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Lecture 4

Public Goods and Private
Goods

One Public Good, One Private Good

Cecil and Dorothy1 are roommates, too. They are not interested in card
games or the temperature of their room. Each of them cares about the size
of the flat that they share and the amount of money he or she has left for
“private goods”. Private goods, like chocolate or shoes, must be consumed
by one person or the other, rather than being jointly consumed like an
apartment or a game of cards. Cecil and Dorothy do not work, but have a
fixed money income $W . This money can be used in three different ways.
It can be spent on private goods for Cecil, on private goods for Dorothy, or
it can be spent on rent for the apartment. The rental cost of a flat is $c per
square foot.

Let XC and XD be the amounts that Cecil and Dorothy, respectively,
spend on private goods. Let Y be the number of square feet of space in the
flat. The set of possible outcomes for Cecil and Dorothy consists of all those
triples, (XC ,XD, Y ) that they can afford given their wealth of $W . This is
just the set:

{(XC ,XD, Y )|XC + XD + cY ≤ W}
In general, Cecil’s utility function might depend on Dorothy’s private con-

1When I first produced these notes, the protagonists were named Charles and Diana.
Unfortunately many readers confused these characters with the Prince of Wales and his
unhappy spouse. Since it would plainly be in bad taste to suggest, however inadver-
tently, that members of the royal family might have quasi-linear preferences, two sturdy
commoners, Cecil and Dorothy, have replaced Charles and Diana in our cast of characters.
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sumption as well as on his own and on the size of the apartment. He might,
for example, like her to have more to spend on herself because he likes her to
be happy. Or he might be an envious lout who dislikes her having more to
spend than he does. Thus, in general, we would want him to have a utility
function of the form:

UC(XC ,XD, Y ).

But for our first pass at the problem, let us simplify matters by assuming
that both Cecil and Dorothy are totally selfish about private goods. That
is, neither cares how much or little the other spends on private goods. If
this is the case, then their utility functions would have the form:

UC(XC , Y ) and UD(XD, Y ).

With the examples of Anne and Bruce and of Cecil and Dorothy in mind,
we are ready to present a general definition of public goods and of private
goods. We define a public good to be a social decision variable that enters
simultaneously as an argument in more than one person’s utility function.
In the tale of Anne and Bruce, both the room temperature and the number
of games of cribbage were public goods. In the case of Cecil and Dorothy,
if both persons are selfish, the size of their flat is the only public good. But
if, for example, both Cecil and Dorothy care about Dorothy’s consumption
of chocolate, then Dorothy’s chocolate would by our definition have to be a
public good.

Perhaps surprisingly, the notion of a “private good” is a more compli-
cated and special idea than that of a public good. In the standard economic
models, private goods have two distinguishing features. One is the distri-
bution technology. For a good, say chocolate, to be a private good it must
be that the total supply of chocolate can be partitioned among the con-
sumers in any way such that the sum of the amounts received by individuals
adds to the total supply available.2 The second feature is selfishness. In the
standard models of private goods, consumers care only about their own con-
sumptions of any private good and not about the consumptions of private
goods by others.

In the story of Cecil and Dorothy, we have one public good and one
private good.3 To fully describe an allocation of resources on the island we

2It is possible to generalize this model by adding a more complicated distribution
technology and still to have a model which is in most respects similar to the standard
private goods model.

3According to a standard result from microeconomic theory, we can treat “money for
private goods” as a single private good for the purposes of our model so long as prices of
private goods relative to each other are held constant in the analysis.
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need to know not only the total output of private goods and of public goods,
but also how the private good is divided between Cecil and Dorothy. The
allocation problem of Cecil and Dorothy is mathematically more complicated
than that of Anne and Bruce. There are three decision variables instead of
two and there is a feasibility constraint as well as the two utility functions.
Therefore it is more difficult to represent the whole story on a graph. It
is, however, quite easy to find interesting conditions for Pareto optimality
using Lagrangean methods. In fact, as we will show, these conditions can
also be deduced by a bit of careful “literary” reasoning.

We begin with the Lagrangean approach. At a Pareto optimum it
should be impossible to find a feasible allocation that makes Cecil better
off without making Dorothy worse off. Therefore, Pareto optimal alloca-
tions can be found by setting Dorothy at an arbitrary (but possible) level
of utility, ŪD and maximizing Cecil’s utility subject to the constraint that
UD(XD, Y ) ≥ ŪD and the feasibility constraint. Formally, we seek a solu-
tion to the constrained maximization problem: Choose XC , XD and Y to
maximize UC(XC , Y ) subject to:

UD(XD, Y ) ≥ ŪD and XC + XD + cY ≤ W.

