Course Recap
Today

- Practice with VCG mechanism
- A few final (exam) words
- Course recap
- Some practice exchange problems
Applying the VCG mechanism

To close the budget gap, UCSB proposes to tear down Manzanita Village and sell it to Katy Perry for $10 million. Katy would actually be willing to pay $14 million for the land so she could build her Candyland Mansion. The 500 students living in these dorms would be willing to pay $10000 each to keep their ocean view (everyone else is indifferent). If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

- Katy's net valuation: $4 million
- Total student valuation: 500($10000 - $10000) = -$5 million
- Overall valuation = -$1 million

⇒ reject plan

• Who is pivotal? Not Katy. Students?
• -$1 million net value
⇒ no individual student is responsible for pushing the net value into negative territory.

No one is pivotal, no one pays any taxes!
Applying the VCG mechanism

To close the budget gap, UCSB proposes to tear down Manzanita Village and sell it to Katy Perry for $10 million. Katy would actually be willing to pay $14 million for the land so she could build her Candyland Mansion. The 500 students living in these dorms would be willing to pay $10000 each to keep their ocean view (everyone else is indifferent). If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

- Katy’s *net* valuation: $4 million
Applying the VCG mechanism

To close the budget gap, UCSB proposes to tear down Manzanita Village and sell it to Katy Perry for $10 million. Katy would actually be willing to pay $14 million for the land so she could build her Candyland Mansion. The 500 students living in these dorms would be willing to pay $10000 each to keep their ocean view (everyone else is indifferent). If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

- Katy’s net valuation: $4 million
- Total student valuation: $500(-10000) = -$5 million
Applying the VCG mechanism

To close the budget gap, UCSB proposes to tear down Manzanita Village and sell it to Katy Perry for $10 million. Katy would actually be willing to pay $14 million for the land so she could build her Candyland Mansion. The 500 students living in these dorms would be willing to pay $10000 each to keep their ocean view (everyone else is indifferent). If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

- Katy’s net valuation: $4 million
- Total student valuation: $100000 = -$5 million
- Overall valuation = -$1 million ⇒ reject plan
Applying the VCG mechanism

To close the budget gap, UCSB proposes to tear down Manzanita Village and sell it to Katy Perry for $10 million. Katy would actually be willing to pay $14 million for the land so she could build her Candyland Mansion. The 500 students living in these dorms would be willing to pay $10000 each to keep their ocean view (everyone else is indifferent). If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

- Katy’s net valuation: $4 million
- Total student valuation: $5 million
- Overall valuation = -$1 million ⇒ reject plan
- Who is pivotal? Not Katy. Students?
Applying the VCG mechanism

To close the budget gap, UCSB proposes to tear down Manzanita Village and sell it to Katy Perry for $10 million. Katy would actually be willing to pay $14 million for the land so she could build her Candyland Mansion. The 500 students living in these dorms would be willing to pay $10000 each to keep their ocean view (everyone else is indifferent). If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

- Katy’s net valuation: $4 million
- Total student valuation: $10000 × 500 = $5 million
- Overall valuation = -$1 million ⇒ reject plan
- Who is pivotal? Not Katy. Students?
- -$1 million net value ⇒ no individual student is responsible for pushing the net value into negative territory.
Applying the VCG mechanism

To close the budget gap, UCSB proposes to tear down Manzanita Village and sell it to Katy Perry for $10 million. Katy would actually be willing to pay $14 million for the land so she could build her Candyland Mansion. The 500 students living in these dorms would be willing to pay $10000 each to keep their ocean view (everyone else is indifferent). If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

- Katy’s *net* valuation: $4 million
- Total student valuation: 500(−10000) = -$5 million
- Overall valuation = -$1 million ⇒ reject plan
- Who is pivotal? Not Katy. Students?
- -$1 million net value ⇒ no individual student is responsible for pushing the net value into negative territory.

No one is pivotal, no one pays any taxes!
Now you try it!

Now suppose that Katy’s willingness-to-pay is instead $14,995,000. If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

Clicker vote:

A) Plan is now approved, no taxes
B) Plan rejected, *each* student pays tax of $5000
C) Plan approved, Katy pays tax of $5000
D) Plan rejected, *one* student pays tax of $5000
Now you try it!

