the wealth share of type A agents monotonically decreases the equity premium. Since the equity premium ranges between about 8% and 1%, the wealth distribution has a quantitatively large effect.

3 Predictability of returns with inequality

In Theorem 2.2, we have theoretically shown that shifting wealth from an agent who holds comparatively fewer stocks to one who holds more reduces the subsequent equity premium. Many empirical papers show that the rich hold relatively more stocks than do the poor and argue that the rich are relatively more risk tolerant. Therefore, rising inequality should negatively predict subsequent excess stock market returns. In this section we construct a stationary measure of inequality and show that it predicts subsequent returns.

3.1 Connecting theory to empirics

The ideal way to test our theory is to run regressions of the form

$$\text{ExcessReturn}_{t \rightarrow t+1} = \alpha + \beta \times \text{WealthInequality}_t + \gamma \times \text{Controls}_t + \epsilon_{t+1}$$

and test whether $\beta = 0$. There are several obstacles for implementing this type of regression. First, it is difficult to measure wealth, and hence of wealth inequality. The 1916–2000 top wealth share series (based on estate tax data) from Kopczuk and Saez (2004) are missing many years in the 50s, 60s, and 70s. The wealth share data of Saez and Zucman (2016) cover 1913–2012 but are imputed from capitalizing income. Second, our model considers redistribution amongst agents that participate in the stock market. Therefore we should look at the inequality amongst stockholders, but the above wealth inequality measures consider all agents. Third, these wealth measures are highly persistent, which introduces econometric problems. Fortunately, there is a way to construct a stationary proxy measure of capitalist inequality, which we describe below.

We employ the Piketty and Saez (2003) income inequality measures for the U.S., which are available in updated form in a spreadsheet on Emmanuel Saez’s website. In particular, we consider top income share measures based on tax return data, which are at the annual frequency and cover the period 1913–2015. These series reflect in a given year the percent of income earned by the top 1% of earners pretax. We also employ the top 0.1% share, the top 10% share, and the corresponding series that exclude realized capital gains income. Figure 2 shows these series, both including realized capital gains (Figure 2a) and excluding capital gains (Figure 2b). We can immediately see that all series seem to share a common U-shaped trend over the century, and the series including capital gains are more volatile than those without capital gains.

9In this section we are only concerned with predictability, or correlation. We address causality in Section 4.

10Using our calibrated infinite horizon model, in Appendix B.5 we show that capital wealth inequality, income inequality, and our proxy are in theory all highly correlated.

11https://eml.berkeley.edu/~saez/
Let \(\text{top}(x) \) (\(\text{top}(x)^\text{excg} \)) be the top \(x\% \) income share including (excluding) capital gains. The fact that these two series seem to share a common trend motivates us to consider their difference

\[
\text{top}(x) - \text{top}(x)^\text{excg}.
\]

(3.1)

Using a Taylor approximation, we can connect this quantity to other measures of inequality, as described below.

Suppose that there are two agent types in the economy, say the top 1% and the rest (bottom 99%). Let us denote these two types by \(i = A, B \). Let \(Y_i^k, Y_i^l \) be the total capital and labor income of type \(i \) and \(Y_i = Y_i^k + Y_i^l \) be the total income of type \(i \). Let \(Y^k = Y_A^k + Y_B^k \) and \(Y^l = Y_A^l + Y_B^l \) be the aggregate capital and labor income and \(Y = Y^k + Y^l = Y_A + Y_B \) be the total aggregate income. Then the top income share (type \(A \)’s income share) is

\[
\text{top}(1) = \frac{Y_A}{Y} = \frac{Y_A^k + Y_A^l}{Y_A^k + Y_A^l + Y_B^k + Y_B^l}.
\]

Suppose that fraction \(\rho_i \) of type \(i \)’s capital income is comprised of realized capital gains. Then the top income share excluding realized capital gains is

\[
\text{top}(1)^\text{excg} = \frac{(1 - \rho_A)Y_A^k + Y_A^l}{(1 - \rho_A)Y_A^k + Y_A^l + (1 - \rho_B)Y_B^k + Y_B^l} =: f(\rho_A, \rho_B).
\]

(3.2)

Using Taylor’s theorem, we can approximate the quantity in (3.1) as

\[
\text{top}(1) - \text{top}(1)^\text{excg} = f(0, 0) - f(\rho_A, \rho_B)
\]

\[
\approx -\rho_A \frac{\partial f}{\partial \rho_A}(0, 0) - \rho_B \frac{\partial f}{\partial \rho_B}(0, 0)
\]

\[
= \rho_A \frac{Y_A^k Y_B}{Y^2} - \rho_B \frac{Y_B^k Y_A}{Y^2}.
\]

(3.2)

Letting \(\alpha \) be the capital income share in aggregate income, so \(Y^k = \alpha Y \), it follows from (3.2) that

\[
\text{top}(1) - \text{top}(1)^\text{excg} \approx \alpha \left(\rho_A \frac{Y_A^k (1 - \text{top}(1))}{Y^k} - \rho_B \left(1 - \frac{Y_A}{Y^k} \right) \text{top}(1) \right).
\]

(3.3)
Since Y^k_A / Y^k is the capital income share of the top 1%, who are more likely to be capital owners or entrepreneurs, it is reasonable to assume that the order of magnitude of Y^k_A / Y^k is at least that of $1 - Y^k_A / Y^k$. According to Figure 2a, the top 1% income share has evolved between 0.1 and 0.2, so $1 - \text{top}(1) \gg \text{top}(1)$.

Therefore assuming that ρ_B is at most of the same order of magnitude as ρ_A, the second term inside the parenthesis of the right-hand side of (3.3) is much smaller than the first term. Ignoring the second term, we obtain

$$
\text{top}(1) - \text{top}(1)_{\text{excg}} \approx \alpha \rho_A Y^k_A Y^k (1 - \text{top}(1))
$$

$$
\iff \text{KGR}(1) := \frac{\text{top}(1) - \text{top}(1)_{\text{excg}}}{1 - \text{top}(1)} \approx \alpha \rho_A Y^k_A Y^k.
$$

The left-hand side of (3.4), KGR(1) (we will explain the acronym shortly), is a quantity that can be calculated from top 1% income shares including/excluding realized capital gains. (3.4) says that it has three components: $\alpha = Y^k / Y$ (the capital share of aggregate income), ρ_A (the fraction of realized capital gains income to total capital income for top earners), and Y^k_A / Y^k (the capital income share of top earners).

Before proceeding further, we need to make sure that the approximation (3.4) is empirically accurate. We address this issue in two ways. First, taking the logarithm of (3.4), we obtain

$$
\log(\text{KGR}(1)) \approx \log \alpha + \log \rho_A + \log(Y^k_A / Y^k).
$$

It is possible to approximate all quantities in the right-hand side of (3.5) from the data of Saez and Zucman (2016), at least for the period 1916–2012. To evaluate the accuracy of the approximation (3.4), inspired by (3.5), in columns (1)–(3) of Table 1 we regress log(KGR) on the logarithm of the three components for the top 0.1%, 1%, and 10% group. In each case R^2 is above 0.9, which suggests that the three components α, ρ_A, and Y^k_A / Y^k explain almost all of the variation in KGR. Furthermore, consistent with (3.5), with top 0.1% and 1% the constant term is insignificant and the other three coefficients are statistically not different from 1. This result suggests that the approximation (3.4) is indeed accurate. Second, we construct the two terms inside the parenthesis in (3.3). For the top 0.1% and 1%, the sample means for term 1 are 0.279 and 0.154, respectively, which are much larger than the term 2 means of 0.006 and 0.009. Additionally, the term 1 standard deviations are 0.165 and 0.091, respectively, while the term 2 standard deviations are 0.005 and 0.006. Therefore, for the top 0.1% and 1%, term 2 is indeed negligible relative to term 1, consistent with the accuracy of the approximation.

Intuitively, what does KGR(1) measure? The first component, $\alpha = Y^k / Y$, is the capital share of income, although we find that most variation in KGR(1) is
Table 1: Decomposition of KGR

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.07</td>
<td>-0.05</td>
<td>1.17</td>
<td>-5.37</td>
<td>-2.68</td>
<td>-2.67</td>
</tr>
<tr>
<td>(0.34)</td>
<td>(0.28)</td>
<td>(0.39)</td>
<td>(1.33)</td>
<td>(0.17)</td>
<td>(0.44)</td>
<td></td>
</tr>
<tr>
<td>log α</td>
<td>1.15***</td>
<td>0.97***</td>
<td>1.65***</td>
<td>-0.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.20)</td>
<td>(0.18)</td>
<td>(0.26)</td>
<td>(0.80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log ρ_x</td>
<td>0.98***</td>
<td>1.12***</td>
<td>1.25***</td>
<td>1.00***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.09)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(Y^k_x/Y^k)</td>
<td>0.97***</td>
<td>1.25***</td>
<td>3.47***</td>
<td>1.87***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.08)</td>
<td>(0.19)</td>
<td>(0.45)</td>
<td>(0.55)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2012</td>
<td>-2012</td>
<td>-2012</td>
<td>-2012</td>
<td>-2012</td>
<td>-2012</td>
</tr>
<tr>
<td>R²</td>
<td>0.94</td>
<td>0.91</td>
<td>0.95</td>
<td>0.04</td>
<td>0.78</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Note: Newey-West standard errors in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). For x = 0, 1, 1, 10, the table shows regressions of log(KGR(x)) on its components according to (3.4): the logs of the capital income share (α), the realized capital gain share of capital income (ρ_x), and the top x%’s share of capital income (Y^k_x/Y^k; ranked by capital income including realized capital gains).

An advantage of KGR is that it is stationary (the Phillips and Perron [1988] p-values are less than 0.01 for the top 0.1%, 1%, and 10%). In contrast, the raw top wealth and income series appear nonstationary, or at least highly persistent, and thus introduce econometric problems when used to predict stationary returns [Granger 1981]. KGR(1) actually looks very much like the detrended top 1% income share series. Figure 3 shows the KGR(1) series as well as the detrended versions of the raw top 1% series using the Kalman filter with an AR(1) cyclical component (see Appendix E for details) or subtracting the 10 year moving average.

In light of Figures 2a and 2b and the capitalist/laborer share irrelevance in not due to α. The second component, ρ_A, could reflect two factors. First, since capital gains realization is more likely when prices are high and since the rich disproportionately hold capital, rising ρ_A should correlate with rising capital wealth inequality. Second, ρ_A could simply be capturing the timing of capital gains realization. We provide evidence against this second interpretation below (Section 4.1 and Table 10). The last component, Y^k_A/Y^k, is capital income inequality.
Figure 3: Time series plot of inequality measures.

Note: the graph shows the stationary component of the top 1% income share using KGR(1), the AR(1) Kalman filter (both demeaned), and subtracting the 10 year moving average. The units of all series are percentage points.

Theorem 2.2, there is arguably a non-econometric reason for detrending as well. Since in the figures both the top 0.1% and 10% (and the shares in between) appear to have a common U-shaped trend, it seems plausible that the slow-moving component of inequality is due to redistribution between the poor and rich uniformly rather than from intra-rich redistribution. Assuming the poor/non-rich are less likely to participate in financial markets, then the trends in inequality correspond to changes in the capitalist/laborer income shares (α_0, α_1) in Theorem 2.2, which are irrelevant for the equity premium according to our model. In this case, we would want to strip out the trends prior to predictive regressions. Intuitively, long-term trends in the capitalist/laborer income share should affect the overall level of asset markets but not the equity premium per se, which depends only on the intra-capitalist wealth distribution.

In the remainder of this section, we focus on the ability of KGR(1) defined by (3.4) to predict excess market returns in- and out-of-sample.

3.2 In-sample predictions

We obtain the U.S. stock market returns, risk-free rates, and other financial variables from the spreadsheet of Welch and Goyal (2008). Before 1926, stock returns are calculated from the S&P 500 index. After 1926, we use CRSP volume weighted average returns. We put returns into real terms using consumer price index (CPI) inflation, and when we say “returns”, it always means log returns. For example, if the gross return on stocks from year t to $t + 1$ is $R_{t+1} = \frac{P_{t+1} + D_{t+1}}{P_t}$, the log return is $\log R_{t+1}$. Similarly, the excess return refers to the log excess return $\log R_{t+1} - \log R_{f,t}$. In some of the specifications below, we use five year annualized returns, which are compounded annually:

$$\log R_{t \rightarrow t+5} = \frac{1}{5} \sum_{k=1}^{5} \log R_{t+k}.$$

16

http://www.hec.unil.ch/agoyal/
The series P/D and P/E are the price-dividend and price-earnings ratios (in real terms) for the S&P 500 index. The spreadsheet also contains the Lettau and Ludvigson (2001) consumption-wealth ratio, commonly referred to as CAY, which spans the period 1945–2015. For presentation, we multiply CAY by 100. Our other controls are GDP growth and, inspired by Lettau et al. (2008) and Bansal et al. (2014), consumption growth variance. Annual data for GDP and consumption are from the website of the Federal Reserve Bank of St. Louis (FRED) and span 1930–2016. We estimate consumption growth variance using an AR(1)-GARCH(1,1) model for log consumption growth.

Table 2 shows the results of regressions of one year (t to t + 1) excess stock market returns on KGR(1) (time t), some classic return predictors (time t), and macro factors (time t). In column (1) we find that when KGR(1) rises by one percentage point in year t, subsequent one year excess market returns (January to December of year t + 1) decline on average by 2.7%. The coefficient is significant at the 1% level (using a Newey-West standard error), and the R^2 statistic is 0.051. It is clear, at least in sample, that KGR(1) forecasts the subsequent excess return on the stock market.

Table 2: Regressions of one year excess stock market returns on KGR(1) and other predictors

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: t to t + 1 Excess Market Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>11.92</td>
</tr>
<tr>
<td></td>
<td>(2.74)</td>
</tr>
<tr>
<td>KGR(1)</td>
<td>-2.69***</td>
</tr>
<tr>
<td></td>
<td>(1.00)</td>
</tr>
<tr>
<td>$\Delta \log(\text{GDP})$</td>
<td>0.36</td>
</tr>
<tr>
<td>log(CGV)</td>
<td>-2.15</td>
</tr>
<tr>
<td>log(P/D)</td>
<td>0.99</td>
</tr>
<tr>
<td>log(P/E)</td>
<td>-1.12</td>
</tr>
<tr>
<td>CAY</td>
<td>1.25*</td>
</tr>
<tr>
<td>R^2</td>
<td>0.051</td>
</tr>
</tbody>
</table>

Note: Newey-West standard errors in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). KGR(1) is the proxy for top 1% capital inequality defined by (3.4). $\Delta \log(\text{GDP})$ is real GDP growth. CGV is consumption growth volatility, which is estimated from an AR(1)-GARCH(1,1) model. P/D and P/E are the S&P500 price-dividend and price-earnings ratios. CAY is the consumption/wealth ratio.

Tables 20 and 21 (in Appendix D) show that the inverse relationship between inequality measures and subsequent excess returns also holds with the

$\text{http://research.stlouisfed.org/fred2/}$
KGR(10) and KGR(0.1) series. Table 3 shows that all three versions of KGR(x) also significantly predict five year excess returns. Figures 4a and 4b show the corresponding scatter and time series plots for five year returns. KGR(1) appears to forecast subsequent five year excess returns well except around 1986.10 Overall, a one percentage point increase in KGR(1) is associated with, roughly, a 2–4% decline in subsequent excess returns.

