A Game with Altruistic Players

Two players play a single round of a game with two possible strategies, C and D. They choose their strategies simultaneously. If both players play C, they each get a money payoff of 4. If both players play D, they each get a money payoff of 3. If one player plays C and the other plays D, the player who played D gets 6 and the player who played C gets 0.

A) These players are not entirely “selfish.” Where m_1 and m_2 are the money payoffs of players 1 and 2, preferences of player 1 are represented by a utility function $m_1 + am_2$ and preferences of player 2 are represented by a utility function $m_2 + am_1$. The players act as if their payoffs are as given by their utility functions. Write down the strategic form description of the resulting game. For what range of values of a is this game a Prisoners’ Dilemma? For values of a where the game is not a Prisoners’ Dilemma, find the Nash equilibria.

B) Suppose that Player 2 cares only about his own money payoff, but Player 1 cares about the payoffs of both players. Player 1’s preferences are represented by the utility function $m_1 + am_2$. Player 2’s preferences are represented by the utility function m_2. Write down the strategic form description of the resulting game. For what range of values of a is this game a Prisoners’ Dilemma? For values of a where the game is not a Prisoners’ Dilemma, find the Nash equilibria.

C) Suppose that the game is as before, except that when both play D, each gets a payoff of 1. Answer the questions in Parts A and B for this case.