We define an interior Pareto optimum to be an allocation in the interior
of the set of feasible allocations. With the technology discussed here, an
interior Pareto optimum is a Pareto optimal allocation in which each con-
sumer consumes a positive amount of public goods and where the amount
of public goods is positive. The Lagrangean for this problem is: are

UC(XC , Y ) − λ1
(
ŪD − UD(XD, Y )

)− λ2 (XC + XD + cY − W ) (4.1)

A necessary condition for an allocation (X̄C , X̄D, Ȳ ) to be an interior Pareto
optimum is that the partial derivatives of the Lagrangean are equal to zero.
Thus we must have:

∂UC(X̄C , X̄D)
∂XC

− λ2 = 0 (4.2)

λ1
∂UD(X̄C , X̄D)

∂XD
− λ2 = 0 (4.3)

∂UC(X̄C , X̄D)
∂Y

+ λ1
∂UD(X̄C , X̄D)

∂Y
− λ2c = 0 (4.4)

From 4.2 it follows that:

λ2 =
∂UC(X̄C , X̄D)

∂XC
. (4.5)
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From 4.3 and 4.5 it follows that:

λ1 =
∂UC(X̄C , X̄D)

∂XC
÷ ∂UD(X̄C , X̄D)

∂XD
(4.6)

Use 4.6 and 4.5 to eliminate λ1 and λ2 from Equation 4.4. Divide the
resulting expression by ∂UC

∂XC
and you will obtain:

∂UC(X̄C ,X̄D)
∂Y

∂UC(X̄C ,X̄D)
∂XC

+
∂UD(X̄C ,X̄D)

∂Y
∂UD(X̄C ,X̄D)

∂XD

= c (4.7)

This is the fundamental “Samuelson condition” for efficient provision of
public goods. Stated in words, Equation 4.7 requires that the sum of Cecil’s
and Dorothy’s marginal rates of substitution between flat size and private
goods must equal the cost of an extra unit of flat relative to an extra unit
of private goods.

Let us now try to deduce this condition by literary methods. The rate at
which either person is willing to exchange a marginal bit of private consump-
tion for a marginal increase in the size of the flat is just his marginal rate
of substitution. Thus the left side of Equation 4.7 represents the amount
of private expenditure that Cecil would be willing to give up in return for
an extra foot of space plus the amount that Dorothy is willing to forego for
an extra foot of space. If the left side of 4.7 were greater than c, then they
could both be made better off, since the total amount of private expenditure
that they are willing to give up for an extra square foot of space is greater
than the total amount, c, of private good that they would have spend to get
an extra square foot. Similarly if the left hand side of 4.7 were less than c,
it would be possible to make both better off by renting a smaller flat and
leaving each person more money to spend on private goods. Therefore an
allocation can be Pareto optimal only if Equation 4.7 holds.

An Intriguing, but Generally Illegal Diagram

Economists love diagrams. Indeed, if there were an economists’ coat of
arms, it would surely contain crossing supply and demand curves.4 When we
discussed the special case where Cecil and Dorothy have quasilinear utility,
we were able to use a diagram which is just as pretty as a supply and demand
diagram, but tantalizingly different.

4Perhaps also an Edgeworth box and an IS-LM diagram.
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Recall that in the theory of private, competitive markets, we add indi-
vidual demand curves “horizontally” to obtain the total quantity of a good
demanded in the economy at any price. Equilibrium occurs at the price and
quantity at which the aggregate demand curve crosses the aggregate supply
curve. In Figure 4.1, the curves M1M1 and M2M2 are the demand curves of
consumers 1 and 2 respectively and the horizontal sum is the thicker kinked
curve. Where the line SS is the supply curve, equilibrium occurs at the
point E.

Figure 4.1: With Private Goods, Demand Curves Add Horizontally
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Howard Bowen [2] in a seminal article5 that was published in 1943 (ten
years before Samuelson’s famous contribution) suggested a diagram in which
one finds the efficient amount of public goods by summing marginal rate
of substitution curves vertically. A closely related construction can also be
found in a much earlier paper by a Swedish economist, Erik Lindahl [3]. We
will look at Lindahl’s diagram later. Lindahl and Bowen both realized that
a Pareto efficient supply of public goods requires that the sum of marginal
rates of substitution between the public good and the private good equals
the marginal rate of transformation.