Table 3: Regressions of five year excess stock market returns on KGR(x)

<table>
<thead>
<tr>
<th>Dependent Variable: t to $t+5$ Excess Market Return</th>
<th>KGR(x) version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressors (t)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Constant</td>
<td>10.20</td>
</tr>
<tr>
<td></td>
<td>(1.95)</td>
</tr>
<tr>
<td>KGR</td>
<td>-3.16**</td>
</tr>
<tr>
<td></td>
<td>(1.25)</td>
</tr>
<tr>
<td>Sample</td>
<td>1913-</td>
</tr>
<tr>
<td>R^2</td>
<td>0.173</td>
</tr>
</tbody>
</table>

Note: Newey-West standard errors in parentheses (8 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). Five year excess returns are annualized. KGR(x) is the proxy for top x% capital inequality.

Across specifications throughout the paper, KGR(10) performs relatively well in forecasting excess returns. This is surprising at first glance since the top 10% hold most financial wealth, and we argued in Section 3.1 that intra-capitalist inequality is what should matter for excess returns. There is, however, a straightforward explanation, which is that KGR(10) overlaps with KGR(1) and KGR(0.1) and contains the predictive power of higher income shares. In Table 4, we predict returns with intra-10% KGR analogs, for example, KGR(5–

10The capital gains tax rate increased from 20% in 1986 to 28% in 1987 (but announced in 1986), which gave investors an incentive to realize capital gains in 1986. In Section 4 we disentangle the inequality and timing components of KGR(1).
10) corresponding to the top 5–10% income share (see the table caption for a precise definition). These new variables form a decomposition of KGR(10) since regressing it on KGR(0.1), ..., KGR(5–10) yields an R^2 of over 0.99 (with all regressors strongly significant). Consistent with our theory, it is the highest share series (top 0.1–0.5% and top 0.1%) with the largest coefficients (regressors are standardized in Table 4) and R^2. The top 1–5% KGR is not significant, while KGR(5–10) has a positive coefficient significant at the 10% level. So, while the KGR(0.1) component of KGR(10) inversely forecasts excess returns, the KGR(5–10) component does the opposite, consistent with our story that redistribution to poorer capitalists increases excess returns.

Table 4: Regressions of one year excess stock market returns on KGR for finer income groups

<table>
<thead>
<tr>
<th>Regressors (t) (Standardized)</th>
<th>Dependent Variable: t to t + 1 Excess Market Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>6.33</td>
</tr>
<tr>
<td></td>
<td>(1.88)</td>
</tr>
<tr>
<td>KGR(10)</td>
<td>-5.34***</td>
</tr>
<tr>
<td>KGR(0.1)</td>
<td>-4.08**</td>
</tr>
<tr>
<td>KGR(0.1–0.5)</td>
<td>-4.41**</td>
</tr>
<tr>
<td>KGR(0.5–1)</td>
<td>-3.73**</td>
</tr>
<tr>
<td>KGR(1–5)</td>
<td>0.19</td>
</tr>
<tr>
<td>KGR(5–10)</td>
<td>3.29*</td>
</tr>
<tr>
<td>Sample</td>
<td>1917–1915</td>
</tr>
<tr>
<td>R^2</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Note: see caption of Table 2. The other variables are the sub-income group components of KGR defined analogously. For example, KGR(1–5) = (top(1–5) – top(1–5)_{exch}) $\times \frac{1-\text{top}(1)}{1-\text{top}(5)}$, which is the correct analog since KGR(5) is effectively KGR(0–5), and top(0) = 0.

Given the strength of the relationship, a question immediately arises. Is there some mechanical, non-equilibrium explanation for the relationship between inequality and subsequent excess returns? For example, might stock returns somehow be determining the top share measures? For a few reasons, the answer is likely no. First, the relationship is between initial inequality and subsequent returns. Returns could affect contemporaneous top shares but not lagged top shares. One might still worry that our results are driven by our transformation of the top share series into KGR(1). However, as we see in Appendix D, we get similar results with other methods of creating a stationary series.

But, one might say, we have known at least since [Campbell and Shiller 1988](#).
and Fama and French (1988) that when prices are high relative to either earnings or dividends, subsequent excess market returns are low. The current price could indeed affect current inequality. Are the KGR series simply proxying for the price-dividend or price-earnings ratios, which are known to predict returns? Again, the answer seems to be no. As we see in columns (4) and (5) from Table 2, top shares predict excess returns even when controlling for the log price-dividend or price-earnings ratio. Including these controls barely affect the KGR(1) coefficient, which is large and significant. The P/D and P/E ratios, however, are not significant after controlling for top capital shares. Similar results hold for the KGR(10) series in Table 20. With respect to KGR(0.1) (Table 21), we lose significance when controlling for P/D due to large standard errors, but the top share coefficient remains large and significant when including P/E.

In columns (2), (3), and (6) from Table 2, we also control for real GDP growth, consumption growth variance (Letttau et al., 2008; Bansal et al., 2014), and CAY, which Lettau and Ludvigson (2001) show forecasts excess market returns. Including these controls (which also shortens the sample), we still see a strong relationship between the top income share and subsequent returns. Similar results hold for different percentiles of the top income share and detrending methods (Appendix D).

How do the components of KGR(\times) — α, ρ_x, and Y_k^x/Y_k — perform in forecasting excess returns? We see in Table 24 (Appendix D) that ρ_x, the primary driver of KGR(\times) according to Table 1, significantly predicts lower excess returns, while α and Y_k^x/Y_k are insignificant. Given that the realized capital gains component of KGR, ρ, is driving return prediction, a question arises. Are realized capital gains and not inequality per se predicting excess returns? We address this issue in Appendices B.5 and C. First, we calibrate and solve an infinite horizon version of our model and simulate model versions of both KGR and a purely mechanical measure of aggregate realized capital gains. Our Monte Carlo experiment shows that in our calibrated model (i) KGR, mechanical capital gains, and wealth inequality all inversely forecast excess returns, (ii) all three variables are substantially correlated, and (iii) KGR and mechanical capital gains have small sample properties better than those of wealth inequality. In short, both KGR and mechanical realized capital gains are quantitatively reasonable proxies for wealth inequality, which our model shows inversely forecasts excess returns. Second, we run a horse race between KGR in the data and empirical measures of mechanical realized capital gains. We find that they perform similarly but provide evidence that the distribution of realized capital gains across income groups matters beyond the overall level in forecasting returns.

In summary, there are three reasons we advocate using KGR as our proxy for capitalist wealth inequality in testing our theory. First, it is a reasonable proxy according to our calibrated model. Second, it is easily computed from frequently updated, publicly available data, and its computation requires no arbitrary parameters. Third, KGR is stationary and closely resembles detrended versions of income inequality, which has a very persistent component perhaps driven by forces we argue are less relevant for the equity premium. We elaborate

\[17\] Income inequality also inversely predicts excess returns, but it performs worse than the other variables.
3.3 Out-of-sample predictions

So far, we have seen that the current top income share predicts future excess stock market returns in-sample. However, [Welch and Goyal (2008)] have shown that the predictors suggested in the literature by and large perform poorly out-of-sample, possibly due to model instability, data snooping, or publication bias. In this section, we explore the ability of the top income share (KGR in particular) to predict excess stock market returns out-of-sample.

Consider the predictive regression model for the equity premium,

\[y_{t+h} = \beta' x_t + \epsilon_{t+h}, \]

where \(h \) is the forecast horizon (typically \(h = 1 \)), \(y_{t+h} \) is the year \(t \) to \(t+h \) excess stock market return, \(x_t \) is the vector of predictors, \(\epsilon_{t+h} \) is the error term, and \(\beta \) is the population OLS coefficient. Suppose that the predictors can be divided into two groups, so \(x_t = (x_{1t}, x_{2t}) \) and \(\beta = (\beta_1, \beta_2) \) accordingly. In this section we are interested in whether the variables \(x_{2t} \) are useful in predicting \(y_{t+h} \), that is, we want to test \(H_0 : \beta_2 = 0 \). We call the model with \(\beta_2 = 0 \) the NULL model and the one with \(\beta_2 \neq 0 \) the ALT (for alternative) model.

To evaluate the performance of the ALT model against the null, following [McCracken (2007)] and [Hansen and Timmermann (2015)] we consider the following out-of-sample \(F \) statistic:

\[
F = \frac{1}{\hat{\sigma}^2} \sum_{t=\lceil \rho T \rceil+1}^T \left((y_{t+h} - \hat{y}_{t+h|t}^N)^2 - (y_{t+h} - \hat{y}_{t+h|t}^A)^2 \right),
\]

where \(\hat{\sigma}^2 \) is a consistent estimator of \(\text{Var}[\epsilon_{t+h}] \) (which we estimate from the sample average of the squared OLS residuals of (3.6) using the whole sample), \(\hat{y}_{t+h|t}^N = \hat{\beta}_1 x_t \) (\(\hat{\beta}_1 \) is the OLS estimator of (3.6) using data only up to time \(t \)), \(\hat{y}_{t+h|t}^A = \hat{\beta}_1 x_t \) is the predicted value of \(y_{t+h} \) based on \(x_t \) using the ALT (NULL) model (here \(\hat{\beta}_1 \) are the OLS estimator of (3.6) using data only up to time \(t \)), \(T \) is the sample size, and \(0 < \rho < 1 \) is the proportion of observations set aside for initial estimation of \(\beta \) and \(\beta_1 \). Theorems 3 and 4 of [Hansen and Timmermann (2015)] show that under the null (\(H_0 : \beta_2 = 0 \)), the asymptotic distribution of \(F \) is a weighted sum of the difference of independent \(\chi^2(1) \) variables.

For the regressors in the ALT model, following [Welch and Goyal (2008)], we consider the simplest possible case where \(x_{1t} \equiv 1 \) (constant) and \(x_{2t} \) consists of a single predictor. For the predictor \(x_{2t} \), we consider KGR(\(x \)) for \(x = 0, 1, 10 \) and valuation ratios (log(P/D) and log(P/E)). The reason is that (i) since the top income series is at annual frequency, the sample size is already small at around 100 (1913 to 2015), so we cannot afford to use variables that are available only in shorter samples (e.g., CAY) for performing out-of-sample predictions, and (ii) since [Welch and Goyal (2008)] find that most predictor variables suggested in the literature are poor, there is no point in comparing many variables. The choice of the proportion of the training sample, \(\rho \), is necessarily subjective. Small \(\rho \) leads to imprecise initial estimates of \(\beta \), and large \(\rho \) leads to the loss of power. Hence we simply report results for \(\rho = 0.2, 0.3, 0.4 \). Table 5 shows the results.
Table 5: Out-of-sample performance in predicting 1-year excess returns

<table>
<thead>
<tr>
<th>ρ</th>
<th>KGR(1)</th>
<th>KGR(10)</th>
<th>KGR(0.1)</th>
<th>log(P/D)</th>
<th>log(P/E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>3.67***</td>
<td>6.07***</td>
<td>2.67***</td>
<td>-0.12</td>
<td>0.77*</td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td>(0.0010)</td>
<td>(0.0131)</td>
<td>(0.1367)</td>
<td>(0.0515)</td>
</tr>
<tr>
<td>0.3</td>
<td>2.16**</td>
<td>3.19***</td>
<td>1.43**</td>
<td>0.23</td>
<td>1.34**</td>
</tr>
<tr>
<td></td>
<td>(0.0153)</td>
<td>(0.0068)</td>
<td>(0.0436)</td>
<td>(0.1245)</td>
<td>(0.0360)</td>
</tr>
<tr>
<td>0.4</td>
<td>1.42**</td>
<td>2.94***</td>
<td>0.64*</td>
<td>-0.42</td>
<td>0.58*</td>
</tr>
<tr>
<td></td>
<td>(0.0388)</td>
<td>(0.0081)</td>
<td>(0.0901)</td>
<td>(0.2781)</td>
<td>(0.0845)</td>
</tr>
</tbody>
</table>

Note: $\rho = 0.2, 0.3, 0.4$ is the proportion of observations set aside to compute an initial OLS estimate. Columns correspond to the predictors included in the ALT model in addition to a constant. KGR(x) is the proxy for top $x%$ capital inequality defined by (3.4). The numbers in the table are the out-of-sample F statistic computed by (3.7). p-values (in parentheses) are computed by simulating 10,000 realizations from the asymptotic distribution based on Hansen and Timmermann (2015) (one sided). ***, **, and * indicate significance at 1%, 5%, and 10% levels.

According to Table 5, we can see that across specifications, the out-of-sample F statistic is positive and significant when we use KGR(x), while it is insignificant for log(P/D) and weakly significant for log(P/E). (Note that since the asymptotic distribution of F depends on the NULL model, the relationship between the F statistic in Table 5 and the p-values are not necessarily monotonic across models.)

To see this result graphically, in the spirit of Welch and Goyal (2008), we plot the difference in the cumulative sum of squared errors (the numerator of (3.7)) over the prediction period in Figure 5. The vertical axis is the cumulative sum for the NULL model minus the ALT, so a positive value favors the ALT. We can see that for all KGR(x) specifications, the plots roughly monotonically increase up to 1980, decrease until 1990, and then increase again. This result is not surprising, since 1980s was a time when income inequality increased but the stock market did not suffer (Figure 2a). On the other hand, the log(P/D) and log(P/E) specifications deteriorate after 1970, especially so for log(P/D). This finding is consistent with Welch and Goyal (2008), who document that most of the prediction gains stem from the 1973–1975 Oil Shock.

In summary, the top income series seem to predict returns out-of-sample.

4 Tax instruments and portfolios of the rich

The top 1% income share is an endogenous variable in the macro economy. While in Section 3.2 we showed that top income shares are not simply proxying for GDP growth, volatility, the consumption/wealth ratio, or the level of the stock market in explaining subsequent returns, it is difficult to rule out the possibility that omitted variables are leading to endogeneity bias. In this section, we adopt two approaches to address this issue. First, we use tax policy as an instrument for inequality. Second, we look at evidence on the portfolios of the rich, which are at the heart of our proposed mechanism linking inequality and returns.

Research on inequality suggests that increases (decreases) in top marginal
tax rates reduce (exacerbate) inequality (Roine et al. 2009; Kaymak and Poschke 2016). Indeed, the Piketty-Saez series appear to exhibit a U-shaped trend over the century, which might be due to the change in the marginal income tax rates. According to Figure 6, the marginal tax rate for the highest income earners increased from about 25% to 90% over the period 1930–1945 and started to decline in the 1960s, reaching about 40% in the 1980s. Thus the marginal tax rate exhibits an inverse U-shape that seems to coincide with the trend in the Piketty-Saez series.

Furthermore, top tax rate changes are the result of Congressional bills, which generally take years to pass and usually stem from wars or pro-long-term growth or anti-deficit ideologies (de Rugy 2003a, b; Jacobson et al. 2007; Weinzierl and Werker 2009; Romer and Romer 2010). Therefore, while alterations in top tax rates impact inequality, their timing and justification are likely not the result of financial market fluctuations. Provided top tax rate changes have a muted effect on returns, except via inequality, they can serve as an instrument for top income shares. We address this “excludability” condition below.
4.1 Instrumental variables regressions using changes in top estate tax rates

In this section we formally address the causality from inequality to the equity premium by instrumental variables regressions. So far we have assumed that KGR is a measure of inequality due to variation in capital income, but other interpretations are possible. For example, KGR may be varying due to the timing of realizing capital gains.