Now suppose that Katy’s willingness-to-pay is instead $14,995,000. If the administration uses a VCG mechanism to decide, will the plan be approved and who will pay what taxes?

Clicker vote:

A) Plan is now approved, no taxes
B) Plan rejected, each student pays tax of $5000
C) Plan approved, Katy pays tax of $5000
D) Plan rejected, *one* student pays tax of $5000

All students identical \Rightarrow same tax, must internalize the $5000 externality for each
Final exam details

- Three levels of question difficulty
 - Almost everyone should get
 - Many people will get
 - Only a few people will get
- Format: ~ 12 – 15 Mult-choice; 2 free-response
- Extra OH: Kevin (9-11am, Broida 1610) and Rebecca (4-6pm, LSB 1001) will hold OH on Monday (Note: same times, but new locations)
- Review Session: Saturday 3/12 4-6pm, NH 1006
Econ 100a/b: Intermediate Microeconomic Theory

What is this course sequence about?

• 100a: rational choice under scarcity
 • Utility maximization, deriving demand from preferences
 • Profit maximization, deriving supply from costs
 • Applying framework to labor supply, choice over time, uncertainty

• 100b: Markets: behavior and welfare
Regulation: Good or Bad?

• Should government regulate economic activity?
• Politicians love to talk about this:
 • “I’m always for less regulation.” –John McCain (WSJ, March 3, 2008)
 • “A lot of the problems that are going on in our country now appear to have been related to lax regulation.” –Texas State Senator Steve Ogden (March 21, 2009)
Regulation: Good or Bad?

- Should government regulate economic activity?
- Politicians love to talk about this:
 - “…I do believe that there is a role for oversight.” –John McCain (same interview)
 - “A lot of the problems that are going on in our country now appear to have been related to lax regulation.” –Texas State Senator Steve Ogden (March 21, 2009)
- Ogden is a Republican
Regulation: Good or Bad?

- Should government regulate economic activity?
- Politicians love to talk about this:
 - “…I do believe that there is a role for oversight.” – John McCain (same interview)
 - “A lot of the problems that are going on in our country now appear to have been related to lax regulation.” – Texas State Senator Steve Ogden (March 21, 2009)
 - Ogden is a Republican

- This is an economic question
Course Objectives

• Understand basic theoretical framework we use to think about
 • If/how/when markets do & don’t “work”
 • What happens when they don’t & what should we do
Course Objectives

• Understand basic theoretical framework we use to think about
 • If/how/when markets do & don’t “work”
 • What happens when they don’t & what should we do

• Develop analytic tools you can apply to specific economic questions
 • How does a tax affect behavior and welfare
 • Which goods should the govt. tax to generate revenue
 • What can/should we do to reduce greenhouse gas emissions?
 • What types of goods should the government be in the business of providing?
Structure

- Well functioning (competitive) markets

- Market failure
 - Monopoly (plus oligopoly, game theory)
 - Externalities (e.g. pollution)
 - Public goods
 - Imperfect/Asymmetric Information (covered in Econ 100C; insurance/paying for healthcare)
Well-functioning (Competitive) Markets

- Welfare measurement: Consumer Surplus approximates the consumers’ gains-from-trade
- Use CS to evaluate the welfare impact of a policy
- Market demand: individual demand added horizontally
- Equilibrium in competitive markets: price equalizes $D(p)$ and $S(p)$.
Well-functioning (Competitive) Markets

- Market efficiency: equilibrium in competitive markets realizes all possible gains-from-trade, maximizes welfare

- Regulation: can lead to excess supply or demand
- Taxes create a wedge between consumer and producer prices
- Interference leads to unrealized gains-from-trade, DWL, inefficiency
Well-functioning (Competitive) Markets
What conditions are required for perfect competition?

- Firms are price takers, free-entry

- Many firms, so that one firm’s behavior has negligible impact on other

- No spillovers— all costs and benefits of market behavior are experienced by market participants

- No incentive to free-ride

- Perfect information

Without these we have market failure
Well-functioning (Competitive) Markets

What conditions are required for perfect competition?