Bowen proposed the diagram that appears in Figure 4.2, where the
amount of public good is represented on the horizontal axis and marginal
rates of substitution are shown on the vertical axis. The curve MiMi

represents consumer i’s marginal rate of substitution as a function of the
5This article is best known for its pioneering contribution to the theory of voting and

public choice.
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Figure 4.2: With Public Goods, MRS Curves Add Vertically
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amount of public good. These curves are added vertically to find the sum
of marginal rates of substitution curve. The intersection E between the
summed marginal rate of substitution curve and the marginal rate of trans-
formation curve SS occurs at the Pareto optimal quantity for of public
goods.

Now the problem with Figure 4.2 is that in general, we have no right
to draw it, at least not without further assumptions. The reason is that
a person’s marginal rate of substitution between public and private goods
depends in general not only on the amount of public goods available but
also on the amount of private goods he consumes. While in general we
have no right to draw these curves, we will show that we can draw them
if utility functions are quasilinear. This is the case because when utility is
quasilinear, an individual’s marginal rate of substitution between public and
private goods depends only on the amount of public goods.

The fact that we cannot, in general, draw marginal rate of substitution
curves without making some assumption about the distribution of private
goods was first brought clearly to the attention of the profession in Samuel-
son’s famous 1954 article. To be fair to Bowen, he seems to have been aware
of this problem, since he remarks that these curves can be drawn “assum-
ing a correct distribution of income”6 though he did not discuss this point
as clearly as one might wish. Even without quasilinear utility, it would be

6Notice the similarity to Musgrave’s later suggestion that each branch of government
assume that the others are doing the right thing.
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possible to draw marginal rate of substitution curves if we made an explicit
assumption about how private consumption will be allocated contingent on
the level of public expenditure.

A Family of Special Cases – Quasilinear Utility

Suppose that Cecil and Dorothy have utility functions that have the special
functional form:

UC(XC , Y ) = XC + fC(Y ) (4.8)

UD(XD, Y ) = XD + fD(Y ) (4.9)

where the functions fC and fD have positive first derivatives and negative
second derivatives.7 This type of utility function is said to be quasilinear.

Since ∂UC

∂XC = 1, it is easy to see that Cecil’s marginal rate of substitution
between the public and private goods is simply ∂UC

∂Y = f ′
C(Y ). Likewise

Dorothy’s marginal rate of substitution is just f ′
D(Y ). Therefore the neces-

sary condition stated in equation 4.7 takes the special form

f ′
C(Y ) + f ′

D(Y ) = c (4.10)

Since we have assumed that f ′′
C and f ′′

D are both negative, the left side of
(8) is a decreasing function of (Y ). Therefore, given c, there can be at most
one value of Y that satisfies Equation 4.10. Equilibrium is neatly depicted
in the Figure 4.3.

The curves f ′
C(Y ) and f ′

D(Y ) represent Cecil’s and Dorothy’s marginal
rates of substitution between public and private goods. (In the special case
treated here, marginal rates of substitution are independent of the other
variables XC and XD.) The curve f ′

C(Y ) + f ′
D(Y ) is obtained by summing

the individual m.r.s. curves vertically (rather than summing horizontally as
one does with demand curves for private goods). The only value of Y that
satisfies condition 4.10 is Y ∗, where the summed m.r.s. curve crosses the
level c.

As we will show later, the result that the optimality condition 4.10
uniquely determines the amount of public goods depends on the special

7The assumptions about the derivatives of fC and fD ensure that indifference curves
slope down and are convex toward the origin. The assumption that U(XC , Y ) is linear in
XC implies that if the indifference curves are drawn with X on the horizontal axis and
Y on the vertical axis, each indifference curve is a horizontal translation of any other,
making the indifference curves are parallel in the sense that for given Y , the slope of the
indifference curve at (X, Y ) is the same for all X.
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Figure 4.3: Summing Marginal Rates of Substitution
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kind of utility function that we chose. The class of models that has this
property is so special and so convenient that it has earned itself a special
name. Models in in which everybody’s utility function is linear in some
commodity are said to have quasilinear utility.

As we have seen, when there is quasilinear utility, there is a unique
Pareto optimal amount, Y ∗ of public good corresponding to allocations in
which both consumers get positive amounts of the private good. This makes
it very easy to calculate the utility possibility frontier. Since the supply of
public good is Y ∗, we know that along this part of the utility possibility
frontier, Cecil’s utility can be expressed as UC(XC , Y ∗) = XC +fC(Y ∗) and
Dorothy’s utility is UD(XD, Y ∗) = XD + fD(Y ∗). Therefore it must be that
on the utility possibility frontier, UC + UD = XC + XD + fC(Y ∗) + fD(Y ∗).
After the public good has been paid for, the amount of the family income
that is left to be distributed between Cecil and Dorothy is W − pY Y ∗. So it
must be that UC +UD = W −pY Y ∗+fC(Y ∗)+fD(Y ∗). Since the right side
of this expression is a constant, the part of the utility possibility frontier
that is achievable with positive private consumptions for both persons will
be a straight line with slope -1.
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Example 4.1