To address this issue, let KGR in year t be denoted by x_t, and suppose that it can be decomposed as

$$x_t = \alpha + x_{1t} + x_{2t},$$

where α is a constant and x_{1t}, x_{2t} are zero mean variables that reflect inequality and timing (an incentive to realize capital gains), respectively. Consider the model

$$R_{t+1} = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \varepsilon_{t+1},$$

(4.1)

where R_{t+1} is the (log) excess stock return from year t to $t+1$. (For notational simplicity we are omitting additional control variables, but it is straightforward to include them.) We are interested in testing $\beta_1 = 0$. The problem is that x_{1t}, x_{2t} are not observed separately.

To identify β_1, suppose that there is an instrument z_{1t} for x_{1t}, so (i) z_{1t} is exogenous (uncorrelated with ε_{t+1}), (ii) z_{1t} is correlated with x_{1t}, and, furthermore, (iii) z_{1t} is uncorrelated with x_{2t}. Then it follows that

$$0 = E[z_{1t}\varepsilon_{t+1}] = E[z_{1t}(R_{t+1} - \beta_0 - \beta_1 x_{1t} - \beta_2 x_{2t})]$$

$$= E[z_{1t}(R_{t+1} - \beta_0 - \beta_1 (x_t - \alpha - x_{2t}) - \beta_2 x_{2t})]$$

$$= E[z_{1t}(R_{t+1} - \alpha_1 - \beta_1 x_t)],$$

(4.2)

where $\alpha_1 = \beta_0 + \alpha \beta_1$ and we have used $E[z_{1t}x_{2t}] = 0$. Therefore even if the true inequality measure x_{1t} is unobserved, we can identify the coefficient of interest β_1 by exploiting the moment condition (4.2).

Both Piketty and Saez (2003) and Piketty (2003) argue that income inequality should decline in response to expansion of progressive estate taxation: capital gains comprise a substantial portion of the income of the rich, and high estate taxes decrease the ability and incentive to amass wealth in financial assets. Thus, increasing the top estate tax rate should disproportionately reduce

Figure 6: Top 1% income share including capital gains (left axis) and top marginal tax rate (right axis), 1913–2014. Source: IRS.
the wealth of the very rich and subsequently mitigate capital gains income inequality, which is driven by inequality in asset holdings. On the other hand, since estate taxes apply to both realized and unrealized capital gains, it is unlikely that estate taxes affect the timing of realizing capital gains beyond their incentive effects. Therefore current and lagged changes in the estate tax rates are a good candidate for an instrument. The first stage regressions in Table 6 confirm this hypothesis: contemporaneous and lagged changes in the top estate tax rate significantly explain a substantial portion of the variation in KGR (and the 10% and 0.1% analogs).

Table 6: Regressions of KGR on contemporaneous and lagged changes in top estate tax rates

<table>
<thead>
<tr>
<th>Regressors</th>
<th>0.1%</th>
<th>1%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1.52</td>
<td>2.37</td>
<td>3.11</td>
</tr>
<tr>
<td>∆ETR_t</td>
<td>-0.04***</td>
<td>-0.06***</td>
<td>-0.07***</td>
</tr>
<tr>
<td>∆ETR_t−1</td>
<td>-0.03**</td>
<td>-0.04*</td>
<td>-0.04*</td>
</tr>
<tr>
<td>∆ETR_t−2</td>
<td>-0.07***</td>
<td>-0.10***</td>
<td>-0.10***</td>
</tr>
<tr>
<td>∆ETR_t−3</td>
<td>-0.06***</td>
<td>-0.08***</td>
<td>-0.08***</td>
</tr>
<tr>
<td>R²</td>
<td>0.26</td>
<td>0.24</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Note: the table shows regressions of KGR on lagged changes in top estate tax rates (ETR). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants) according to Newey-West standard errors (4 lags). Sample: 1913–2015. Sources: Tax Foundation and IRS.

Table 6 suggests that changes in top estate tax rates can instrument for KGR in explaining excess returns. Whether one believes this instrument can test causation depends on if lagged changes in estate tax rates are excludable or not. One concern is that estate tax cuts stimulate the economy and thus stock market returns. Another concern is that even if estate tax rates only affect inequality, inequality may simply be proxying for the level of stock market, which we already know predicts returns. To control for these possibilities, we allow KGR, industrial production growth, and log(P/E) to be endogenous and instrument all three with contemporaneous and three lags of the change in the top estate tax rate (∆ETR for t, t−1, t−2, t−3) as well as the lagged price-earnings ratio (log(P/E)_{t−1})

18Industrial production growth (t) is significantly correlated with ∆ETR for t, t−1; log(P/E)_t is significantly correlated with log(P/E)_{t−1}. Hence the rank condition for identification holds.
Table 7: Instrumental variables GMM estimates of the effect of KGR, industrial
production growth, and log(P/E) on one year excess stock market returns

<table>
<thead>
<tr>
<th>Dependent Variable: t to $t+1$ Excess Market Return</th>
<th>KGR(x) version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressors (t)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Constant</td>
<td>18.09</td>
</tr>
<tr>
<td></td>
<td>(24.05)</td>
</tr>
<tr>
<td>KGR(x)</td>
<td>-10.79**</td>
</tr>
<tr>
<td></td>
<td>(4.54)</td>
</tr>
<tr>
<td>%∆IP</td>
<td>-1.51***</td>
</tr>
<tr>
<td></td>
<td>(0.51)</td>
</tr>
<tr>
<td>log(P/E)</td>
<td>3.71</td>
</tr>
<tr>
<td></td>
<td>(9.98)</td>
</tr>
<tr>
<td>J statistic</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>($p = 0.72$)</td>
</tr>
</tbody>
</table>

Note: the table shows the results of two-step GMM estimation of the moment condition (4.2) (including industrial production growth and log(P/E) as controls). The initial weighting matrix is identity, and the second stage one is Newey-West (4 lags). Newey-West standard errors are in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). %∆IP is the annual % change in the industrial production index. P/E is the S&P500 price-earnings ratios. The instruments are a constant, changes in the top estate tax rate (∆ETR for $t,t-1,t-2,t-3$), and the lagged price-earnings ratio (log(P/E)_{t-1}). Sample: 1913–2015. Sources: Tax Foundation, IRS, and FRED.

we can show that the moment condition

$$E[z_{2t}(R_{t+1} - \alpha_2 - \beta_2 x_t)] = 0$$ \(4.3\)

holds, where $\alpha_2 = \beta_0 + \alpha \beta_2$. What would be a good candidate for z_{2t}? Rational agents have an incentive to realize (delay) capital gains if they expect the capital gains tax rate to increase (decrease). Since tax rates in year $t+1$ are announced in year t, we can use the change in the maximum capital gains tax rate from year t to $t+1$, ∆CGTR_{t+1}, as an instrument z_{2t} for the timing component of KGR, x_{2t}. Table 8 adds ∆CGTR_{t+1} to the first-stage regressions displayed in Table 6. As conjectured, the change in top capital gains tax rates from year t to $t+1$ have positive and significant relationship with year t KGR. Current and lagged changes in estate tax rates, however, continue to have a strong inverse association with KGR. As rising capital gains and estate tax rates should, all else equal, discourage wealth accumulation amongst the rich, the positive coefficient on ∆CGTR_{t+1} is likely reflecting the timing component of KGR (x_{2t}): when the rich expect capital gains taxes to rise, they move forward the realization of capital gains, which causes KGR to rise.

Thus, in Table 9 we jointly estimate the moment conditions (4.2) and (4.3) (including industrial production growth, log(P/E), and ∆CGTR_{t+1} as controls) by multiple equation GMM using the instruments

$$z_{1t} = (1, \Delta ETR_t, \Delta ETR_{t-1}, \Delta ETR_{t-2}, \Delta ETR_{t-3}, \log(P/E)_{t-1})',$$

$$z_{2t} = (1, \Delta CGTR_{t+1})',$$
Table 8: Regressions of KGR on contemporaneous and lagged changed in top estate tax rates and the one-period-ahead change in the capital gains tax rate

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Dependent Variable: KGR(x)(_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td>Constant</td>
<td>1.54</td>
</tr>
<tr>
<td>∆ETR(_t)</td>
<td>-0.04***</td>
</tr>
<tr>
<td>∆ETR(_{t-1})</td>
<td>-0.04***</td>
</tr>
<tr>
<td>∆ETR(_{t-2})</td>
<td>-0.07***</td>
</tr>
<tr>
<td>∆ETR(_{t-3})</td>
<td>-0.06***</td>
</tr>
<tr>
<td>∆CGTR(_{t+1})</td>
<td>0.03***</td>
</tr>
<tr>
<td>R²</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Note: see caption of Table 6 for explanations. ∆CGTR\(_{t+1}\) is the one-period-ahead change in the maximum capital gains tax rate.

Table 9: Instrumental variables multiple equation GMM estimates of the effect of KGR, industrial production growth, and log(P/E) on one year excess stock market returns

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: (t) to (t+1) Excess Market Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KGR(x) version</td>
</tr>
<tr>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td>Constant ((\alpha_1))</td>
<td>21.59</td>
</tr>
<tr>
<td></td>
<td>(25.14)</td>
</tr>
<tr>
<td>Constant ((\alpha_2))</td>
<td>-11.94</td>
</tr>
<tr>
<td></td>
<td>(64.50)</td>
</tr>
<tr>
<td>KGR((x)) (inequality, (\beta_1))</td>
<td>-10.93**</td>
</tr>
<tr>
<td></td>
<td>(4.42)</td>
</tr>
<tr>
<td>KGR((x)) (timing, (\beta_2))</td>
<td>11.45</td>
</tr>
<tr>
<td></td>
<td>(34.02)</td>
</tr>
<tr>
<td>%∆IP</td>
<td>-1.48*</td>
</tr>
<tr>
<td></td>
<td>(0.88)</td>
</tr>
<tr>
<td>log(P/E)</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>(10.13)</td>
</tr>
<tr>
<td>∆CGTR(_{t+1})</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>(1.17)</td>
</tr>
<tr>
<td>J statistic</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Note: the table shows the results of two-step multiple equation GMM estimation of the moment conditions (4.2) and (4.3) (including industrial production growth, log(P/E), and ∆CGTR\(_{t+1}\) as controls). See caption of Table 7 for explanations.
respectively. The coefficients are positive but insignificant for the timing components \((x_{2t})\) identified by changes in future capital gains tax rates. The inequality components \((x_{1t})\), however, have negative and significant coefficients. This is true regardless of whether we use the top 0.1%, 1%, or 10% income share, and suggests that the causal effect of KGR on subsequent excess returns is driven by inequality rather than by the timing of capital gains realization.

In summary, our finding that rising top income shares lead to low subsequent excess returns is robust to instrumenting inequality with changes in estate tax rates, even when controlling for economic growth and the level of the stock market. Introducing one-period-ahead capital gains tax rate changes as an additional instrument, we are able to separately identify how the inequality and timing components of KGR impact returns. The predictive power of KGR established in Section 3 appears driven by the inequality component.

4.2 Portfolios of the rich

While we showed in Section 3.2 that KGR predicts excess returns, two important concerns are whether KGR can be interpreted as a measure of inequality and, even if so, does rising inequality create excess demand for risky assets (from the rich), as in our theory, or simply correlate with other predictors. We argued in Section 4.1 by using tax instruments that at least part of KGR is capturing inequality and that the timing of realizing capital gains (the rich’s information) is not driving KGR. Although prediction appears robust to IV and including many controls, one might still wonder about omitted variables and the mechanism through which inequality affects returns.

To help address these concerns, in this section we provide evidence on the portfolios of the rich. A key implication of our theory is that redistribution from natural bondholders to stockholders should trigger further concentration of equities and a subsequent decline in the equity premium. We have already demonstrated that inequality predicts excess returns, and there are many papers showing the rich are the marginal buyers of stock (see Footnote 8). The remaining testable implication at first seems to be a link between equity concentration amongst the rich and subsequent excess returns.

But the relationship between equity concentration and future returns may be ambiguous. Recent studies have argued that investor returns rise with wealth (due to sophistication, skill, and/or information), even in the tail of the wealth distribution (Kacperczyk et al. 2014; Fagereng et al. 2016a,b). So, while rising equity concentration could reflect rising inequality and predict lower excess returns, increased concentration of equities in the hands of rich could also be due to the wealthy better exploiting positive market information and thus predict higher excess returns. In this section, we attempt to disentangle these two forces and provide evidence suggesting the inequality driven component of equity concentration does indeed forecast lower excess returns, as in our theory.

In Table 10 we regress the change (from year \(t\) to \(t+1\)) in the wealth portfolio composition of the rich, stock and bond wealth inequality in particular, on KGR in year \(t\). The portfolio data is from Saez and Zucman (2016), who compute it from tax returns data but show that it is in line with values in the Survey of Consumer Finances.\(^{19}\) We compute asset inequality by dividing the asset’s level

\(^{19}\)Our sources are the “AppendixTables(Aggregates)” and “AppendixTables(Distributions)”
contribution to the particular top wealth share by the total fraction of wealth in that asset class. So the 1% equity share (call it Eq(1)), is the fraction of equity wealth held by the richest 1%.

Table 10: Regressions of stock and bond wealth inequality on KGR

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>0.1%</th>
<th>1%</th>
<th>10%</th>
<th>0.1%</th>
<th>1%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.98</td>
<td>-1.35</td>
<td>-0.48</td>
<td>-0.03</td>
<td>-0.45</td>
<td>-0.36</td>
</tr>
<tr>
<td>KGR(x)</td>
<td>0.64***</td>
<td>0.52***</td>
<td>0.15***</td>
<td>0.07</td>
<td>0.21</td>
<td>0.09</td>
</tr>
<tr>
<td>Sample</td>
<td>1913-1913-1917-1913-1913-1917-</td>
<td>-2012-2012-2012-2012-2012-2012-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: Newey-West standard errors in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). For each asset class (equities or bonds) and x = 0.1, 1, 10, the table shows regressions of the t to t + 1 change in the share of assets owned by the wealthiest x% on time t KGR(x) and a constant.

Table 10 shows that the equity coefficients from regressing ∆Eq_{t+1} on KGR_{t} are positive and significant (equity wealth inequality rises), which suggests that the rich subsequently invest more in equities after KGR increases. For bonds the coefficients are insignificant. This is consistent with our story in which KGR measures inequality and the rich are more risk tolerant. When the rich get richer, there is subsequently a relative rise in stock wealth concentration (vs. bond wealth inequality). Despite the significant correlation between rising inequality and subsequent equity concentration in Table 10, equity inequality does not forecast lower excess returns. As we see in Table 11, there is no significant relationship between the change in the 0.1% or 10% equity share and subsequent excess returns. And the change in the 1% equity share significantly forecasts higher excess returns.

The reason for this correlation, which may by puzzling at first glance, is that top equity shares reflect not just inequality but also other factors that correlate with subsequent returns. Table 12 regresses ∆Eq_{t} on KGR_{t-1}, log(P/E)_{t}, and ∆CGTR_{t+1} (the change in the maximum capital gains tax rate). For the 0.1%, 1%, and 10%, top equity shares are significantly positively correlated with lagged inequality. But equity concentration is also inversely related with the current level of the stock market and rising capital gains taxes (although the coefficients are only significant for the 1%, and the 10% ∆CGTR_{t+1} coefficient is estimated to be 0).