- Firms are price takers, free-entry
- *Monopoly*: when there are barriers to entry (*cost structure, returns-to-scale, regulatory*), sole producer can set price
- Many firms, so that one firm’s behavior has negligible impact on other

- No spillovers– all costs and benefits of market behavior are experienced by market participants

- No incentive to free-ride

- Perfect information

Without these we have market failure
Well-functioning (Competitive) Markets
What conditions are required for perfect competition?

- Firms are price takers, free-entry
- *Monopoly*: when there are barriers to entry (cost structure, returns-to-scale, regulatory), sole producer can set price
- Many firms, so that one firm’s behavior has negligible impact on other
- *Oligopoly*: multiple producers, and each takes into account how it’s behavior affects others
- No spillovers— all costs and benefits of market behavior are experienced by market participants

- No incentive to free-ride

- Perfect information

Without these we have market failure
Well-functioning (Competitive) Markets
What conditions are required for perfect competition?

- Firms are price takers, free-entry
- *Monopoly*: when there are barriers to entry (*cost structure, returns-to-scale, regulatory*), sole producer can set price
- Many firms, so that one firm’s behavior has negligible impact on other
- *Oligopoly*: multiple producers, and each takes into account how it’s behavior affects others
- No spillovers— all costs and benefits of market behavior are experienced by market participants
- *Externalities*: producer or consumer behavior affects people other than buyers or sellers, market for cost/benefit is missing
- No incentive to free-ride

- Perfect information

Without these we have market failure
Well-functioning (Competitive) Markets

What conditions are required for perfect competition?

- Firms are price takers, free-entry
- *Monopoly*: when there are barriers to entry (cost structure, returns-to-scale, regulatory), sole producer can set price
- Many firms, so that one firm’s behavior has negligible impact on other
- *Oligopoly*: multiple producers, and each takes into account how it’s behavior affects others
- No spillovers— all costs and benefits of market behavior are experienced by market participants
- *Externalities*: producer or consumer behavior affects people other than buyers or sellers, market for cost/benefit is missing
- No incentive to free-ride
- *Public goods*: non-excludable, non-rival \Rightarrow incentive to free-ride
- Perfect information

Without these we have market failure
Well-functioning (Competitive) Markets

What conditions are required for perfect competition?

- Firms are price takers, free-entry
- **Monopoly:** when there are barriers to entry (cost structure, returns-to-scale, regulatory), sole producer can set price
- Many firms, so that one firm’s behavior has negligible impact on other
- **Oligopoly:** multiple producers, and each takes into account how it’s behavior affects others
- No spillovers— all costs and benefits of market behavior are experienced by market participants
- **Externalities:** producer or consumer behavior affects people other than buyers or sellers, market for cost/benefit is missing
- No incentive to free-ride
- **Public goods:** non-excludable, non-rival \implies incentive to free-ride
- Perfect information See econ 100c

Without these we have market failure
Monopoly

- Profit-maximizing condition: \(MR = MC \)
- Perfect comp: firm is price-taker \(\implies \) horizontal demand \(\implies \) \(P = MR \), so \(P = MC \)
- Monopoly: firm is industry \(\implies \) downward-sloping demand \(\implies P > MR = MC \)
- Monopoly underproduces to keep price high, causes DWL
- Efficiency retained with non-uniform pricing (perfect price discrimination, two-part tariffs), but works by allowing monopolist to extract all consumer surplus
Oligopoly

- Quantity vs. price competition
- Simultaneous choice vs. leader/follower
- Cournot, Stackelberg quantity duopoly models
- Collusion can increase profits, but is unstable
- Cartel members have incentive to cheat/free-ride
Exchange

- Ch31 is not about market failure
- It’s about general equilibrium
- Extends behavioral and welfare analysis to multiple markets w/ simultaneously determined outcomes
- Edgeworth box used to graphically illustrate powerful conclusions about welfare
- Competitive equilibrium is Pareto Optimal
- I.e. competitive markets “work”
Externalities