Suppose that Persons 1 and 2 have quasilinear utility functions Ui(X,Y ) =
Xi +

√
Y . Public goods can be produced from private goods at a cost of

1 unit of private goods per unit of public goods and there are initially 3
units of private goods which can either be used to produce public goods
or can be distributed between persons 1 and 2. Thus the set of feasible
allocations is {(X1,X2, Y ) ≥ 0|X1 + X2 + Y ≤ 3}. The sum of utilities is
U1(X1, Y )+U2(X2, Y ) = X1 +X2 +2

√
Y which is equal to X +2

√
Y where

X = X1+X2. We will maximize the sum of utilities by maximizing X+2
√

Y
subject to X + Y ≤ 3. The solution to this constrained maximization
problem is Y = 1 and X = 3. Any allocation (X1,X2, 1) ≥ 0 such that
X1 + X2 = 2 is a Pareto optimum.

In Figure 4, we draw the utility possibility set. We start by finding the
utility distributions that maximize the sum of utilities and in which Y = 1
and X1 + X2 = 2. At the allocation (2, 0, 1), where Person 1 gets all of the
private goods, we have U1 = 2 + 1 = 3 and U2 = 0 + 1 = 1. This is the
point A. If Person 2 gets all of the private goods, then U1 = 0 + 1 = 1 and
U2 = 2 + 1 = 3. This is the point B. Any point on the line AB can be
achieved by supplying 1 unit of public goods and dividing 2 units of private
goods between Persons 1 and 2 in some proportions.

Figure 4.4: A Utility Possibility Set
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Now let’s find the Pareto optimal points that do not maximize the sum
of utilities. Consider, for example, the point that maximizes Person 1’s
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utility subject to the feasibility constraint X1 + X2 + Y = 3. Since Person
1 has no interest in Person 2’s consumption, we will find this point by
maximizing U1(X1, Y ) = X1+

√
Y subject to X1+Y = 3. This is a standard

consumer theory problem. If you set the marginal rate of substitution equal
to the relative prices, you will find that the solution is Y = 1/4 and X1 =
23

4 . With this allocation, U1 = 31
4 and U2 = 1/2. This is the point C

on Figure 4. Notice that when Person 1 controls all of the resources and
maximizes his own utility, he still leaves some crumbs for Person 2, by
providing public goods though he provides them from purely selfish motives.
The curved line segment CA comprises the utility distributions that result
from allocations (W − Y, 0, Y ) where Y is varied over the interval [1/2, 1].
An exactly symmetric argument will find the segment DB of the utility
possibility frontier that corresponds to allocations in which Person 2 gets no
private goods.

The utility possibility frontier, which is the northeast boundary of the
utility possibility set, is the curve CABD. There are also some boundary
points of the utility possibility set that are not Pareto optimal. The curve
segment CE consists of the distributions of utility corresponding to alloca-
tions (W − Y, 0, Y ) where Y is varied over the interval [0, 1/2]. At these
allocations, Person 1 has all of the private goods and the amount of pub-
lic goods is less than the amount that Person 1 would prefer to supply for
himself. Symmetrically, there is the curve segment DF in which Person 2
has all of the private goods and the amount of public goods is less than
1/2. Finally, every utility distribution in the interior of the region could be
achieved by means of an allocation in which X1 + X2 + Y < 3.

In this example, we see that at every Pareto optimal allocation in which
each consumer gets a positive amount of private goods the amount of public
goods must be Y = 1, which is the amount that maximizes the sum of
utilities.

Generalizations

For clarity of exposition we usually discuss the case where a single public
good is produced from private goods at a constant unit cost c. In this
case, the set of feasible allocations consists of all (X1, . . . ,Xn, Y ) ≥ 0 such
that

∑
i Xi + cY = W where W is the initial allocation of public goods.

Most of our results extend quite easily to a more general technology in
which the cost of production of public goods is not constant but where there
is a convex production possibility set. For this more general technology,
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the set of feasible allocations consists of all (X1, . . . ,Xn, Y ) ≥ 0 such that
(
∑

i Xi, Y ) ∈ T where T is a convex set, specifying all feasible combinations
of gotal output of private goods and total amount of public goods produced.