Since a low price-earnings ratio and expected capital gains tax cuts are associated with rising excess returns, it is now clear why equity concentration fails to forecast lower excess returns: top equity shares move for many reasons (including income inequality), but some drivers of equity inequality predict rising excess returns. In light of the research arguing the wealthy are more sophisticated investors that get better returns, there is a natural interpretation of spreadsheets for Saez and Zucman (2016).
Table 11: Regressions of one year excess stock market returns on high wealth equity shares

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Excess Market Return</th>
<th>ΔEq(x) version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressors (t)</td>
<td>0.1%</td>
<td>1%</td>
</tr>
<tr>
<td>Constant</td>
<td>6.21</td>
<td>6.37</td>
</tr>
<tr>
<td>(1.89)</td>
<td>(1.93)</td>
<td>(1.91)</td>
</tr>
<tr>
<td>ΔEq(x)</td>
<td>0.81</td>
<td>1.02**</td>
</tr>
<tr>
<td>(0.68)</td>
<td>(0.50)</td>
<td>(1.43)</td>
</tr>
<tr>
<td>Sample</td>
<td>1913-</td>
<td>1913-</td>
</tr>
<tr>
<td>-2012</td>
<td>-2012</td>
<td>-2012</td>
</tr>
<tr>
<td>R²</td>
<td>0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note: Newey-West standard errors in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). For $x = 0, 1, 10$, the table shows regressions of the t to $t + 1$ excess market return on the change in the share of equities owned by the wealthiest $x\%$ and a constant.

Table 12: Decomposition of high wealth equity shares

<table>
<thead>
<tr>
<th>Dependent: change in high wealth equity share</th>
<th>ΔEq(x) version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressors (t)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Constant</td>
<td>0.35</td>
</tr>
<tr>
<td>(2.07)</td>
<td>(1.54)</td>
</tr>
<tr>
<td>KGR(x)$_{t-1}$</td>
<td>0.75***</td>
</tr>
<tr>
<td>(0.28)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>log(P/E)$_{t}$</td>
<td>-0.55</td>
</tr>
<tr>
<td>(0.78)</td>
<td>(0.69)</td>
</tr>
<tr>
<td>ΔCGTR$_{t+1}$</td>
<td>-0.04</td>
</tr>
<tr>
<td>(0.04)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Sample</td>
<td>1913-</td>
</tr>
<tr>
<td>-2012</td>
<td>-2012</td>
</tr>
<tr>
<td>R²</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Note: Newey-West standard errors in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). For $x = 0, 1, 10$, the table shows regressions of the change in the share of equities owned by the wealthiest $x\%$ on lagged KGR(x), log(P/E), the one-period-ahead change in the maximum capital gains tax rate, and a constant.

these findings. All else equal, rising equity concentration (from, say, increasing inequality), pushes down the equity premium. But equity concentration might also rise precisely because the stock market is going to do well from, for example, tax cuts or mean reversion and since the rich are better at timing the market.

To see that inequality driven equity concentration (vs. timing/sophistication driven concentration) inversely forecasts excess returns, we use KGR$_{t-1}$ as an instrument for ΔEq$_{t}$. Table 13 shows that the instrumented top equity shares coefficients are negative and significant with respect to the 1% and 10%. (For
the 0.1%, the coefficient is negative but the p-value is 0.118.)

Table 13: Instrumental variables estimates of the effect of high wealth equity shares on one year excess stock market returns

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>0.1%</th>
<th>1%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>5.06</td>
<td>4.44</td>
<td>5.41</td>
</tr>
<tr>
<td>\Delta Eq(x)</td>
<td>-7.71</td>
<td>-6.41*</td>
<td>-19.81**</td>
</tr>
<tr>
<td>Sample</td>
<td>1913-</td>
<td>1913-</td>
<td>1917-</td>
</tr>
</tbody>
</table>

Note: for x = 0.1, 1, 10, the table shows instrumental variables regressions of the t to t + 1 excess market return on the change in the share of equities owned by the wealthiest x% and a constant. Newey-West standard errors are in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). The instrument is KGR(x)_{t-1}.

5 International evidence

Thus far, using U.S. data we have shown that shocks to the concentration of income are associated with large and significant declines in subsequent excess returns on average. We have also provided a theoretical explanation for this pattern: if the rich are relatively more risk tolerant, when their wealth share rises relative aggregate demand for risky assets increases, which in equilibrium leads to a decline in the equity premium. Our theoretical argument, however, is not specific to the U.S. Therefore, we can test our theory by seeing whether or not this pattern holds internationally. In this section, we employ cross country fixed effects panel regressions and show that outside of the U.S. there also appears to be an inverse relationship between inequality and subsequent excess returns.

5.1 Data

We consider 29 countries, for the time period 1969–2015, spanning the continents: Americas (Argentina, Canada, Colombia, and U.S.), Europe (Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and U.K.), Africa (Mauritius and South Africa), Asia (China, India, Japan, Malaysia, Singapore, South Korea, and Taiwan), and Oceania (Australia, Indonesia, and New Zealand). Due to missing data points for some countries, we have 815 observations when we include all countries and time periods.

The inequality panel data are from the World Wealth and Income Database[20]. To be consistent across countries, we use the “fiscal income” top 1% income share series. To calculate annual stock returns (end-of-period), we acquire from

Datastream the MSCI total return indexes in local currency. To convert returns into local real terms, we deflate the stock indexes by local CPI, which we obtain from the World Bank website \(^21\) Haver Analytics \(^22\), FRED, and the Taiwanese government \(^23\). See Appendix F for country-specific details.

5.2 International regression results

In Section 3, we showed that income concentration is inversely related to subsequent excess returns. However, quantitatively, this result was really about stock returns. Indeed, redoing column (1) of Table 2 with stock returns instead of excess returns, the KGR(1) coefficient is -2.61 with a Newey-West p-value of 0.027. With the 10% or 0.1% series, the coefficients are, respectively, -2.16 and -3.53 with p-values of 0.002 and 0.041. Also, with none of our top income share measures do we find a significant relationship between inequality and risk-free rates in the U.S. Furthermore, while U.S. Treasury returns provide a standard and relatively uncontroversial measure of the risk-free rate in the U.S., in markets outside of the U.S., especially emerging ones where government and private sector default are not uncommon, it is not immediately obvious how to measure the risk-free rate. Additionally, due to the limited availability of similar interest rates across countries, using stock returns instead of excess returns substantially expands the sample size. In light of these facts, we perform the international analysis using stock market returns without netting out an interest rate.

Another difference from our U.S. analysis in Section 3 is that in the post-1969 sample there is no obvious U-shape for top income shares. Furthermore, for many countries we cannot calculate KGR(1) (because as of the time of writing, the WID database does not provide the top 1% series excluding and including capital gains income for many countries) and the samples are short or missing years. Therefore we use the raw top 1% income share data rather than attempt to estimate and remove common or heterogeneous time trends. Table 14 presents the panel regression results for both the whole sample and different groups.

First, we see in column (1) that when including all countries a one percentage point increase in the top income share is associated with a subsequent decline in stock market returns of 0.94% on average. The coefficient is significant at the 10% level with standard errors clustered by country (results are similar without clustering). Column (2) does the same regression for only advanced economies (Australia, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Korea, Netherlands, Norway, New Zealand, Portugal, Singapore, Spain, Sweden, Switzerland, Taiwan, U.K., and U.S.), and we obtain similar results.

Is the predictive power of the top income share uniform across countries? In either very large markets (such as U.S.) or relatively closed ones (such as emerging markets), our theory suggests that local inequality should impact domestic stock markets. In small open markets, however, foreign investors own a substantial fraction of the domestic stock markets and should mitigate the role of local inequality. However, even if local inequality is less important in small and open financial markets, inequality amongst global investors should still impact returns in these markets.

\(^{21}\)http://data.worldbank.org/
\(^{22}\)http://www.haver.com/
\(^{23}\)eng.stat.gov.tw
Table 14: Country fixed effects panel regressions of one year stock returns on local top income shares and U.S. KGR

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 1%</td>
<td>-0.94*</td>
<td>-1.01*</td>
<td>-0.42</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(0.49)</td>
<td>(0.70)</td>
<td>(1.55)</td>
</tr>
<tr>
<td>U.S. KGR(1)</td>
<td>-2.51***</td>
<td>-0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td></td>
<td>(0.75)</td>
<td></td>
</tr>
<tr>
<td>Top 1% × homebias</td>
<td>-5.44**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. KGR(1) × (1 − homebias)</td>
<td>-4.17**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Obs.</td>
<td>815</td>
<td>712</td>
<td>769</td>
<td>687</td>
</tr>
<tr>
<td>R^2 (w,b)</td>
<td>(0.00,0.05)</td>
<td>(0.01,0.03)</td>
<td>(0.02,0.13)</td>
<td>(0.03,0.27)</td>
</tr>
</tbody>
</table>

Note: Clustered standard errors in parentheses, ***1%, **5%, *10% (constants suppressed). ex-U.S.: All countries excluding U.S. R^2 (w,b): Within and between R-squared. Top 1% is the share of income going to the top 1% of earners (the “fiscal income” top 1% series from World Wealth and Income Database). The home bias measure is from Mishra (2015). See the main text and Appendix E for country details on series construction. Sample: 1969–2015.

In column (3) of Table 14, we also include the U.S. KGR(1) as a proxy for global investor inequality. Doing so makes the U.S. KGR(1) very significant but the local inequality insignificant. However, as we argued above, local inequality should matter only for relatively closed economies. Therefore in column (4), we also include the interaction terms between inequality and home bias measures. For this regression we use the ICAPM equity home bias measure of Mishra (2015), which takes value between 0 (no home bias) and 1 (complete home bias). Specifically, we consider the model

\[
\log R_{i,t+1} = \alpha_i + \beta_1 \text{top}(1)_i t + \beta_2 \text{KGR(1)}_{US,t}
+ \beta_3 \text{top}(1)_i t \times \text{homebias}_i + \beta_4 \text{KGR(1)}_{US,t} \times (1 - \text{homebias}_i) + \epsilon_{i,t+1},
\]

where α_i is the country fixed effect. According to column (4) of Table 14, the coefficients on the interaction terms (β_3, β_4) are negative and highly significant, while the linear terms (β_1, β_2) are insignificant. In particular, in a closed economy (homebias = 1), a one percentage point increase in the top 1% income share is associated with a subsequent decline in stock market returns of $-\beta_1 - \beta_3 = 2.83\%$ on average; in a small open economy (homebias = 0), a one percentage point increase in U.S. KGR(1) is associated with a subsequent decline in stock market returns of $-\beta_2 - \beta_4 = 4.70\%$. These findings are consistent with the conjecture that the local 1% share negatively predicts returns only for countries with higher home bias (relatively closed economies), and the global 1% share (proxied by U.S. KGR(1)) matters only for countries with lower home bias (small open economies).

\[24\text{Mishra (2015) does not calculate a home bias number for China, Ireland, Mauritius, or Taiwan.}\]
6 Concluding remarks

In this paper we built a general equilibrium model with agents that are heterogeneous in wealth, risk aversion, and belief. We showed that the concentration of wealth/income drives down the subsequent equity premium. Our model is a mathematical formulation of Irving Fisher’s narrative that booms and busts are caused by changes in the relative wealth of the rich (the “enterpriser-borrower”) and the poor (the “creditor, the salaried man, or the laborer”). Consistent with our theory, we found that in the U.S. the income/wealth distribution is closely connected with stock market returns. When the rich are richer than usual the stock market subsequently performs poorly, both in- and out-of-sample. The inverse relationship between returns and inequality is robust to controlling for standard return predictors and instrumenting with changes in estate taxes. It also holds outside of the U.S., although in relatively open economies with low home bias it is U.S. inequality that matters (as opposed to domestic inequality).

Could one exploit the predictive power of top income shares to beat the market on average? The answer is probably no since the top income share—which comes from tax return data—is calculated with a substantial lag. One would receive the inequality update too late to act on its asset pricing information. However, our analysis provides a novel positive explanation of excess market returns over time. We conclude, as decades of macro/finance theory have suggested, that stock market fluctuations are intimately tied to the distribution of wealth, income, and assets.

References

A Proofs

A.1 Proof of Theorem 2.1

Since by Assumption 2, we have \(e_i = 0 \), the utility maximization problem becomes

\[
\begin{align*}
\text{maximize} &
\ U_i(x) \\
\text{subject to} &
\ q'y \leq q'n_i, 0 \leq x \leq Ay.
\end{align*}
\]

(A.1)

Step 1. The planner’s problem (2.2) has a unique solution.

Proof. Let

\[\Omega = \left\{ x = (x_i) \in \mathbb{R}^{SI}_+ \mid \exists y = (y_i)(\forall i) x_i \leq Ay_i, \sum_{i=1}^I y_i = n \right\} \]

be the set of all feasible consumption allocations. Then the planner’s problem (2.2) is equivalent to maximizing

\[f(x) = \sum_{i=1}^I w_i \log U_i(Ay_i) \]

subject to

\[x \in \Omega. \]

By Assumption 1 and Berge (1959, p. 208, Theorem 3), each \(U_i(x_i) \) is strictly concave. Since \(\log(\cdot) \) is increasing and strictly concave, so is \(\log U_i(x_i) \). Since \(f \) is continuous and strictly concave, to show the existence and uniqueness of a solution, it suffices to show that \(\Omega \) is nonempty, compact, and convex. Clearly \(\Omega \neq \emptyset \) because we can choose the initial endowment \(y_i = n_i \) and \(x_i = An_i = e_i \).

Since \(\Omega \) is defined by linear inequalities and equations, it is closed and convex. If \(x \in \Omega \), by definition we can take \(y = (y_i) \) such that \(x_i \leq Ay_i \) for all \(i \) and \(\sum_{i=1}^I y_i = n \). Then

\[\sum_{i=1}^I x_i \leq \sum_{i=1}^I Ay_i = A \sum_{i=1}^I y_i = An. \]

Since \(x_i \geq 0 \) and \(n \gg 0 \), \(\Omega \) is bounded.

Let \(x = (x_i) \) be the unique maximizer of \(f(x) \) on \(\Omega \). Since \(f \) is strictly increasing, we have \(x_i = Ay_i \) for some \(y' = (y'_i) \) such that \(\sum_{i=1}^I y_i = n \). If there is another such \(y'' = (y''_i) \), then \(Ay_i = Ay'_i \iff A(y_i - y'_i) = 0 \). Since by assumption \(A \) has full column rank, we have \(y_i - y'_i = 0 \iff y_i = y'_i \). Therefore the planner’s problem (2.2) has a unique solution.

Step 2. \(x = (x_i) \) is a GEI equilibrium allocation and the Lagrange multiplier to the planner’s problem gives the asset prices.

Proof. Let

\[L(y, q) = \sum_{i=1}^I w_i \log U_i(Ay_i) + q' \left(n - \sum_{i=1}^I y_i \right) \]
be the Lagrangian of the planner’s problem \(\text{(2.2)}\). By the previous step, a unique solution \(y = (y_i)\) exists. Furthermore, since \(U_i\) satisfies the Inada condition, it must be \(Ay_i \gg 0\). Hence by the first-order condition and the chain rule, we have

\[
q^i = w_i \frac{DU_i(Ay_i)A}{U_i(Ay_i)} \quad \text{(A.2)}
\]

for all \(i\), where \(DU_i\) denotes the \((1 \times S)\) Jacobi matrix of the function \(U_i\). Since \(U_i\) is homogeneous of degree 1, for all \(x \gg 0\) and \(\lambda > 0\) we have \(U_i(\lambda x) = \lambda U_i(x)\). Differentiating both sides with respect to \(\lambda\) and setting \(\lambda = 1\), we have \(DU_i(x)x = U_i(x)\). Hence multiplying \(y_i\) from the right to \(\text{(A.2)}\), we get

\[
q'y_i = w_i \frac{DU_i(Ay_i)Ay_i}{U_i(Ay_i)} = w_i.
\]

Adding across \(i\), since \(\sum_{i=1}^I y_i = n\), we get

\[
q'n = q' \sum_{i=1}^I y_i = \sum_{i=1}^I w_i = 1.
\]

Therefore

\[
q'y_i = w_i = w_i q'n = q'(w_in) = q'n_i,
\]

so the budget constraint holds with equality. Furthermore, letting \(\lambda_i = \frac{1}{w_i}\), by \(\text{(A.2)}\) we obtain \(D[\log U_i(Ay_i)] = \lambda_i q'\), which is the first-order condition of the utility maximization problem \(\text{(A.1)}\) after taking the logarithm. Since \(\log U_i\) is concave, \(y_i\) solves the utility maximization problem. Since \(\sum_{i=1}^I y_i = n\), the asset markets clear, so \(\{q, (x_i), (y_i)\}\) is a GEI.

