Rooftop Theorem for Concave functions

This theorem asserts that if f is a differentiable concave function of a single variable, then at any point x in the domain of f, the tangent line through the point $(x, f(x))$ lies entirely above the graph of f. You should draw a picture.

Theorem 1. If f is a continuously differentiable concave function of a single variable, defined on a real interval I, then for all x_1 and x_2 in I,

$$f(x_1) + (x_2 - x_1)f'(x_1) \geq f(x_2).$$

Geometrically, this theorem says that the tangent line to the graph of f passing through any point $(x_1, f(x_1))$ must lie entirely on or above the graph of f. You should draw a couple of pictures to convince yourself of this geometry.

Proof. Since f is a concave function, it must be that for all x_1 and x_2 in I, and all $t \in [0,1]$,

$$f((1-t)x_1 + tx_2) \geq (1-t)f(x_1) + tf(x_2). \quad (1)$$

Rearranging terms, we see that Equation 1 is equivalent to

$$f(x_1 + t(x_2 - x_1)) - f(x_1) \geq t(f(x_2) - f(x_1)). \quad (2)$$

Dividing both sides of equation 2 by t, we have

$$\frac{f(x_1 + t(x_2 - x_1)) - f(x_1)}{t} \geq f(x_2) - f(x_1) \quad (3)$$

This implies that

$$(x_2 - x_1) \frac{f(x_1 + t(x_2 - x_1)) - f(x_1)}{t(x_2 - x_1)} \geq f(x_2) - f(x_1) \quad (4)$$

Then it must be that

$$(x_2 - x_1) \lim_{t\to 0} \frac{f(x_1 + t(x_2 - x_1)) - f(x_1)}{t(x_2 - x_1)} \geq f(x_2) - f(x_1) \quad (5)$$

But then we have

$$\lim_{t\to 0} \frac{f(x_1 + t(x_2 - x_1)) - f(x_1)}{t(x_2 - x_1)} = \lim_{h\to 0} \frac{f(x_1 + h) - f(x_1)}{h} = f'(x_1) \quad (6)$$

It follows that:

$$(x_2 - x_1)f'(x_1) \geq f(x_2) - f(x_1). \quad (7)$$

Rearranging Equation 8, we have the desired result, namely

$$f(x_1) + (x_2 - x_1)f'(x_1) \geq f(x_2). \quad (8)$$

\Box
Now an easy and important consequence of the Rooftop Theorem is the following.

Theorem 2. If \(f \) is a continuously differentiable function of a single variable, defined on a real interval \(I \), then \(f \) is a concave function if and only if \(f''(x) \leq 0 \) for all \(x \in I \).

One proof of this theorem is to apply Taylor’s theorem and the Rooftop theorem. (Hint: Write the exact form of the second order Taylor’s expansion.)

Here is another proof. Suppose that \(f \) is a concave function. Choose any two points \(x \) and \(y \) in \(I \) such that \(x > y \). The Rooftop Theorem implies that \(f(x) - f(y) \leq f'(y)(x - y) \) and also \(f(y) - f(x) \leq f'(x)(y - x) \). The second inequality is equivalent to \(f(x) - f(y) \geq f'(x)(x - y) \). It follows that \(f'(x)(x - y) \leq f(x) - f(y) \leq f'(y)(x - y) \) and hence that \(f'(x) \leq f'(y) \) whenever \(x > y \). But this means that \(f' \) is a non-increasing function and hence \(f''(x) \leq 0 \) for all \(x \in I \).

A similar argument establishes the converse.