Almost all of our results also extend in a pretty straightforward way to
cases where there are many public goods, many private goods, and many
people. I don’t need to present the story here because the details of how
this works are nicely sketched out in Samuelson’s classic paper ”The Pure
Theory of Public Expenditure” [4], which is on your required reading list.

Discrete Choice and Public Goods

Some decisions about public goods are essentially discrete. For example,
Cecil and Dorothy may choose whether or not to buy a car or whether or
not to move from London to Chicago. For this kind of choice, the public
goods setup is useful even though Samuelsonian calculations of marginal
rates of substitution are not relevant.

Let XC and XD denote private consumption for Cecil and Dorothy, and
let Y = 0 if they don’t have a car and Y = 1. Assume that in initially,
they have no car and their private consumptions are X0

C and X0
D. Let us

define Cecil’s willingness to pay for a car as the greatest reduction in private
consumption that he would accept in return for having a car. Similarly
for Dorothy. In general, their willingnesses to pay for a car will depend on
their initial consumptions if they don’t buy a car. In particular Person i’s
willingness to pay for a car is the function Vi(·) is defined to be the solution
to the equation Ui(X0

i − Vi(X0
i ), 1) = Ui(X0

i , 0). Suppose that the cost of
the car is c. It will be possible for Cecil and Dorothy to achieve a Pareto
improvement by buying the car if and only if the sum of their willingnesses
to pay for the car exceeds the cost of the car. If this is the case, then each
could pay for the car with each of them paying less than his or her willingness
to pay. Therefore both would be better off.

Appendix: When Samuelson Conditions are Suffi-
cient

So far, we have shown only that the Samuelson conditions are necessary for
an interior Pareto optimum. The outcome is exactly analogous to the usual
maximization story in calculus. For continuously differentiable functions,
the first-order conditions are necessary for either a local or global maximum,
but they are not in general sufficient. As you know, in consumer theory, if
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utility functions are quasi-concave and continuously differentiable, then a
consumption bundle that satisfies an individual’s first-order conditions for
constrained maximization will actually be a maximum for the constrained
optimization problem. For the Samuelson conditions, we have the following
result.

Proposition 1 (Sufficiency of Samuelson conditions) If all individu-
als have continuously differentiable, quasi-concave utility functions U(Xi, Y )
which are strictly increasing in Xi and if the set of possible allocations con-
sists of all (X1, . . . ,Xn, Y ) such that

∑
Xi + cY = W , then the feasibility

condition
∑

X̄i + cȲ = W together with the Samuelson condition

n∑
i=1

∂Ui(X̄i,Ȳ )
∂Y

∂Ui(X̄i,Ȳ )
∂Xi

= c (4.11)

is sufficient as well as necessary for an interior allocation (X̄1, . . . , X̄n, Ȳ ) >>
0 to be Pareto optimal.

To prove Proposition 1, we need the following lemma, which is in general
a useful thing for economists to know about. A proof of the lemma is
straightforward and can be found, for example, in Blume and Simon’s text
Mathematics for Economists [1]. A function with the properties described
in Lemma 1 is called a pseudo-concave function.

Lemma 1 If the function U(X,Y ) is continuously differentiable, quasi-
concave, and defined on a convex set and if at least one of the partial deriva-
tives of U is non-zero at every point in the domain, then if (X,Y ) is in the
interior of the domain of U , then for any (X ′, Y ′),

• if U(X ′, Y ′) > U(X,Y ) then

∂U(X,Y )
∂X

(X ′ − X) +
∂U(X,Y )

∂Y
(Y ′ − Y ) > 0.

• if U(X ′, Y ′) ≥ U(X,Y ) then

∂U(X,Y )
∂X

(X ′ − X) +
∂U(X,Y )

∂Y
(Y ′ − X) ≥ 0.

Proof of Proposition 1. Suppose that the allocation (X1, . . . ,Xn, Y ) satis-
fies the Samuelson conditions and suppose that the allocation (X ′

1, . . . ,Xn,′ Y ′)
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is Pareto superior to (X1, . . . ,Xn, Y ). Then for some i, Ui(X ′
i, Y

′) > Ui(Xi, Y )
and for all i Ui(X ′

i, Y
′) ≥ Ui(Xi, Y ). From Lemma 1 it follows that for all i,

∂Ui(Xi, Y )
∂Xi

(X ′
i − Xi) +

∂Ui(Xi, Y )
∂Y

(Y ′ − Y ) ≥ 0 (4.12)

with a strict equality for all i such that Ui(X ′
i, Y

′) > U(Xi, Y ). Since, by
assumption, ∂Ui(Xi, Y )/∂Xi > 0, it follows that

X ′
i − Xi +

∂Ui(Xi,Y )
∂Y

∂Ui(Xi,Y )
∂Xi

(Y ′ − Y ) ≥ 0 (4.13)

for all i with strict inequality for some i.
Adding these inequalities over all consumers, we find that

n∑
i=1

(X ′
i − Xi) +

n∑
i=1

⎛
⎝ ∂Ui(Xi,Y )