Step 3. The GEI is uniquely given as the solution to the planner’s problem \(\text{(2.2)}\).

Proof. Let \(\{q, (x_i), (y_i)\}\) be a GEI. By the first-order condition to the utility maximization problem, there exists a Lagrange multiplier \(\lambda_i \geq 0\) such that

\[
\lambda_i q' = D[\log U_i(Ay_i)] = \frac{DU_i(Ay_i)A}{U_i(Ay_i)}. \quad \text{(A.3)}
\]

Multiplying \(n\) from the right and noting that \(DU_i \gg 0\), \(\lambda n \gg 0\), and \(Ay_i \gg 0\) imply \(U_i(Ay_i) > U_i(0) = 0\), we obtain \(\lambda_i q' n > 0\). Since \(\lambda_i \geq 0\), we must have \(\lambda_i > 0\) and \(q'n > 0\). By rescaling the price vector if necessary, we may normalize such that \(q'n = 1\). Multiplying \(y_i\) to \(\text{(A.3)}\) from the right and using \(DU_i(x)x = U_i(x)\) and the complementary slackness condition, we have

\[
\lambda_i q'n_i = \lambda_i q'y_i = \frac{DU_i(Ay_i)Ay_i}{U_i(Ay_i)} = 1 \iff \frac{1}{\lambda_i} = q'n_i = w_i q'n = w_i.
\]

Substituting into \(\text{(A.3)}\), we obtain \(q' = w_i D[\log U_i(Ay_i)]\), which is precisely \(\text{(A.2)}\), the first-order condition of the planner’s problem \(\text{(2.2)}\) with Lagrange multiplier \(q\). Since \((y_i)\) is feasible and the objective function is strictly concave, \((y_i)\) is the unique solution to the planner’s problem.
A.2 Proof of Propositions 2.3 and 2.4

Let u be a general Bernoulli utility function with $u' > 0$ and $u'' < 0$. (In view of Theorem 2.2 we only need to assume $u(x) = \frac{1}{1-\gamma}x^{-\gamma}$ or $u(x) = \log x$, but most of the following results do not depend on the particular functional form.) Suppose that there are two assets, one risky asset with gross return R and a risk-free asset with gross risk-free rate R_f. Let $R(\theta) := R\theta + R_f(1-\theta)$ be the portfolio return, where θ is the fraction of wealth invested in the risky asset. Consider the optimal portfolio problem

$$\max_{\theta} E[u(R(\theta)w)],$$

where w is initial wealth. The following lemma is basic (e.g., Arrow, 1965).

Lemma A.1. Let everything be as above and θ be the optimal portfolio. Then the followings are true.

1. $\theta \geq 0$ according as $E[R] \geq R_f$.
2. Suppose $E[R] > R_f$. If u exhibits decreasing relative risk aversion (DRRA), so $-u''(x)/u'(x)$ is decreasing, then $\partial\theta/\partial w \geq 0$, i.e., the agent invests comparatively more in the risky asset as he becomes richer. The opposite is true if u exhibits increasing relative risk aversion (IRRA).

Proof.

1. Let $f(\theta) = E[u(R(\theta)w)]$. Then $f'(\theta) = E[u'(R(\theta)w)R(\theta)(R-R_f)w]$ and $f''(\theta) = E[u''(R(\theta)w)(R-R_f)^2w^2] < 0$, so f is strictly concave. Therefore the optimal θ is unique (if it exists).

2. Since $f'(\theta) = 0$ and $f'(0) = u'(R_fw)w(E[R] - R_f)$, the result follows.

3. Dividing the first-order condition by w, we obtain $E[u'(R(\theta)w)(R-R_f)] = 0$. Let $F(\theta, w)$ be the left-hand side. Then by the implicit function theorem we have $\partial\theta/\partial w = -F_w/F_{\theta}$. Since $F_\theta = E[u''(R(\theta)w)(R-R_f)^2w] < 0$, it suffices to show $F_w \geq 0$. Let $\gamma(x) = -xu''(x)/u'(x) > 0$ be the relative risk aversion coefficient. Then

$$F_w = E[u''(R(\theta)w)(R-R_f)\gamma(R\theta)] = -\frac{1}{w}E[\gamma(R(\theta)w)u'(\theta)w(R-R_f)].$$

Since $E[R] > R_f$, by the previous result we have $\theta > 0$. Therefore $R(\theta) = R\theta + R_f(1-\theta) \geq R_f$ according as $R \geq R_f$. Since u is DRRA, γ is decreasing, so $\gamma(R(\theta)w) \leq \gamma(R_fw)$ if $R \geq R_f$ (and reverse inequality if $R \leq R_f$). Therefore

$$\gamma(R(\theta)w)(R-R_f) \leq \gamma(R_fw)(R-R_f)$$

always. Multiplying both sides by $-u'(R(\theta)w) < 0$ and taking expectations, we obtain

$$wF_w = -E[\gamma(R(\theta)w)u'(\theta)w(R-R_f)] \geq -E[\gamma(R_fw)u'(R(\theta)w)(R-R_f)] = 0,$$

where the last equality uses the first-order condition. \qed
Lemma A.2. Consider two agents indexed by \(i = 1, 2 \) with common beliefs. Let \(w_i, u_i(x), \gamma_i(x) = -xu''_i(x)/u'_i(x) \), and \(\theta_i \) be the initial wealth, utility function, relative risk aversion, and the optimal portfolio of agent \(i \). Suppose that \(\gamma_1(w_1x) > \gamma_2(w_2x) \) for all \(x \), so agent 1 is more risk averse than agent 2. Then

\[
E[R] > R_f \implies \theta_2 > \theta_1 > 0, \\
E[R] < R_f \implies \theta_2 < \theta_1 < 0,
\]

so the less risk averse agent invests more aggressively.

Proof. Since \(\gamma_1(w_1x) > \gamma_2(w_2x) \), we have

\[
\frac{d}{dx} \left(\frac{u'_2(w_2x)}{u'_1(w_1x)} \right) = \frac{w_2u''_2u'_1 - w'_2u'_1u''_1}{(u'_1)^2} = \frac{1}{x} \frac{w'_2}{u'_1} \left(\gamma_1(w_1x) - \gamma_2(w_2x) \right) > 0,
\]
so \(u'_2(w_2x)/u'_1(w_1x) \) is increasing. Suppose \(E[R] > R_f \). By Lemma A.2, we have \(\theta_1 > 0 \). Then \(R(\theta_1) \gtrless R_f \) according as \(R \gtrless R_f \). Since \(u'_2(w_2x)/u'_1(w_1x) \) is increasing (and positive), we have

\[
\frac{u'_2(R(\theta_1)w_2)}{u'_1(R(\theta_1)w_1)} (R - R_f) > \frac{u'_2(R_f w_2)}{u'_1(R_f w_1)} (R - R_f)
\]
always (except when \(R = R_f \)). Multiplying both sides by \(u'_1(R(\theta_1)w_1) > 0 \) and taking expectations, we get

\[
E[u'_2(R(\theta_1)w_2)(R - R_f)] = E \left[\frac{u'_2(R(\theta_1)w_2)}{u'_1(R(\theta_1)w_1)} u'_1(R(\theta_1)w_1)(R - R_f) \right] > E \left[\frac{u'_2(R_f w_2)}{u'_1(R_f w_1)} u'_1(R(\theta_1)w_1)(R - R_f) \right] = \frac{u'_2(R_f w_2)}{u'_1(R_f w_1)} E [u'_1(R(\theta_1)w_1)(R - R_f)] = 0,
\]
where the last equality uses the first-order condition for agent 1. Letting \(f_2(\theta) = E[u'_2(R(\theta)w_2)] \), the above inequality shows that \(f'_2(\theta_1) > 0 \). Since \(f_2(\theta) \) is concave and \(f'_2(\theta_2) = 0 \) by the first-order condition, we have \(\theta_2 > \theta_1 \).

The case \(E[R] < R_f \) is analogous. \(\square \)

Proof of Proposition 2.3. Since agents have common beliefs, we have \(\theta_i \geq 0 \) for all \(i \) if \(E[R] \gtrless R_f \). Since the stock is in positive supply, in equilibrium we must have \(E[R] > R_f \). Therefore by Lemma A.2 if \(\gamma_1 > \cdots > \gamma_f \), we have \(0 < \theta_1 < \cdots < \theta_f \). \(\square \)

Proof of Proposition 2.4. Let \(u(x) \) be the common CRRA utility function of agents 1 and 2, and

\[
f_i(\theta) = E_i[u(R(\theta))] = \sum_{s=1}^{S} \pi_{is}u(R_f + X_s \theta)
\]
be the objective function of agent \(i \), where \(X_s = R_s - R_f \) denotes the excess return in state \(s \). By the first-order condition, we have

\[
f'_i(\theta_i) = \sum_{s=1}^{S} \pi_{is}u'(R_f + X_s \theta_i)X_s = 0. \quad (A.4)
\]
Letting q be the stock price, since $R_s = e_s/q$ and $e_1 < \cdots < e_S$, we have $X_1 < \cdots < X_S$. Since $\pi_{k_s} > 0$ and $u' > 0$, by (A.4), it must be $X_1 < 0 < X_S$. Let $s^* = \max \{ s \mid X_s < 0 \}$ be the best state with negative excess returns. Clearly $1 \leq s^* < S$.

Using the definition of the likelihood ratio $\lambda_s = \pi_{1s}/\pi_{2s}$, by (A.4) we obtain

$$0 = f'_1(\theta_1) = \sum_{s=1}^{S} \pi_{1s} u'(R_f + X_s \theta_1) X_s = \lambda_s \sum_{s=1}^{S} \frac{\lambda_s}{\lambda_{s^*}} \pi_{2s} u'(R_f + X_s \theta_1) X_s.$$

Since by assumption the likelihood ratio λ_s is monotonically decreasing, we have $\lambda_s/\lambda_{s^*} \geq (\leq) 1$ for $s \leq (\geq) s^*$. Furthermore, since beliefs are heterogeneous, either $\lambda_1/\lambda_{s^*} > 1$ or $\lambda_S/\lambda_{s^*} < 1$ (or both). Combined with $X_1 < 0 < X_S$ and $X_s < (\geq) 0$ for $s \leq (\geq) s^*$, it follows that

$$0 = \lambda_s \sum_{s=1}^{S} \lambda_s \frac{\lambda_s}{\lambda_{s^*}} \pi_{2s} u'(R_f + X_s \theta_1) X_s$$

$$\quad < \lambda_{s^*} \sum_{s=1}^{S} \pi_{2s} u'(R_f + X_s \theta_1) X_s = \lambda_{s^*} f'_2(\theta_1),$$

where the inequality is due to the fact that replacing $\lambda_s/\lambda_{s^*} \geq (\leq) 1$ by 1 for $s \leq (\geq) s^*$ makes the term less negative (more positive), and the inequality is strict for $s = 1$ or $s = S$. Therefore $f'_2(\theta_1) > 0$, and since f_2 is strictly concave and $f'_2(\theta_2) = 0$, we obtain $\theta_1 < \theta_2$. \hfill \square

A.3 Proof of Theorem 2.2

Step 1. The equilibrium is unique and is characterized by the planner’s problem (2.6).

Proof. By the same argument as in the proof of Theorem 2.1, the Epstein-Zin utility function (2.3) with unit EIS is homogeneous of degree 1 and strictly concave. Hence by Theorem 2.1 the equilibrium is unique and is characterized by the planner’s problem (2.2). Since we assumed that U_i has unit EIS, the objective function is additively separable with respect to x_{i0}. Therefore we can fix $(y_{i2}, y_{i3}) = (y_{i1})^I_{i=1}$ and maximize over $(y_{i1})^I_{i=1}$. This problem is

$$\text{maximize } \sum_{i=1}^{I} w_i (1 - \beta_i) \log y_{i1} \text{ subject to } \sum_{i=1}^{I} y_{i1} = \alpha_0 e_0.$$

We can easily solve this problem analytically, and the solution is (2.5). Substituting this y_{i1} into (2.2), the remaining problem becomes (2.6). \hfill \square

Step 2. The price-dividend ratio is given by (2.7), and shifting wealth to a patient agent increases the price-dividend ratio.

Proof. Let P be the stock price, i.e., the value of the claim $(0, e_1, \ldots, e_S)'$. Since the aggregate supply of traded shares is α_1, the market capitalization of traded shares is $\alpha_1 P$. Since the risk-free asset is in zero net supply, the market capitalization of stocks must equal aggregate savings. Since aggregate wealth of capitalists (including $t = 0$ consumption) is $\alpha_0 e_0 + \alpha_1 P$, agent i has wealth
share \(w_i \), and the saving rate out of wealth is \(\beta_i \) due to log utility, the aggregate savings is \(S = \sum_{i=1}^{J} \beta_i w_i (\alpha_0 c_0 + \alpha_1 P) \). Setting \(\alpha_1 P = S \) and solving for \(P \), we get \((2.7) \). From this expression it is clear that shifting wealth from a low \(\beta_i \) agent to a high \(\beta_i \) agent increases \(P/c_0 \).

Step 3. The log equity premium is independent of capital income shares \(\alpha_0, \alpha_1 \).

Proof. Suppose that in the initial equilibrium we have \(\phi_{i3} = \beta_i (1 - \theta_i) \). Therefore the market clearing condition for the risk-free asset is

\[
\sum_{i=1}^{J} w_i \beta_i (1 - \theta_i) (\alpha_0 c_0 + \alpha_1 P) = 0 \iff \sum_{i=1}^{J} w_i \beta_i (1 - \theta_i) = 0, \tag{A.5}
\]

which does not directly depend on \(\alpha_0, \alpha_1 \). By homotheticity, the optimal portfolio problem \((2.8) \) is equivalent to

\[
\max_{\theta} E_c[u_e(c_1 \theta + z(1 - \theta))], \tag{A.6}
\]

where \(z = PR_f \). Since \((A.6) \) does not directly depend on \(\alpha_0, \alpha_1 \), the value of \(z \) that makes the market clearing condition \((A.5) \) holds does not depend on \(\alpha_0, \alpha_1 \).

By the definition of the log equity premium, we have

\[
\mu = \pi' (\log R - \log R_f) = \pi' (\log (e_1/P) - \log R_f) = \pi' \log e_1 - \log z, \tag{A.7}
\]

so the log equity premium is independent of \(\alpha_0, \alpha_1 \).

Step 4. Shifting wealth from a high \(\phi_{i3} \) agent to a low \(\phi_{i3} \) agent reduces the log equity premium.

