Midterm Examination: Economics 210A
October 16, 2015

Question 1.) In their 1972 book, Economic Theory of Teams, Jacob Marschak and Roy Radner describe a team theory problem as one in which n players all want to maximize the same objective function. Each player chooses an action x_i from a set X_i and each player gets a payoff equal to $F(x_1, \ldots, x_n)$. There is no “boss” to coordinate their activities. Marschak and Radner define an outcome $\bar{x} = (\bar{x}_1, \ldots, \bar{x}_n)$ to be Person-by-person satisfactory if each person is taking the action that maximizes F, given what the other players are doing. This means that for all players i:

$$F(\bar{x}_1, \ldots, \bar{x}_i, \ldots, \bar{x}_n) \geq F(\bar{x}_1, \ldots, x_i, \ldots, \bar{x}_n)$$

for all $x_i \in X$.

If \bar{x}_i is in the interior of X_i for all i and if \bar{x} is person-by-person satisfactory, what must be true of the first and second order partial derivatives of F?

Answer At a person by person satisfactory outcome, each player is doing the best thing for the team given what the others are doing. The necessary conditions for an interior maximum for a single player are that $F_i(\bar{x}) = 0$ and $F_{ii}(\bar{x}) \leq 0$.

For now let us consider two-person teams. Assuming that F is twice continuously differentiable, determine whether each of the following three statements is true or false. If it is true, sketch a proof. If it is false, provide a counterexample.

Claim 1 If (\bar{x}_1, \bar{x}_2) maximizes $F(x_1, x_2)$ on the set on (X_1, X_2), then outcome (\bar{x}_1, \bar{x}_2) must be person-by-person satisfactory.

Answer True. Proof: If (\bar{x}_1, \bar{x}_2) maximizes $F(x_1, x_2)$ on the set on (X_1, X_2) then it must be that $F(\bar{x}_1, \bar{x}_2) \geq F(x_1, x_2)$ for all $(x_1, x_2) \in (X_1, X_2)$, so in particular it must be that $F(\bar{x}_1, \bar{x}_2) \geq F(x_1, \bar{x}_2)$ for all $x_1 \in X_1$ and it must also be that $F(\bar{x}_1, \bar{x}_2) \geq F(\bar{x}_1, x_2)$ for all $x_2 \in X_2$. But this tells us that if (\bar{x}_1, \bar{x}_2) maximizes $F(x_1, x_2)$ on the set on (X_1, X_2), (\bar{x}_1, \bar{x}_2) must be person-by-person satisfactory.

Claim 2 If outcome (\bar{x}_1, \bar{x}_2) is person-by-person satisfactory, it must be that (\bar{x}_1, \bar{x}_2) maximizes $F(x_1, x_2)$ on (X_1, X_2).

Answer False. When (\bar{x}_1, \bar{x}_2) is person-by-person satisfactory it is not possible for one person to increase the payoff by changing his action, but it might be possible for both. To produce a counterexample, just find a function $F(x_1, x_2)$ that satisfies the necessary calculus conditions for person-by-person satisfaction, but where the Hessian matrix is not negative semi-definite. We worked with just such an example in class. It was

$$F(x_1, x_2) = x_1 + x_2 - \frac{1}{2}(x_1^2 + x_2^2) + cx_1 x_2$$
with $c > 1$.

Claim 3) If F is a concave function, then if an outcome is person-by-person satisfactory and x_i is in the interior of X_i for $i = 1, 2$, it must be that (\bar{x}_1, \bar{x}_2) maximizes $F(x_1, x_2)$ on (X_1, X_2).

Answer This one is true. If F is a concave function, then its Hessian is negative semi-definite. If an outcome is person by person satisfactory, its partial derivatives are zero. If F is a concave function and its partial derivatives are all 0 at \bar{x}, then \bar{x} must be a maximum.

Question 2. A consumer has preferences on $X \subset \mathbb{R}^2_+$ which are defined in the following way. There is a real-valued continuous function u with domain X such that for all x and y in X, $x \succeq y$ if and only if $u(y) - u(x) \leq 1$.

A) Where the relations \succ and \sim are defined from \succeq in the usual ways, describe the relations $x \succ y$ and $x \sim y$ in terms of inequalities involving $u(x)$ and $u(y)$.

Answer $x \succ y$ if $u(x) - u(y) > 1$. $x \sim y$ if $|u(x) - u(y)| \leq 1$

B) Determine whether each of the following three statements is true or false. If it is false show a counterexample. If it is true, prove it.

Claim 1) The relation \succeq is transitive.

Answer False: Let $u(x) = 3$, $u(y) = 2$ and $u(z) = 1$. Then $z \succeq y$, $y \succeq x$, but NOT $z \succeq x$.

Claim 2) The relation \succ is transitive.

Answer True. If $x \succ y$ and $y \succ z$, then $u(x) - u(y) > 1$ and $u(y) - u(z) > 1$. Therefore $u(x) - u(z) = (u(x) - u(y)) + (u(y) - u(z))$

Claim 3) The relation \succeq is continuous.
C) Suppose that \succeq is described as above, where $u(x_1, x_2) = x_1x_2$. Let B be the set of things the consumer can afford with income 10 and where the price of good 1 is 1 and the price of good 2 is 2. Is $c(B)$ non-empty? Sketch the set $c(B)$. Describe this set, using two inequalities.