∂Y
∂Ui(Xi,Y )

∂Xi

⎞
⎠ (Y ′ − Y ) ≥ 0. (4.14)

Using the Samuelson condition as stated in Equation 4.7, this expression
simplifies to

n∑
i=1

(X ′
i − Xi) + c(Y ′ − Y ) ≥ 0. (4.15)

But Expression 4.15 implies that

n∑
i=1

X ′
i + cY ′ >

n∑
i=1

Xi + cY = W. (4.16)

From Expression 4.16, we see that the allocation (X ′
1, . . . ,Xn,′ Y ′) is not

feasible. Therefore there can be no feasible allocation that is Pareto superior
to (X1, . . . ,Xn, Y ).

Efficiency and Maximizing Sum of Utilities: Suffi-
cient Doesn’t Mean Necessary

The question you see below appeared on the Spring 2011 prelim at UCSB.
Many students who otherwise did very well on the exam made a “bad”
mistake in answering this problem. The fact that several students were
confused suggests that there is something useful to be learned from studying
this problem.
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The question

Two people share an apartment. Their utilities depend on the
cleanliness of the apartment and the hours spent doing house-
work. Both people are averse to housework. Their utility func-
tions are:

UA(hA, c) = c − h3
A

for person A and

UB(hB , c) = c − 1
3
h3

B

for person B, where c is the level of cleanliness of the apartment
and hi, i = A,B is the number of hours of housework by i. The
level of cleanliness is determined by ‘production function’

C = hA + hB .

Suppose that both A and B are endowed with a large amount
of time which is denoted by H.

a) Write out a generic feasible allocation in terms of hours of
housework from each person and the cleanliness for the apart-
ment.

b) Establish the Samuelson condition for interior Pareto optimal
allocations.

c) Show that there are Pareto optimal allocations at which A
does more housework than B. Are there Pareto optimal alloca-
tions requiring more housework from person B? Explain why or
why not.

d) Suppose that A and B independently decide how much house-
work they will do. Find the hours of housework done by each
of them in Nash equilibrium, and show that both of them would
be better off if each of them could do a little extra housework.

Most people answered Part a correctly. If Person i has a total amount of
time Ti available, then the set of feasible allocations consists of combinations
(hA, hB , c) such that 0 ≤ hA ≤ TA, 0 ≤ hB ≤ TB and hA + hB = c.



EFFICIENCY AND MAXIMIZING SUM OF UTILITIES:
SUFFICIENT DOESN’T MEAN NECESSARY 15

Maximize the sum of utilities?

But surprisingly many screwed up Part b. They asserted that a neces-
sary condition for an allocation to be Pareto optimal is that it maximizes
UA(hA, c)+UB(hB , c) over the set of feasible allocations. This is simply not
true. It is true that maximizing UA(hA, c) + UB(hB , c) is a sufficient con-
dition, but this is NOT a necessary condition. Lets see where this mistake
led those who made it.

Suppose that you maximize

UA(hA, c) + UB(hB , c) = c − h3
A + c − 1

3
h3

B (4.17)

subject to the constraints that 0 ≤ hA ≤ TA, 0 ≤ hB ≤ TB and hA +hB = c.
Since hA + hB = c, we can rewrite expression 4.17 as

2(hA + hB) − h3
A + c − 1

3
h3

B (4.18)

and find its maximum by setting the derivatives with respect to hA and
hB equal to zero. When we do this, we find that hA and hB are uniquely
determined. Setting the two partial derivatives of Expression 4.18 equal to
zero, we have

2 − 3h2
A = 0

and
2 − h2

B = 0,

which implies that

hA =
√

2
3

and
hB =

√
2.

This would mean that at every Pareto optimal allocation, Person A does
less housework than person B. Can this possibly be right? Must it be that
in every Pareto optimal allocation, the person who hates housework less will
have to do more of it?

This is easily sorted out if you remember the difference between necessary
and sufficient. Indeed it is true that maximizing the sum of utilities is a
sufficient condition for Pareto optimality. (I leave that for you to prove as
Exercise 1.) But maximizing the sum of utilities is not a necessary condition
for Pareto optimality. For example, consider the allocation that maximizes
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UA(hA, c)+4UB(hB , c). This allocation is also Pareto optimal. (I leave this
for you to prove as Exercise 2.) Substituting hA + hB for c, we have

UA(hA, c) + 4UB(hB , c) = 5(hA + hB) − h2
A − 5

3
h2

B (4.19)

Taking derivatives you will find that this expression is maximized when
hA =

√
5/3 and hB =

√
5/4. In this Pareto optimum we see that Person A

does more housework than Person B.