Proof. Suppose that in the initial equilibrium we have \(\beta_1 (1 - \theta_1) > \beta_2 (1 - \theta_2) \), so agent 1 is the natural bondholder, and we transfer some wealth from agent 1 to 2. Since \(z = PR_f \) is the only relevant parameter in the optimal portfolio problem \((A.6) \), if \(z \) is unchanged after the wealth transfer, then all agents choose their original portfolios. Letting \(P' \) be the stock price and \(w'_i \) the wealth share of agent \(i \) after the transfer, by assumption we have \(w'_1 < w_1, w'_2 > w_2 \), and \(w'_i = w_i \) for \(i > 2 \). Then the new aggregate demand of the risk-free asset is

\[
\sum_{i=1}^{J} w'_i \beta_i (1 - \theta_i) (\alpha_0 c_0 + \alpha_1 P') = (\alpha_0 c_0 + \alpha_1 P') \sum_{i=1}^{J} w'_i \beta_i (1 - \theta_i),
\]

which has the same sign as \(\sum_{i=1}^{J} w'_i \beta_i (1 - \theta_i) \). But by \((A.5) \), we have

\[
\sum_{i=1}^{J} w'_i \beta_i (1 - \theta_i) = \sum_{i=1}^{J} w'_i \beta_i (1 - \theta_i) - \sum_{i=1}^{J} w_i \beta_i (1 - \theta_i) \\
= \beta_1 (1 - \theta_1) (w'_1 - w_1) + \beta_2 (1 - \theta_2) (w'_2 - w_2) \\
= \epsilon (\beta_2 (1 - \theta_2) - \beta_1 (1 - \theta_1)),
\]

where \(\epsilon := w_1 - w'_1 = w'_2 - w_2 > 0 \) because \(w'_1 + w'_2 = w_1 + w_2 \). Therefore if we shift wealth from an agent who invests more in the risk-free asset (high
\(\phi_3 = \beta_i(1 - \theta_i) \) to an agent who invests less (low \(\phi_3 = \beta_i(1 - \theta_i) \)), it will result in an excess supply of risk-free assets.

Since \(\theta_i \) solves (A.6), applying Lemma A.1 for \(R = c_1 \) and \(R_f = z \), for large enough \(z \) we have \(\theta_i < 0 \) for all \(i \). Therefore there is an excess demand of risk-free assets. Hence by the intermediate value theorem (continuity trivially holds by the maximum theorem), in the new equilibrium (which is unique) \(z = PR_f \) must increase. Therefore the log equity premium \(A.7 \) must decrease.

B Infinite horizon model with estate tax

In this appendix we present an infinite horizon version of the model in Section 2 with overlapping generations and an estate tax.

B.1 Model

Agents There are a continuum of agents. Agents have Epstein-Zin preferences and can be either of the two types indexed by \(i = A, B \). The discount factor, relative risk aversion, and elasticity of intertemporal substitution of each type are denoted by \(\beta_i \in (0, 1) \), \(\gamma_i > 0 \), and \(\varepsilon_i > 0 \), respectively.

To ensure stationarity, we assume that agents die with probability \(\delta > 0 \) each period. The wealth of a deceased agent is passed on to its child after paying the estate tax. Fraction \(\nu_i \) of newborn agents are of type \(i \), where \(\nu_A + \nu_B = 1 \), independent of the type of their parents. Furthermore, there is an exogenous influx of agents (e.g., new entrepreneurs, immigrants) to the economy, among which fraction \(\nu_i \) is of type \(i \). The revenue from the estate tax is distributed equally among these new agents without parents (“orphans”).

Estate tax The estate tax rate follows an exogenous finite-state Markov chain. Let these states be indexed by \(s = 1, \ldots, S \) and \(P = (p_{ss'}) \) be the transition probability matrix, which we assume to be irreducible. Let \(\tau_{is} \) be the estate tax rate in state \(s \) applied to type \(i \). The estate tax rate announced at time \(t \), which is \(\tau_{ist} \), is applied to the wealth of type \(i \) agents who pass away between time \(t \) and \(t + 1 \).

Endowment growth Aggregate dividend growth takes finitely many values and is independent and identically distributed (i.i.d.) over time. Let \(g_j \) be the log aggregate dividend growth rate in state \(j \) and \(p_j \) be its probability, where \(j = 1, \ldots, J \).

Financial structure There are two financial assets, a stock (claim to aggregate dividend) and a bond (risk-free asset in zero net supply). Furthermore, there are perfectly competitive insurance companies that offer life insurance.

\[\text{[25]There is no need to specify the exogenous population growth rate since it does not play any role. The reader may wonder why we need exogenous population growth in addition to overlapping generations. The main reason is we need to do something with the estate tax revenue. Because redistributing the estate tax revenue across existing agents would kill the homogeneity (and hence tractability) of the model, we have decided to introduce exogenous population growth.} \]
We assume that agents care about their children’s utility as their own, so they buy life insurance to just cover the estate tax payment. Therefore, if R_f is the gross risk-free rate at a particular point in time and τ is the estate tax rate, the effective risk-free rate that type i agents face is $\tilde{R}_f = \frac{R_f}{1 + \delta \tau}$. (The same applies to the stock returns.)

B.2 Equilibrium

Because there are only two financial assets but JS contingencies (J states for aggregate dividend growth and S states for estate tax), markets are incomplete. The state variables are the wealth share of type A agents, which we denote by $x \in [0,1]$, and the exogenous estate tax state $s \in \{1, \ldots, S\}$. (The dividend growth state $j \in \{1, \ldots, J\}$ is not a state variable due to the i.i.d. assumption.)

Let w be the wealth of a typical type i agent, $R_f(x,s)$ be the gross risk-free rate given the current state (x,s), and $R(x,s,s',j')$ be the gross stock return when the current state is (x,s) and the next period’s estate tax and dividend growth states are (s',j'). Then the budget constraint is

$$w' = \frac{1}{1 + \delta \tau s} \left(R(x,s,s',j') \theta + R_f(x,s)(1 - \theta) \right) (w - c),$$

(B.1)

where θ is the fraction of wealth invested in the stock and c is consumption. Note that the next period’s wealth is the same regardless of whether the agent passes away or not because the estate tax payment is covered by life insurance.

Letting $V_i(w,x,s)$ be the value function of a type i agent, it satisfies the Bellman equation

$$V_i(w,x,s) = \max_{c,\theta} \left((1 - \beta_i) c^{1 - 1/\epsilon_i} + \beta_i E \left[V_i(w',x',s')^{1 - \gamma_i} \mid x, s \right]^{\frac{1}{1 - \gamma_i}} \right) \frac{1}{1 - \epsilon_i},$$

(B.2)

where the next period’s wealth satisfies the budget constraint (B.1).

A recursive equilibrium is defined by a price-dividend ratio $q(x,s)$, gross stock returns $R(x,s,s',j')$, gross risk-free rate $R_f(x,s)$, and agents’ value functions and optimal consumption-portfolio rule such that (i) the value functions satisfy the Bellman equation (B.2) and the consumption-portfolio rules are the argmax, (ii) markets for consumption, stock, and risk-free asset clear, (iii) the law of motion for the state variables is consistent with individual choice, and (iv) the gross stock returns and price-dividend ratio are consistent.

B.3 How to solve for equilibrium

Since agents have homothetic preferences and the budget constraint (B.1) is homogeneous of degree 1 in (w,c), we can guess that the value function takes the form

$$V_i(w,x,s) = a_i(x,s) w$$

(B.3)

\footnote{To see why this is the correct insurance premium, suppose that an agent has savings w and portfolio return R. Then the next period’s wealth is Rw with probability $1 - \delta$ (if he survives) and $(1 - \tau)Rw$ with probability δ (if he passes away, where τ is the estate tax rate). The agent wants to cover the loss τRw by purchasing life insurance. If the insurance company charges premium a, it gets Raw at the beginning of the next period, which is used to finance the insurance payment $\delta \tau Rw$. Therefore $a = \delta \tau$.}
for some coefficient \(a_i(x,s) > 0\). Using the Bellman equation (B.2), we can solve for the optimal consumption rule for each agent analytically. Consider an agent with parameters \((\beta, \gamma, \varepsilon)\). Let \(a, a'\) be the coefficients of the value function (B.3) for the current and subsequent period and \(R\) be the gross return on wealth, fixing the portfolio. Then (B.2) becomes

\[
aw = \max_c \left((1 - \beta)c^{1 - 1/\varepsilon} + \beta \mathbb{E}_{\alpha'(\cdot)} (a'R(w - c))^{1 - 1/\varepsilon} \right)^{1 - 1/\varepsilon}.
\]

Letting \(m = c/w\) be the propensity to consume out of wealth and \(\rho = \mathbb{E}_{\alpha'(\cdot)} (a'R)\), the above equation further simplifies to

\[
a = \max_m \left((1 - \beta)m^{1 - 1/\varepsilon} + \beta \rho^{1 - 1/\varepsilon} (1 - m)^{1 - 1/\varepsilon} \right)^{1 - 1/\varepsilon}.
\]

The maximization over \(m\) is equivalent to

\[
\max_{m \in (0, 1)} \frac{1}{1 - 1/\varepsilon} \left((1 - \beta)m^{1 - 1/\varepsilon} + \beta \rho^{1 - 1/\varepsilon} (1 - m)^{1 - 1/\varepsilon} \right).
\]

The first-order condition is

\[
(1 - \beta)m^{-1/\varepsilon} = \beta \rho^{1 - 1/\varepsilon} (1 - m)^{-1/\varepsilon} \iff m = \frac{(1 - \beta)^{\varepsilon}}{(1 - \beta)^{\varepsilon} + \beta \rho^{\varepsilon - 1}}.
\]

Using (B.5) and the Bellman equation, we obtain

\[
a^{1 - 1/\varepsilon} = (1 - \beta)m^{1 - 1/\varepsilon} (m + (1 - m)) \iff m = (1 - \beta)^{\varepsilon} a^{1 - \varepsilon}.
\]

Therefore the optimal consumption rate of type \(i\) in state \((x, s)\) is

\[
m_i(x, s) = (1 - \beta_i)^{\varepsilon} a_i(x, s)^{1 - \varepsilon}.
\]

Note that comparing (B.5) and (B.6), we obtain

\[
a = ((1 - \beta)^{\varepsilon} + \beta \rho^{\varepsilon - 1})^{1 - 1/\varepsilon} \tag{B.8}
\]

We can solve for the equilibrium using the projection method (Judd, 1992; Pohl et al., 2018). The policy functions are (i) coefficients of the value function \(a_i(x, s)\) \((i = A, B)\), (ii) portfolios \(\theta_i(x, s)\) \((i = A, B\), where \(\theta\) is the fraction of savings invested in stocks\), (iii) gross risk-free rate \(R_f(x, s)\), and (iv) gross stock return \(R(x, s, s', j')\). If we use \((N - 1)\)-degree Chebyshev polynomials to approximate each, then we have

\[
N(2S + 2S + S + S^2J) = NS(5 + SJ)
\]

unknown coefficients. To determine these coefficients, we need the same number of equations.

The number of equations are: (i) \(2NS\) consistency conditions for the coefficient of value function \(2\) agents, \(S\) estate tax states, and \(N\) Chebyshev nodes), (ii) \(2NS\) first-order conditions for portfolio choice \(2\) agents, \(S\) estate tax states, and \(N\) Chebyshev nodes), (iii) \(NS\) market clearing conditions for bonds, and (iv) \(NS^2J\) consistency conditions for stock returns, which we describe below in details.

\footnote{If \(\varepsilon = 1\), we can take the limit of (B.8) as \(\varepsilon \to 1\) to obtain \(a = (1 - \beta)^{1 - \beta} (\beta \rho)^{\beta}\).}
1. The consistency condition for the coefficient of value function is (B.5), where ρ is calculated using (B.4) with the return on wealth
\[R_i(\theta; x, s) := \frac{1}{1 + \delta \tau_{is}} (R(x, s, s', j') \theta + R_f(x, s)(1 - \theta)) \] (B.9)
with $\theta = \theta_i(x, s)$.

2. Suppressing the i subscript, since the optimal portfolio problem reduces to
\[\max_\theta \frac{1}{1 - \gamma} E \left[(\alpha^\prime)^{1-\gamma} R(\theta; x, s)^{1-\gamma} | x, s \right], \]
the first-order condition is
\[E \left[(\alpha^\prime)^{1-\gamma} R(\theta(x, s); x, s)^{-\gamma}(R(x, s, s', j') - R_f(x, s)) | x, s \right] = 0. \] (B.10)

3. Since type i's saving rate and bond portfolio are $1 - m_i$ and $1 - \theta_i$, and the wealth share of type A agents is x, the bond market clearing condition is
\[(1 - m_A)(1 - \theta_A)x + (1 - m_B)(1 - \theta_B)(1 - x) = 0, \] (B.11)
where m_i is given by (B.6) and $\theta_i = \theta_i(x, s)$.

4. Finally we derive the consistency condition for the stock returns. Letting W_i be the aggregate wealth held by type i agents at the beginning of the period, by commodity market clearing we obtain
\[D = \sum_{i=A,B} m_i W_i, \]
where D is aggregate dividend. Since the risk-free asset is in zero net supply, all aggregate savings must be in stocks. Hence its price must be
\[P = \sum_{i=A,B} (1 - m_i) W_i. \]
Therefore the price-dividend ratio is
\[q(x, s) = \frac{P}{D} = \frac{(1 - m_A)x + (1 - m_B)(1 - x)}{m_A x + m_B (1 - x)}. \] (B.12)

Assuming next period’s type A wealth share x' is known, we can compute the gross stock return as
\[R(x, s, s', j') = \frac{P' + D'}{P} = \frac{P'/D + 1}{P/D} = \frac{q(x', s') + 1}{q(x, s)} e^g_{j'}, \] (B.13)
where the price-dividend ratio $q(x, s)$ is given by (B.12). (B.13) is the consistency condition for the stock return.

Since the next period’s type A wealth share x' appears in (B.13) and also implicitly in $\alpha' = \alpha(x', s')$ in (B.4), to close the solution algorithm we need to derive the equation of motion for the type A wealth share x. By the budget
constraint \((B.1) \), the optimal consumption rule \((B.6) \), and the return on wealth \((B.9) \), the wealth of a typical type \(i \) agent evolves according to

\[
w'_i = R_i(\theta_i;x,s)(1 - m_i)w_i.
\]

Note that this \(w'_i \) is the same regardless of whether the agent passes away or not because the estate tax payment is covered by life insurance. Since fraction \(\delta \) of agents die, children’s type is independent of parents’ type, and the estate tax revenue is distributed across orphans, it follows that

\[
W'_i = (1 - \delta)R_i(1 - m_i)W_i
\]

Aggregate wealth of type \(i \) agents who survived

\[
+ \nu_i \delta \sum_{i=A,B} R_i(1 - m_i)W_i
\]

Aggregate wealth of type \(i \) newborn agents with parents

\[
+ \nu_i \delta \sum_{i=A,B} \tau_{is}R_i(1 - m_i)W_i
\]

Aggregate wealth of type \(i \) newborn agents without parents

\[
= (1 - \delta)R_i(1 - m_i)W_i + \nu_i \delta \sum_{i=A,B} (1 + \tau_{is})R_i(1 - m_i)W_i,
\]

where we have abbreviated as \(R_i = R_i(\theta_i;x,s) \). Putting all the pieces together, we obtain

\[
x' = \frac{(1 - \delta)R_A(1 - m_A)x + \nu_A \delta \sum_{i=A,B} (1 + \tau_{is})R_i(1 - m_i)x_i}{\sum_{i=A,B} (1 + \delta \tau_{is})R_i(1 - m_i)x_i},
\]

\((B.14) \)

where \(x_A = x \) and \(x_B = 1 - x \).

