The Lazy Housekeepers’ Problem

The Symmetric Case

Let x be the amount of housekeeping effort that Alice supplies and y the amount that Bob supplies. Alice has utility function $U_A(x,y)=x+y-x^2$ and Bob has utility function $U_B(x,y)=x+y-y^2$. If we draw a box with x on the horizontal axis and y on the vertical axis, Alice’s indifference curves are shown as the U-shaped curves below. Regardless of what Bob does, she would prefer to do 1/2 unit of housework. But the more housework Bob does, the happier she is.

```math
\text{In[428]} = \text{apl} = \text{ContourPlot}[x + y - x^2, \{x, 0, 2\}, \{y, 0, 2\}, \text{Axes} \rightarrow \text{True}]
```

![Contour Plot](image)

We can draw Bob’s indifference curves on the same axes. This is shown in the figure below. I used the command `Parametric plot` to draw a bunch of indifference curves each of which holds u constant at some value between -4 and 4 and letting x vary from 0 to 10. I restrict the range of x’s and y’s that are displayed to values between 0 and 2.
Next I draw the contract curve. As shown in our notes, this has the equation \(y = x^2 x - 1 \).
Now we display the contract curve on the labelled Edgeworth box.

\[
\text{In}[454]= \text{Show[BoxSymPlot, ContCurveSym, Frame} \rightarrow \text{True,}
\text{FrameLabel} \rightarrow \{\text{"Cleaning by Alice", "Cleaning by Bob"}\}]
\]

Bob hates housekeeping more than Alice

Let utilities be \(u_A = x + y - x^2 \) and \(u_B = x + y - 2y^2 \). We first plot the Edgeworth box. Then we add the contract curve and display them both together.
In[452]:= box12plot = ParametricPlot[
{(x, u + x^2 - x), {u + 2 * x^2 - x, x}, {0.50, x}, {x, 0.25}},
{u, -10, 10}, {x, 0, 10}, AspectRatio -> 1 / 1, PlotRange -> {{0, 2}, {0, 2}},
Mesh -> 60, MeshStyle -> {Directive[Blue], Directive[White, Dashed]}]

Out[452]=

In[442]:= contcurve12 = ParametricPlot[
{x, x/ (2 * (2 * x - 1))}, {x, .51, 10},
AspectRatio -> 1 / 1, PlotRange -> {{0, 2}, {0, 2}}, PlotStyle -> Thick]

Out[442]=
We construct the utility possibility frontier for the

Utility possibility frontiers

We construct the utility possibility frontier for the symmetric and asymmetric cases. To do this, I use ParametricPlot, varying \(x \) from 1/2 to 2, using the efficiency conditions to determine \(y \) from \(x \) and then plotting the utilities for each of the two people as \(x \) is varied while \(y \) moves with \(x \) according to the efficiency condition. In the symmetric the symmetri case, we have \(y=x/(2x-1) \) along the contract curve. In the asymmetric case, \(y=x/(4x-2) \) along this curve.
Utility possibility frontier: Symmetric Case

\begin{align*}
\text{In}[445] &= \text{upossym} = \text{ParametricPlot}[
\{x + (x / (2 \times x - 1)) - x^2, x + (x / (2 \times x - 1)) - (x^2) / (2 \times x - 1)^2),
\{x, .51, 2\}, \text{PlotRange} \rightarrow \{(0, 2), (0, 2)\}, \text{AspectRatio} \rightarrow 1 / 1, \text{PlotStyle} \rightarrow \text{Thick}]
\end{align*}
Utility possibility frontier: Case where Bob hates housekeeping

```math
\text{uposs12 = ParametricPlot[}
  \{x + (x / (4 x - 2)) - x^2, x + (x / (4 x - 2)) - 2 * ((x^2) / (4 x - 2)^2)},
  \{x, .51, 2},
  \text{PlotRange \to \{(0, 2), (0, 2)}},
  \text{AspectRatio \to 1/1},
  \text{PlotStyle \to Directive[Thick, Dashed]}\}
```

![Plot of Utility possibility frontier](lazyhousekeepers.nb)
Both cases together

In[447]:= Show[upossym, uposs12, ListLinePlot[{{2.01, 0}, {0, 2.01}}],
 ListLinePlot[{{1.5, 0}, {0, 1.5}}], ListPlot[{{1, 1}, {1/2, 1}}, PlotMarkers -> Automatic],
 Frame -> True, FrameLabel -> {"Utility for Alice", "Utility for Bob"}]

Out[447]=

Utility for Bob

Utility for Alice