More Pareto Optima

In fact, the Pareto optima include all allocations that maximize functions
of the form

UA(hA, hA + hB) + KUB(hB , hA + hB) (4.20)

over the set of feasible hA and hB for some K > 0. For the utility functions
of this problem, we have

UA(hA, hA + hB) + KUB(hB , hA + hB) = (K + 1)(hA + hB) − h3
A − K

3
h3

B .

We can solve explicitly for the maximizing values of hA and hB as a function
of K. The first order conditions are

(K + 1) − 3h2
A = 0 and (K + 1) − Kh2

B = 0

which implies that there are Pareto optima whenever

hA =

√
K + 1

3
and hB =

√
K + 1

K

for some K > 0. We see that for the Pareto optima in which K > 3, person
A does more housework than B and for those in which K < 3, person B
does more housework.

A remark on Necessity and Sufficiency

If you did Exercise 2, you will see that it is true that maximizing uA +KuB

for any K ≥ 0 is sufficient for Pareto optimality.
The question didn’t ask you to show this, but it is also true that if uA and

uB are both concave functions , then a necessary condition for an allocation
to be Pareto optimal is that it either maximizes uA + KuB for some K ≥ 0
or simply maximizes uB . One proof of this proposition is to note that if
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these functions are concave, then the “utility possibility set” is a convex set.
A Pareto optimum must be on the northeast boundary of this set. Applying
the separating hyperplane theorem, we have the desired result.

“Samuelson conditions”

What about the Samuelson conditions? Is there a general statement that
we can make about the sum of the marginal rates of substitution between
doing housework and having a clean house. This is not quite so obvious,
since there is no ”money good” that can be exchanged between the two
parties. But, yes there is such a condition. Here is one way to find it.

Let us denote partial derivatives of the function UA with respect to its
first and second arguments by UA

1 and UA
2 and those of UB with respect to

its first and second arguments by UB
1 and UB

2 . We seek to maximize the
expression in 4.20. Setting partial derivatives equal to zero, we have

UA
1 (hA, hA + hB) + UA

2 (hA, hA + hB) + KUB
2 (hA, hA + hB) = 0 (4.21)

UA
2 (hA, hA + hB) + K

(
UB

1 (hA, hA + hB) + UB
2 (hA, hA + hB)

)
= 0 (4.22)

From Equation 4.22 it follows

UA
2 (hA, hA + hB) = −K

(
UB

1 (hA, hA + hB) + UB
2 (hA, hA + hB)

)
(4.23)

Substitute the expression on the right side of Expression 4.23 for UA
2 (hA, hA+

hB) in 4.21 and rearrange terms to find that

K =
UA

1 (hA, hB)
UB

1 (hA, hB)
.

Substitute this expression for K in Equation 4.21. Now you have

UA
1 (hA, hA +hB)+UA

2 (hA, hA +hB)+

(
UA

1 (hA, hB)
UB

1 (hA, hB)

)
UB

2 (hA, hA +hB) = 0

(4.24)
Divide both sides of this equation by UA

1 (hA, hA + hB) and you have

1 +
UA

2 (hA, hA + hB)
UA

1 (hA, hA + hB)
+

UB
2 (hA, hA + hB)

UB
1 (hA, hA + hB)

= 0

which says that the sum of the two persons’ marginal rates of substitution
between a clean house and working on cleaning the house must be -1 at a
Pareto optimum.
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Lagrangean Approach

Alternatively, one can set up the problem as a Lagrange multiplier problem
in which you note that an allocation in which person 1 does h̄A and person
2 does h̄B will be Pareto optimal if and only if it is impossible to find a
feasible allocation of labor (hA, hB) that is better for Person A than (h̄A, h̄B)
and no worse for Person B. This will be the case if (h̄A, h̄B) maximizes
UA(hA, hA + hB) subject to the constraint that

UB(hA, hA + hB) ≥ ŪB

for some choice of ŪB. The Lagrangean for this problem is

UA(hA, hA + hB) − λ
(
ŪB − UB(hB , hA + hB)

)
.

Following through with the calculations will give you the same conditions
we found previously.

