Oligopoly
Chapter 27
Other Kinds of Non-uniform Pricing

- Two-part tariffs: lump-sum fee + constant price per unit
- Tie-in sales: can buy one product only if you buy another one as well
 - Requirement tie-in
 - Bundling (or package tie-in)
- Can think of these as a form of quantity (2nd degree) discrimination, where the average price per unit varies with the number of units purchased
Two-part Tariffs

- Lump-sum fee + per unit price
- E.g. telephone service (connection fee + per minute rate); club cover charges; NFL personal seat license
- Because of fixed fee, average price per unit is higher the fewer units you buy
- Uniform pricing: raise \(p \) above \(MC \) \(\Rightarrow \) earn more per unit, but lower CS
- Two-part tariff (ideal): capture each customer’s max potential CS by charging different lump-sum fees, then set \(p = MC \)
- Like with first degree PD, there is no inefficiency
- But monopolist reaps all gains-from-trade, so equity suffers
Tie-in Sales

- **Requirement tie-in:**
 - E.g. Printer + ink/toner cartridges, razors + blades
 - Helps firm identify heavy users, i.e. those with high WTP

- **Bundling:**
 - E.g. Software such as Microsoft Windows + Internet Explorer, internet & cable service, preseason & regular season tickets, service + parts
 - Allows firms that can’t price discriminate to charge different people different prices
 - Profitability depends on tastes (negatively correlated demand for the two goods) and the ability to prevent resale
What is Oligopoly?

- Oligopoly is a kind of market structure, like monopoly or perfect competition

- An oligopolistic industry is an industry consisting of a few firms (duopoly = two firms)

- Example industries: auto, operating systems, mp3/music players, airlines
Questions

How can we analyze an oligopolistic industry?

- How are the market prices and quantities determined?
- How does this impact welfare?
- How do we think about competition among oligopolists?
- Why might firms want to collude (form a cartel)?
- How can a cartel be sustained?
We use Game Theory to Study Oligopoly

- With PC and monopoly market structures, we analyze a firm making an individual decision
- PC: very many firms, one firm’s actions do not impact others
- Monopoly: only one firm, no one else to impact
- However, oligopoly: each firm’s p, q decisions affect competitor’s profits
- Strategic interaction/interdependence \rightarrow apply game theory
Oligopoly models

Considerations:

- Do firms compete on price or quantity?
- Do firms act sequentially (leader/followers) or simultaneously (equilibrium)
- Stackelberg models: quantity leadership
- Cournot equilibrium models: simultaneous choice quantity competition
- Bertrand equilibrium models: simultaneous choice price competition
Oligopoly

Today:

- Cournot model
- Compare to PC, monopoly

Next time:

- Stackelberg model
- Bertrand model
- Cartels
Example: comparing market structures

- The basics:
 - Inverse demand: \(p = a - Q \) (where \(Q \) is total quantity)
 - Marginal cost: \(c \) (no fixed cost)

- First establish baseline predictions about outcomes + welfare
 - Perfect Competition (\(P = MC \))
 - Monopoly (\(MR = MC \))

- Then examine Cournot model
 - Duopoly (two firms)
 - More general oligopoly (\(N \) firms)
Example: comparing market structures

Baseline predictions:

- **Baseline: Perfect competition** ($p = MC$)
 - $p = c$, $Q = a - c$ (individual $q_i \approx 0$)
 - $\Pi = 0$, $CS = \frac{1}{2}(a - c)^2$, $W = \frac{1}{2}(a - c)^2$

- **Baseline: Monopoly** ($MR = MC$)
 - $p = \frac{a+c}{2}$, $q = Q = \frac{a-c}{2}$
 - $\Pi = \frac{1}{4}(a - c)^2$, $CS = \frac{1}{8}(a - c)^2$, $W = \frac{3}{8}(a - c)^2$
Cournot Model of Duopoly

- Two firms compete in the same market
 - Simultaneously choose q_i
 - This determines total Q...
 - ...which determines price

- Each would love to be monopolist, but can’t control behavior of other

- Each firm’s choice affects competitor
 - Given competitor’s quantity, q_j, firm i would choose q_i to max profits.
 - But given q_i, firm j might choose different q'_j to maximize profits (so q_i would change)
Cournot Model of Duopoly

Q: How do we make predictions about behavior?