We can now apply the projection method to numerically solve for the equilibrium, as follows.

1. Choose a degree \(N \) of Chebyshev polynomial approximation.

2. For any vector of coefficients

\[
c = \left(\left(c_{isn}^{\alpha}, c_{isn}^{\beta} \right)_{i=A,B}, \left(c_{snt}^{R_f} S_j \right)_{s=1}^S \right)_{n=0}^{N-1} \in \mathbb{R}^{NS(5+SJ)}
\]

approximate the policy functions as

\[
\log a_i(x,s) = \sum_{n=0}^{N-1} c_{isn}^{\alpha} T_n(2x - 1),
\]

where \(T_n(\cdot) \) is the \(n \)-degree Chebyshev polynomial and \(c_{isn}^{\alpha} \) is its coefficient in estate tax state \(s \). (Here we write \(T_n(2x - 1) \) instead of \(T_n(x) \) because the state space for \(x \) is \([0,1]\), whereas Chebyshev polynomials are defined on \([-1,1]\]. The mapping \(x \mapsto 2x - 1 \) maps \([0,1]\) into \([-1,1]\).) The same applies for \(\log \theta_i \), \(\log R_f \), and \(\log R \).
3. Define the residual of the equilibrium conditions $F : \mathbb{R}^{NS(5+SJ)} \to \mathbb{R}^{NS(5+SJ)}$ by stacking the left-hand side minus the right-hand side of the consistency condition for the Bellman equation (B.8), the portfolio first-order condition (B.10), the bond market clearing condition (B.11), and the consistency condition for the stock returns (B.13), where the type A wealth share is evaluated at the points corresponding to the roots of the N-degree Chebyshev polynomial, so $x_n = \frac{1}{2} (1 + \cos \frac{2n-1}{2N} \pi)$.

4. Find coefficients c such that $F(c) = 0$.

B.4 Calibration

We calibrate the model at annual frequency. We obtain the real stock prices, dividend, and risk-free rates for the period 1871–2012 from Robert Shiller’s spreadsheet. We assume that log dividend growth is independent and identically distributed as a Gaussian mixture distribution with two components. Using maximum likelihood, the estimated mean, standard deviation, and proportion of each component are $\mu = (-0.0264, 0.0263)$, $\sigma = (0.2071, 0.0616)$, and $p = (0.245, 0.755)$. Figure 7 shows the histogram and the fitted density.

![Figure 7: Histogram and fitted Gaussian mixture density of log dividend growth.](http://www.econ.yale.edu/~shiller/data.htm)

To make the solution algorithm simple, we discretize the Gaussian mixture density by a three-point distribution using the Gaussian quadrature for Gaussian mixtures. Thus we have $J = 3$, $g = (g_j) = (-0.3584, 0.0094, 0.2779)$, and $p = (p_j) = (0.0549, 0.8552, 0.0899)$. For the preference parameters, we assume that agents have unit EIS ($\varepsilon_A = \varepsilon_B = 1$) so that the infinite horizon model is as close as possible to the two period model in Section 2. Note that in this case (B.7) implies $m_i = 1 - \beta_i$, so the price-dividend ratio in (B.12) can be computed explicitly. Since this formula is essentially identical to (2.7), as in Theorem 2.2, shifting wealth from an impatient to a patient agent increases the
price-dividend ratio. Finally, for the discount factor and relative risk aversion, we set \((\beta_A, \beta_B) = (0.985, 0.94)\) and \((\gamma_A, \gamma_B) = (1, 5)\) so that the unconditional log equity premium, stock volatility, and the price-dividend ratio are roughly the same as in the data.

We set the death probability to \(\delta = 1/40 = 0.025\) so that inheritance occurs on average every 40 years. Since we model type A as the rich stock holder, we set \(\nu_A = 1/10 = 0.1\) so that \(\nu_A\) roughly corresponds to the fraction of top 1% agents among the top 10%. Since only very rich households pay estate taxes, we assume that the estate tax rate for type B is zero, and that the estate tax for type A take two values, low \((\tau_{AL} = 0.2)\) and high \((\tau_{AH} = 0.8)\). The estate tax state switches between the two state with probability 0.05, so the transition probability matrix is \(P = \begin{bmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{bmatrix}\), which implies that the same tax rate applies for an average of 1/0.05 = 20 years.

Having chosen all parameter values, we solve for the equilibrium using the projection method as described above. Figure 8 shows the equity portfolios, equity premium, risk-free rate, and price-dividend ratio when we change the type A wealth share \(x\) as well as the stationary distribution of \(x\). Table 15 shows some asset pricing moments in the data and the model.

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log equity premium (%)</td>
<td>3.84</td>
<td>3.83</td>
</tr>
<tr>
<td>Volatility of returns (%)</td>
<td>17.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Average real interest rate (%)</td>
<td>2.49</td>
<td>1.32</td>
</tr>
<tr>
<td>Average price-dividend ratio</td>
<td>26.4</td>
<td>26.9</td>
</tr>
</tbody>
</table>

B.5 Monte Carlo regression analysis

In this section, we conduct a Monte Carlo experiment to see how different variables in the model predict excess returns at varying sample sizes. Given the global numerical solution, simulating time series from the model is straightforward. First, we create an evenly-spaced 101 point grid on \([0, 1]\) for the type A wealth share \(x\). Then we simulate an estate tax Markov chain and an i.i.d. path for dividend growth and calculate the evolution of \(x\) using (B.14). All other series, such as optimal portfolios, are calculated from the policy functions, which depend only on \(x\) and the estate tax state. Off-grid values are interpolated with piecewise cubic Hermite polynomials. We use 10,000 simulations and consider four different sample sizes (50, 100, 500, and 1,000 years), with a burn-in period of 500 years.

To compare our simulations with our empirical analysis, we construct a model version of KGR. Let \(n_{it}^s\) be the number of shares of stock held by type \(i\) after trading in time \(t\). Similarly, let \(n_{it}^b\) be the number of bonds held. Note that in equilibrium, \(\sum_{i=A,B} n_{it}^s = 1\) and \(\sum_{i=A,B} n_{it}^b = 0\). Using the fact that total wealth is \(P_t + D_t\), these quantities can be computed from the simulated series as \(n_{it}^s = \theta_i(1-m_{it})x_{it}(P_t + D_t)/P_t\) and \(n_{it}^b = (1-\theta_i)(1-m_{it})x_{it}(P_t + D_t)R_{f,t}\). Time \(t\) per share stock income excluding capital gains is \(D_t\), while per bond
interest income is \((R_{f,t-1} - 1)/R_{f,t-1}\). Therefore, type \(i\)'s income at \(t\) is, excluding capital gains,
\[
Y_{it} = n_{A,t-1}^i D_t + n_{B,t-1}^i (R_{f,t-1} - 1)/R_{f,t-1}.
\]

To construct KGR in the model, we need measures of realized capital gains and some corresponding cost basis, which are irrelevant for our agents since they care about their total wealth and not its composition or history. Additionally, annual frequency realized capital gains from the data are affected by intraperiod trades that are beyond the scope of our model. Indeed, in the data investors

29We are implicitly assuming that \(t-1\) bond shares trade at price \(1/R_{f,t-1}\) and pay \(1\) at \(t: 1/R_{f,t-1}\) in principal and \(1 - 1/R_{f,t-1}\) in interest.
may begin and end a year with similar stock portfolios while over the course of the year realizing substantial capital gains/losses for liquidity, tax, or other purposes. Therefore, since the model cost basis is arbitrary and since gross trading in the data is much richer than is the effectively net trading that comes from the model, we adopt a parsimonious method of accounting for realized capital gains in our simulations.

Specifically, we suppose that trading activity entails a fraction λ of the stock market being sold each year so that the aggregate cost basis and realized capital gains evolve according to:

$$CB_t = (1 - \lambda)CB_{t-1} + \lambda P_{t-1},$$

$$RCG_t = \lambda(P_t - CB_t),$$

respectively. These realized capital gains are attributed to agent i according to his previous stock holdings so that $RCG_{i,t} = n_{i,t-1}RCG_t$. Beyond simplicity, an additional advantage of this method is that RCG_t has an easily computed empirical counterpart, which we explore in Appendix C.

As we argued in Section 5.1, top income shares in the data (10% and above) appear to follow a common U-shaped trend, perhaps driven by highly persistent redistribution between financial market participant capitalists and workers. Since our model so far is one of capitalists, to make simulated income inequality measures and KGR comparable with the data, we introduce non-capitalist (“laborer”) income $Y_{L,t}$ and assume that the capitalists share of income,

$$\alpha_t = \frac{Y_{A,t} + Y_{B,t}}{Y_{A,t} + Y_{B,t} + Y_{L,t}},$$

follows an exogenous, slowly moving process. As in Theorem 2.2 from the two period model, α_t is irrelevant for asset prices, which are determined by the capitalists. We calibrate α_t to behave like top(10)$^{\text{excg}}$, the empirical Piketty-Saez top 10% income share excluding realized capital gains. In particular, we fit an AR(1) process to

$$z_t = \log\frac{\text{top(10)}^{\text{excg}}_t}{1 - \text{top(10)}^{\text{excg}}_t},$$

simulate paths for z_t, and set $\alpha_t = 1/(1 + e^{-z_t})$. This procedure ensures that the α_t simulations stay on $(0,1)$ and have persistence and variance similar to those of top(10)$^{\text{excg}}$.

Combining these elements, we can define the type A income share excluding realized capital gains, the income share including realized capital gains, and KGR as

$$\text{top}(A)_t^{\text{excg}} = \frac{Y_{A,t}}{Y_{A,t} + Y_{B,t} + Y_{L,t}} = \alpha_t Y_{A,t}$$

$$\text{top}(A)_t = \frac{Y_{A,t} + RCG_{it}}{Y_{A,t} + Y_{B,t} + Y_{L,t} + RCG_{it}}$$

$$= \alpha_t Y_{A,t} + \alpha_t RCG_t$$

$$\text{KGR}(A)_t = \frac{\text{top}(A)_t - \text{top}(A)_t^{\text{excg}}}{1 - \text{top}(A)_t}. $$

(B.16a) (B.16b) (B.16c)
As we see in (B.16a)–(B.16c), due to our definitions of cost basis and realized capital gains, top(A) is not restricted to be between 0 and 1, which can generate spurious KGR outliers because the denominator of (B.16c) is \(1 - \text{top}(A)\). In our Monte Carlo analysis, we throw out simulations in which top(A) is ever less than 0 or greater than 1 or the denominator of (B.16b) is less than 0, although for sufficiently small \(\lambda\) this happens only very rarely within 1,500 years (the burn-in period plus the maximum sample size). However, if \(\lambda\) is too small, realized capital gains become unrealistically low relative to overall capital income. Below we consider two different values for \(\lambda\). With \(\lambda = 0.005\), only 2% of simulations are discarded, while average RCG \(t/D_t\) is 9%, compared with 26% in the Saez and Zucman (2016) spreadsheet (measured as total net realized capital gains divided by capital and business income excluding capital gains). With \(\lambda = 0.01\), 14% of simulations are discarded, while average RCG \(t/D_t\) rises to 14%. However, both 9% and 14% are within a standard deviation (20%) of the empirical mean. Furthermore, the two \(\lambda\)'s yield similar results otherwise, so we conclude our below findings are driven neither by unrealistic levels for RCG nor by our discarding procedure.

Table 16 shows model correlations calculated from averaging across simulations. KGR(A), type A’s income share including realized capital gains, and total realized capital gains scaled by dividends are all substantially correlated with the type A wealth share \(x\). Since \(x\) inversely forecasts excess returns (Figure 8), one would expect these other measures to potentially proxy for wealth inequality in forecasting the equity premium.

In Table 17, with \(T = 1000\) we see that \(x\), KGR, top(A), and RCG/D all inversely forecast excess returns, although income inequality underperforms in terms of \(R^2\) and power (at the 10% level), likely due to highly persistent movements in the capitalist income share \(\alpha\). KGR is slightly underpowered (the null of no effect is rejected at the 10% level in 83–86% of simulations, depending on \(\lambda\)). As the sample size falls, the performances of KGR and RCG/D improve relative to \(x\). With \(T = 50, 100\), KGR and RCG/D actually slightly outperform \(x\) in terms of \(R^2\) and power to capture the relationship between inequality and excess returns.

In summary, according to our calibrated model, KGR and RCG/D can serve as proxies for \(x\) in testing the relationship between inequality and the equity premium. And at smaller sample sizes, these proxies are even more likely than is wealth inequality to pick up the relationship (although all forecasters are underpowered for low \(T\) in our simulations). Surprisingly, comparing Table 17 with the empirical counterpart (Table 2), at \(T = 100\) the regression coefficient and \(R^2\) for KGR are quite similar in the data and model.

C The role of mechanical realized capital gains

We saw in Section B.5 that our calibrated model predicts (i) aggregate realized capital gains inversely forecast excess returns and (ii) realized capital gains are highly correlated with KGR (Table 16). We show in this section that these

The estate tax is also a state variable and in theory also forecasts returns, but, as we see in Figure 8, the direct relationship between the estate tax and the equity premium is quantitatively minuscule (the price-dividend ratio is theoretically independent of estate tax due to the unit EIS assumption).
Table 16: Model correlations

<table>
<thead>
<tr>
<th></th>
<th>$\lambda = 0.005$</th>
<th></th>
<th>$\lambda = 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>correlation with x</td>
<td>correlation with KGR(A)</td>
<td>correlation with x</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>KGR(A)</td>
<td>0.86</td>
<td></td>
<td>0.89</td>
</tr>
<tr>
<td>top(A)</td>
<td>0.71</td>
<td>0.81</td>
<td>0.75</td>
</tr>
<tr>
<td>RCG/D</td>
<td>0.88</td>
<td>0.93</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Note: The table shows 1000 year model correlations averaged over 10,000 simulations. x is type A’s wealth share, KGR and income inequality top(A) are defined by (B.16c) and (B.16b), and RCG is defined by (B.15b). λ is the fraction of the stock market annually sold to realize capital gains.

Table 17: Model regressions of one year excess stock returns on various predictors

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable: t to $t+1$ excess market return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\lambda = 0.005$</td>
</tr>
<tr>
<td></td>
<td>Regressors (t)</td>
</tr>
<tr>
<td>$T = 50$</td>
<td>x</td>
</tr>
<tr>
<td>ave. coeff.</td>
<td>-0.41</td>
</tr>
<tr>
<td>power</td>
<td>0.31</td>
</tr>
<tr>
<td>ave. R^2</td>
<td>0.04</td>
</tr>
<tr>
<td>$T = 100$</td>
<td>ave. coeff.</td>
</tr>
<tr>
<td>power</td>
<td>0.33</td>
</tr>
<tr>
<td>ave. R^2</td>
<td>0.02</td>
</tr>
<tr>
<td>$T = 500$</td>
<td>ave. coeff.</td>
</tr>
<tr>
<td>power</td>
<td>0.66</td>
</tr>
<tr>
<td>ave. R^2</td>
<td>0.01</td>
</tr>
<tr>
<td>$T = 1000$</td>
<td>ave. coeff.</td>
</tr>
<tr>
<td>power</td>
<td>0.90</td>
</tr>
<tr>
<td>ave. R^2</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: The table shows results from regressing model simulated log excess returns on a constant and either lagged x (type A wealth share), KGR(A), top(A) (type A income share including realized capital gains), or RCG/D (realized capital gains divided by dividends) at different sample sizes ($T = 50, 100, 500, 1000$). KGR and top(A) are defined by (B.16c) and (B.16b), and RCG is defined by (B.15b). λ is the fraction of the stock market annually sold to realize capital gains. “ave. coeff.” and “ave. R^2” are the OLS coefficient and R^2 averaged across 10,000 simulations. “power” is the fraction of simulations in which the coefficient is significant at the 10% level.