Exercises

4.1 Muskrat, Ontario, has 1,000 people. Citizens of Muskrat consume only
one private good, Labatt’s ale. There is one public good, the town skating
rink. Although they may differ in other respects, inhabitants have the same
utility function. This function is Ui(Xi, Y ) = Xi − 100/Y , where Xi is the
number of bottles of Labatt’s consumed by citizen i and Y is the size of
the town skating rink, measured in square meters. The price of Labatt’s ale
is $1 per bottle and the price of the skating rink is $10 per square meter.
Everyone who lives in Muskrat has an income of $1,000 per year.

a). Write out the equation implied by the Samuelson conditions.

b). Show that this equation uniquely determines the efficient rink size for
Muskrat. What is that size?

4.2 Cowflop, Wisconsin, has 1,100 people. Every year they have a fireworks
show on the fourth of July. The citizens are interested in only two things
– – drinking milk and watching fireworks. Fireworks cost 1 gallon of milk
per unit. Everybody in town is named Johnson, so in order to be able to
identify each other, the citizens have taken numbers 1 through 1,100. The
utility function of citizen i is

Ui(xi, y) = xi +
ai
√

y

1000
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where xi is the number of gallons of milk per year consumed by citizen i and
y is the number of units of fireworks exploded in the town’s Fourth of July
extravaganza. (Private use of fireworks is outlawed). Although Cowflop is
quite unremarkable in most ways, there is one remarkable feature. For each
i from 1 to 1,000, Johnson number i has parameter ai = i/10. Johnsons
with numbers bigger than 1,000 have ai = 0. For each Johnson in town,
Johnson i has income of 10 + i/10 units of milk.

a). Find the Pareto optimal amount of fireworks for Cowflop.

Hint: It is true that you have to sum a series of numbers. But
this is a series that Karl Friedrich Gauss is said to have solved
when he was in second grade.

4.3 Some miles west of Cowflop, Wisc. is the town of Heifer’s Breath.
Heifer’s Breath, like Cowflop has 1000 people. As in Cowflop, the citizens
are interested only in drinking milk and watching fireworks. Fireworks cost
1 gallon of milk per unit. Heifer’s Breath has two kinds of people, Lar-
sons and Olsens. The Larsons are numbered 1 through 500 and the Olsen’s
are numbered 1 through 500. The Larsons have all Cobb-Douglas util-
ity functions UL(xi, y) = xα

i y1−α and the Olsons all have utility functions
UO(xi, y) = xβ

i y1−β.

a). Write an expression for the optimal amount of public goods as a func-
tion of the parameters of the problem.

b). If α = β, show that the Pareto optimal amount of public goods de-
pends on the aggregate income in the community, but not on how that
income is distributed.

4.4 Let UC(XC , Y ) = XC + 2
√

Y and UD(XD, Y ) = XD +
√

Y . Suppose
that c = 1.

a). Determine the amount of Y that must be produced if the output is to
be Pareto optimal and if both persons are to have positive consumption
of private goods.

b). Find and describe the set of Pareto optimal allocations in which one
or the other person consumes no private goods. Show that at these
Pareto optima, the Samuelson conditions do not necessarily apply.

c). Draw the utility possibility frontier.
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d). Write down an explicit formula for the straight line portion of the
utility possibility frontier.

e). Write down explicit expressions for the curved portions of the utility
possibility frontier.

4.5 Cecil and Dorothy found a place to live rent-free. Now they are deciding
whether to buy a car. They have a total income of $1000 and a car would
cost $400. Cecil’s utility is given by XC(1+Y ) and Dorothy’s by XD(3+Y )
where Y = 1 if they buy a car and Y = 0 if they do not, and where XC and
XD are the amounts that Cecil and Dorothy spend on private goods.

1. Write an equation for the utility possibility frontier if they are not
allowed to buy a car and another equation for the utility possibility
frontier if they must buy a car.

2. Graph these two utility possibility frontiers and shade in the utility
possibility set if they are free to decide whether or not to buy a car.

3. Suppose that if they don’t purchase the car, Cecil and Dorothy split
their money equally. Could they achieve a Pareto improvement by
buying the car? Show your answer in two ways (i) Compare the sum
of willingnesses to pay to the cost of the car. (ii) Show whether or
not the outcome where each has $500 and they have no car produces
a point on the overall utility possibility frontier.

4. Suppose that if they don’t purchase the car, income would be divided
so that XC = 650 and XD = 350. Could they achieve a Pareto
improvement by buying the car? Show your answer in two ways (i)
Compare the sum of willingnesses to pay to the cost of the car. (ii)
Show whether or not the situation where XC = $650 and XD = $350
and they have no car is on the overall utility possibility frontier.
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