A: Use notion of (Nash) equilibrium

- If firms keep adjusting their quantities in response to one another, where will they end up?
- At a point where each firm is maximizing profits given the behavior of the other
- q_i is the best response to q_j and q_j is the best response to q_i
- At this point, neither firm has any incentive to change its quantity
- System is in equilibrium

Nash Equilibrium: taking the behavior of others as given, each party is choosing an optimal response.
Finding Nash Equilibrium in the Cournot Model

- Suppose firm j chooses q_j. What should firm i do?
- Choose q_i that maximizes profits
- Write down i’s profits, as a function of q_i, q_j:

$$\Pi_i(q_i, q_j) = pq_i - cq_i = (a - q_i - q_j - c)q_i$$

- First-order condition:

$$\frac{\partial \Pi_i}{\partial q_i} = a - 2q_i - q_j - c = 0$$

- Solve for firm i’s reaction function (gives best response for each value of q_j):

$$q_i^*(q_j) = \frac{a - q_j - c}{2}$$
Finding Nash Equilibrium in the Cournot Model

• reaction function:

\[q_i^*(q_j) = \frac{a - q_j - c}{2} \]

• Because of symmetry, firm j’s reaction function is:

\[q_j^*(q_i) = \frac{a - q_i - c}{2} \]

• How to find equilibrium?
 • Both firms must be best responding to each other so

\[q_j = q_j^*(q_i) \text{ and } q_i = q_i^*(q_j) \]

• Also, by symmetry, \(q_i^* = q_j^* \)

\[q_i^* = q_j^* = \frac{a - q_i^* - c}{2} \]

• Solve:

\[q_i^* = \frac{a - c}{3} = q_j^* \]
Finding Nash Equilibrium in the Cournot Model

• Optimal quantities:

\[q_i^* = \frac{a - c}{3} = q_j^* \]

• So \(Q = q_i + q_j = \frac{2}{3}(a - c) \)

• and \(p = a - Q = \frac{a + 2c}{3} \)

• Calculate welfare

 • \(CS = \frac{1}{2} [a - \frac{a + 2c}{3}] \cdot \frac{2}{3}(a - c)] = \frac{2}{9}(a - c)^2 \)

 • \(\pi_i = (p - c)q_i = \left[\frac{a + 2c}{3} - c \right] \frac{a - c}{3} = \frac{(a - c)^2}{9} \)

 • \(W = CS + \Pi = \frac{2}{9}(a - c)^2 + 2 \cdot \frac{(a - c)^2}{9} = \frac{4}{9}(a - c)^2 \)

Behavior and welfare lie between PC and monopoly
Generalizing to N-firm Oligopoly

Now suppose that there are N Cournot competitors

- Write down i’s profits, as a function of q_1, \ldots, q_N:

 $$
 \Pi_i(q_1, \ldots, q_N) = (p - c)q_i = (a - (q_i - Q_{-i} - c))q_i,
 $$

 where Q_{-i} is the sum of all the $N - 1$ competitors quantities

- First-order condition:

 $$
 \frac{\partial \Pi_i}{\partial q_i} = a - 2q_i - Q_{-i} - c = 0
 $$

- Firm i’s reaction function:

 $$
 q_i^*(Q_{-i}) = \frac{a - Q_{-i} - c}{2}
 $$

 Because of symmetry, every firm has the same reaction function and behavior, so

 $$
 q_1^* = q_2^* = \cdots = q_i^* = \cdots = q_N^*
 $$

 This means $Q_{-i} = (N - 1)q_i^*$, so

 $$
 q_i^* = \frac{a - (N - 1)q_i^* - c}{2}
 $$

 Solve: $q_i^* = \frac{a - c}{N + 1}$ and $Q^* = \frac{N}{N + 1}(a - c)$
Bertrand Duopoly: price competition

- Firms compete on price
- No clear leader, follower so firms effectively choose p simultaneously
- Take the other firm’s price as given
- Market demand determines equilibrium output
- Both choose same price: divide demand evenly
- One sets lower price: that firm captures entire market
Bertrand Duopoly: price competition

- Suppose two firms have same MC
- What price to charge?
- Apply Nash equilibrium
 - Each chooses optimal p_i given p_j
 - No one has incentive to deviate
- If pricing above marginal cost, each has incentive to undercut competitor ($p_i > p_j > MC$ is not an equilibrium)
- $p_i = p_j = MC$ is the only possible equilibrium
- Zero profits for both, but no incentive to deviate:
 - Higher price means no sales
 - Lower price means losses