Implications are borne out in the data. In the model, realized capital gains (as well as KGR) forecast excess returns only because they proxy for wealth
inequality. However, one might be concerned that in the data realized capital gains forecast returns for reasons unrelated to inequality and that KGR simply proxies for aggregate realized capital gains. While this hypothesis is difficult to test in the data since KGR is substantially correlated with realized capital gains (as in our theory), in this section we also perform a horse race between KGR and purely mechanical measures of aggregate realized capital gains. In particular, we show that realized capital gains do not clearly outperform KGR and that the distribution of capital gains across income groups appears to matter beyond its aggregate level (Table 18). We also find that while both KGR and mechanical realized capital gains are significantly associated with rising wealth inequality, conditional on KGR, realized capital gains are not significantly related to changing wealth inequality (Table 19).

We define realized capital gains according to (B.15a) and (B.15b) but consider two different versions. First, we define $\frac{RCG_I}{E_t}$ by letting P_t and E_t be the annual stock index and earnings from the Welch and Goyal (2008) spreadsheet. This version is the one closest to $\frac{RCG}{D}$ in the model simulations from Section B.5. Second, we define $\frac{RCG_W}{GDP_t}$ by letting P_t and GDP$_t$ be the household wealth measure HNOCEA and nominal GDP from FRED. While $\frac{RCG_I}{E_t}$ spans our sample, $\frac{RCG_W}{GDP_t}$ is only available post-1947. For presentation, we scale each series to have the standard deviation of KGR. We show results for $\lambda = 0.1$. The results for $\lambda = 0.005$ (our simulation value in Section B.5) are similar, but $\frac{RCG_W}{GDP_t}$ becomes very persistent with low λ. In all cases, we set CB$_0 = P_0$. Additionally, we let $RCG(x)$ denote the realized capital gains of the top x% by income, divided by total income including capital gains (computed from the Saez and Zucman (2016) spreadsheets). Both $\frac{RCG_I}{E_t}$ and $\frac{RCG_W}{GDP_t}$ are highly correlated with KGR, as predicted by our theory. For example, the correlations between KGR(1) and $\frac{RCG_I}{E_t}$ and $\frac{RCG_W}{GDP_t}$ are, respectively, 0.40 and 0.50. Also predicted by our theory, $\frac{RCG_I}{E_t}$ and $\frac{RCG_W}{GDP_t}$ both inversely forecast excess returns (the coefficients are significant at the 1% level with Newey-West standard errors).

In columns (1) and (2) of Table 18, we see that controlling for KGR, $\frac{RCG_I}{E_t}$ does not significantly forecast excess returns. When we restrict the sample to post-1947, $\frac{RCG_W}{GDP_t}$ is significant while KGR is not (columns (3) and (4)). However, the distribution of realized capital gains across income groups still matters: in columns (5) and (6) the realized capital gains of the top 1% and 10% inversely forecast returns, even when controlling for overall mechanical realized capital gains.

In summary, while KGR is correlated with mechanical realized capital gains (as predicted by theory), there is not strong evidence that KGR is irrelevant once controlling for mechanical capital gains. KGR performs worse post-1947 with the household wealth definition of mechanical capital gains, but even in that case the distribution of realized capital gains across income groups still forecasts excess returns. While mechanical realized capital gains are, like KGR, a potential proxy for wealth inequality, KGR is our preferred forecaster for several reasons. First, KGR is much more strongly associated with changes in wealth inequality (according to the Saez and Zucman (2016) 1% measure), as we see in Table 19. Second, KGR is readily computed from the Piketty and Saez (2003) data, which are frequently updated, while computing mechanical

31To save space, we omit the results for KGR(0.1), which are similar to those for KGR(1).
Table 18: Regressions of one year excess stock market returns on KGR and mechanical realized capital gains

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: t to $t + 1$ Excess Market Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(2.94)</td>
</tr>
<tr>
<td>KGR(1)</td>
<td>-1.56</td>
</tr>
<tr>
<td>KGR(10)</td>
<td>-1.98**</td>
</tr>
<tr>
<td>$\frac{RCG^I}{E}$</td>
<td>-1.90</td>
</tr>
<tr>
<td>$\frac{RCG^W}{GDP}$</td>
<td>-2.72**</td>
</tr>
<tr>
<td></td>
<td>(1.19)</td>
</tr>
<tr>
<td>RCG(1)</td>
<td>-1.85*</td>
</tr>
<tr>
<td>RCG(10)</td>
<td>-2.88**</td>
</tr>
<tr>
<td>Sample</td>
<td>1913-</td>
</tr>
<tr>
<td>R^2</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Note: Newey-West standard errors in parentheses (4 lags). ***, **, and * indicate significance at 1%, 5%, and 10% levels (suppressed for constants). KGR(x) is the proxy for top x% capital inequality defined by (3.4). RCG(x) is the realized capital gains of the top x% by income, divided by total income (including realized capital gains). $\frac{RCG^I}{E}$ is mechanical realized capital gains (stock index definition), divided by earnings. $\frac{RCG^W}{GDP}$ is mechanical realized capital gains (household wealth definition), divided by GDP.

Table 19: Regressions of the change in top 1% wealth share on KGR and mechanical realized capital gains

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: $t - 1$ to t Change in Top 1% Wealth Share</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.84</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
</tr>
<tr>
<td>KGR(1)</td>
<td>0.36***</td>
</tr>
<tr>
<td>KGR(10)</td>
<td>0.26***</td>
</tr>
<tr>
<td>$\frac{RCG^I}{E}$</td>
<td>0.03</td>
</tr>
<tr>
<td>$\frac{RCG^W}{GDP}$</td>
<td>-0.00</td>
</tr>
<tr>
<td>Sample</td>
<td>1913-</td>
</tr>
<tr>
<td></td>
<td>-2012</td>
</tr>
<tr>
<td>R^2</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Note: see caption of Table 18 for explanation. The top 1% wealth share is from Saez and Zucman (2016).
realized capital gains entails choosing the parameter λ and an initial cost basis.

D Robustness of predictability

As described in Section 3.2, Tables 20 and 21 show that the inverse relationship between the capital wealth and income inequality and subsequent excess returns also holds with the KGR(10) and KGR(0.1) series, although the result is slightly stronger for the 10% series and weaker for the 0.1% series (due to large standard errors in multiple regressions).

Table 20: Regressions of one year excess stock market returns on KGR(10) and other predictors

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: t to $t + 1$ Excess Market Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>14.83</td>
</tr>
<tr>
<td></td>
<td>(3.11)</td>
</tr>
<tr>
<td>KGR(10)</td>
<td>-2.83***</td>
</tr>
<tr>
<td></td>
<td>(0.86)</td>
</tr>
<tr>
<td>$\Delta \log(GDP)$</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
</tr>
<tr>
<td>$\log(CGV)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log(P/D)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$\log(P/E)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CAY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Note: see caption of Table 2 for explanations.

Table 22 detrends the top income share by subtracting the 10 year moving average, and the results are similar to Table 2. Table 23 repeats the analysis of Table 2 but with the Kalman filter with an AR(1) cyclical component as discussed in Appendix E. (The likelihood ratio test rejects the i.i.d. cyclical component assumption ($p = 0.00$), and fails to reject AR(1) against AR(2) ($p = 0.27$).) This filter is one-sided (the cycle estimate in year t is based only on data up to year t). The results are roughly the same as in Table 2.

\footnote{Following the advice of Hamilton (2018), we do not consider the Hodrick-Prescott (HP) filter because it is two sided: in contrast to the Kalman filter, the HP filter uses past, current, and future data to obtain a smooth trend, thereby potentially introducing a look-ahead bias. For example, since the rich are likely to be more exposed to the stock market, when the stock market goes up at year $t + 1$, the rich will be richer than usual. But then the trend in the top income share will shift upwards, and the year t deviation of the top income share will be lower. Therefore the low income share at year t may spuriously predict a high stock return at $t + 1$.}
Table 21: Regressions of one year excess stock market returns on KGR(0.1) and other predictors

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: (t) to (t + 1) Excess Market Return</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td>11.12</td>
<td>10.15</td>
<td>15.19</td>
<td>9.67</td>
<td>14.32</td>
<td>12.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.59)</td>
<td>(3.90)</td>
<td>(8.17)</td>
<td>(18.14)</td>
<td>(11.05)</td>
<td>(3.65)</td>
</tr>
<tr>
<td>KGR(0.1)</td>
<td></td>
<td>-3.65**</td>
<td>-3.37*</td>
<td>-4.28</td>
<td>-3.80</td>
<td>-3.41**</td>
<td>-3.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.52)</td>
<td>(1.90)</td>
<td>(2.66)</td>
<td>(2.50)</td>
<td>(1.74)</td>
<td>(2.19)</td>
</tr>
<tr>
<td>(\Delta \log(GDP))</td>
<td></td>
<td>0.33</td>
<td>(0.49)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(CGV)</td>
<td></td>
<td>-1.74</td>
<td>(3.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(P/D)</td>
<td></td>
<td>0.51</td>
<td>(6.15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(P/E)</td>
<td></td>
<td>-1.32</td>
<td>(4.33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAY</td>
<td></td>
<td>1.22</td>
<td>(0.75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td></td>
<td>0.045</td>
<td>0.043</td>
<td>0.038</td>
<td>0.045</td>
<td>0.045</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Note: see caption of Table 2 for explanations.

Table 22: Regressions of one year excess stock market returns on top income shares (detrended using a 10 year moving average) and other predictors

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: (t) to (t + 1) Excess Market Return</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td>6.72</td>
<td>4.86</td>
<td>9.32</td>
<td>18.78</td>
<td>25.59</td>
<td>7.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.91)</td>
<td>(2.52)</td>
<td>(5.41)</td>
<td>(17.06)</td>
<td>(10.13)</td>
<td>(1.68)</td>
</tr>
<tr>
<td>Top 1%</td>
<td></td>
<td>-2.01**</td>
<td>-2.77**</td>
<td>-2.75*</td>
<td>-1.61*</td>
<td>-1.68*</td>
<td>-2.54**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.93)</td>
<td>(1.07)</td>
<td>(1.65)</td>
<td>(0.96)</td>
<td>(0.95)</td>
<td>(1.33)</td>
</tr>
<tr>
<td>(\Delta \log(GDP))</td>
<td></td>
<td>0.42</td>
<td>(0.46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(CGV)</td>
<td></td>
<td>-2.04</td>
<td>(3.16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(P/D)</td>
<td></td>
<td>-3.64</td>
<td>(3.69)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(P/E)</td>
<td></td>
<td>-6.98*</td>
<td>(1.71**)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAY</td>
<td></td>
<td>(0.79)</td>
<td>(0.79)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td></td>
<td>0.042</td>
<td>0.054</td>
<td>0.047</td>
<td>0.048</td>
<td>0.062</td>
<td>0.109</td>
</tr>
</tbody>
</table>

Note: see caption of Table 2 for explanations.
Table 23: Regressions of one year excess stock market returns on top income shares (detrended using the Kalman filter) and other predictors

<table>
<thead>
<tr>
<th>Regressors (t)</th>
<th>Dependent Variable: (t) to (t + 1) Excess Market Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>6.49</td>
</tr>
<tr>
<td></td>
<td>(1.83)</td>
</tr>
<tr>
<td>Top 1%</td>
<td>-3.06*</td>
</tr>
<tr>
<td></td>
<td>(1.63)</td>
</tr>
<tr>
<td>Top 1% (AR(2))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Top 0.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \log(\text{GDP}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>log(\text{CGV})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>log(\text{P/D})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>log(\text{P/E})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CAY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>1913-</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Note: see caption of Table 2 for explanations.
Table 24: Regressions of one year excess stock market returns on KGR components

<table>
<thead>
<tr>
<th>(t)</th>
<th>Dependent Variable: t to t + 1 Excess Market Return</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Constant</td>
<td>19.22</td>
</tr>
<tr>
<td></td>
<td>(10.04)</td>
</tr>
<tr>
<td>α</td>
<td>-0.61</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
</tr>
<tr>
<td>$Y_{0.1}^k/Y^k$</td>
<td>Y_1^k/Y^k</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
</tr>
</tbody>
</table>

Note: see caption of Table 1

E Kalman filter

This appendix explains how we detrend the top income/wealth share using the Kalman filter.

Let y_t be the observed top income/wealth share data at time t. Let

$$y_t = g_t + u_t,$$

(E.1)

where g_t is the trend and u_t is the cyclical component. We conjecture that the trend is an I(2) process, and the cycle is an AR(p) process, so

$$(1 - L)^2 g_t = \sigma_1 \epsilon_{1t}, \quad \epsilon_{1t} \sim i.i.d. N(0, 1), \quad (E.2a)$$

$$\phi(L) u_t = \sigma_2 \epsilon_{2t}, \quad \epsilon_{2t} \sim i.i.d. N(0, 1), \quad (E.2b)$$

where L is the lag operator and

$$\phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p$$

is the lag polynomial for the autoregressive process. For concreteness, assume
p = 1 so \(\phi(z) = 1 - \phi_1 z \). Then (E.1) and (E.2) can be written as

\[
x_t := \begin{bmatrix} g_t \\ g_{t-1} \\ u_t \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \phi_1 \end{bmatrix} \begin{bmatrix} g_{t-1} \\ g_{t-2} \\ u_{t-1} \end{bmatrix} + \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{bmatrix} =: Ax_{t-1} + B\epsilon_t.
\]

(E.3)

Hence (E.1) and (E.3) reduce to

\[
x_t = Ax_{t-1} + B\epsilon_t, \quad (E.4a)
y_t = Cx_t, \quad (E.4b)
\]

where \(C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \). (E.4a) is the state equation and (E.4b) is the observation equation of the state space model. We can then estimate the model parameters \(\phi_1, \sigma_1, \sigma_2 \) as well as the trend \(\{g_t\} \) by maximum likelihood\footnote{In our empirical analysis, we use the Matlab \texttt{ssm} command to specify the state space model, \texttt{estimate} command to estimate parameters by maximum likelihood, and \texttt{filter} command to estimate the states.} see Chapter 13 of Hamilton (1994) for details. The extension to a general AR(\(p \)) model is straightforward.

\section*{F International data}

For each of the 29 countries, the top income share series is the “fiscal income” top 1\% share from the World Wealth and Income Database (http://wid.world/). These series are constructed from tax data and represent the fraction of income accruing to the top 1\% of income earners. However, the treatment of capital gains and the definition of a tax unit varies across countries. See the documentation and citations at http://wid.world/ for details on the construction of the top share in each country.

We calculate annual stock market returns for each country as the percentage change in the end-of-December local currency MSCI total return index (MSRI dividend convention) converted to real terms by dividing by the local consumer price index (CPI). The daily indexes are from Datastream.

For most countries, the annual CPI is from the World Bank Development Indicators (http://data.worldbank.org/). For China and Argentina the CPI is from Haver (http://www.haver.com/), the U.K. CPI is from FRED, and the Taiwanese CPI is from their government statistics website (eng.stat.gov.tw). For Germany, the pre-1992 CPI is from West Germany, and to get a single consistent German series we combine data from Haver and the World Bank.