- Missing market for external effect
- No one takes ownership over external costs/benefits so production is not socially optimal
- Can correct externality with Pigouvian tax or by assigning property rights
- Each works by internalizing externality
- Common-pool resources
 - Rival, but not excludable
 - Overused (tragedy of the commons): individuals don’t internalize effect of their use on others
Public Goods

- Efficient provision level: \(\sum MRS = MC \) (\(MB \) is same as \(MRS \) when one good is ‘money’)
- Free-riding leads private market to underprovide
- Govt frequently provides
- How to know when providing is socially worthwhile?
- Use a revelation mechanism, e.g. Groves-Clarke tax to elicit individuals’ true valuation
- Makes people pay the cost they impose on others
Practice Exchange Questions

Suppose that A has an initial endowment of $\omega^A = (0, 3)$ and B is endowed with $\omega^B = (3, 0)$. Find the competitive equilibrium prices and allocations if:

- $U^A = x_1^2 x_2$ and $U^B = x_1^2 x_2$

- $U^A = x_1^2 x_2$ and $U^B = x_1 x_2^2$

- $U^A = x_1 x_2$ and $U^B = x_1 + 2x_2$

- $U^A = x_1 x_2$ and $U^B = \min\{x_1, 2x_2\}$
Suppose that A has an initial endowment of $\omega^A = (0, 3)$ and B is endowed with $\omega^B = (3, 0)$. Find the competitive equilibrium prices and allocations if:

- $U^A = x_1^2x_2$ and $U^B = x_1^2x_2$
 \[\Rightarrow \text{C.C. is diagonal} \]
- $U^A = x_1^2x_2$ and $U^B = x_1x_2^2$
- $U^A = x_1x_2$ and $U^B = x_1 + 2x_2$
- $U^A = x_1x_2$ and $U^B = \min\{x_1, 2x_2\}$
Practice Exchange Questions

Suppose that A has an initial endowment of $\omega^A = (0, 3)$ and B is endowed with $\omega^B = (3, 0)$. Find the competitive equilibrium prices and allocations if:

- $U^A = x_1^2x_2$ and $U^B = x_1^2x_2$
 \Rightarrow C.C. is diagonal

- $U^A = x_1^2x_2$ and $U^B = x_1x_2^2$
 $\Rightarrow p_1 = p_2(= 1)$

- $U^A = x_1x_2$ and $U^B = x_1 + 2x_2$

- $U^A = x_1x_2$ and $U^B = \min\{x_1, 2x_2\}$
Practice Exchange Questions

Suppose that A has an initial endowment of $\omega^A = (0, 3)$ and B is endowed with $\omega^B = (3, 0)$. Find the competitive equilibrium prices and allocations if:

- $U^A = x_1^2x_2$ and $U^B = x_1^2x_2$
 \[\Rightarrow \text{C.C. is diagonal} \]

- $U^A = x_1^2x_2$ and $U^B = x_1x_2^2$
 \[\Rightarrow p_1 = p_2(= 1) \]

- $U^A = x_1x_2$ and $U^B = x_1 + 2x_2$
 \[\Rightarrow p_1 = MRS^B = \frac{1}{2} \]

- $U^A = x_1x_2$ and $U^B = \min\{x_1, 2x_2\}$
Practice Exchange Questions

Suppose that A has an initial endowment of $\omega^A = (0, 3)$ and B is endowed with $\omega^B = (3, 0)$. Find the competitive equilibrium prices and allocations if:

- $U^A = x_1^2 x_2$ and $U^B = x_1^2 x_2$
 \Rightarrow C.C. is diagonal

- $U^A = x_1^2 x_2$ and $U^B = x_1 x_2^2$
 $\Rightarrow p_1 = p_2 (= 1)$

- $U^A = x_1 x_2$ and $U^B = x_1 + 2x_2$
 $\Rightarrow p_1 = \text{MRS}^B = \frac{1}{2}$

- $U^A = x_1 x_2$ and $U^B = \min \{ x_1, 2x_2 \}$
 \Rightarrow contract curve is traced by corners, p_1 defined by MRS^A at contract curve