Answer to Kreps Problem 18.1

(a) First calculate Drake’s expected utility if he has no insurance. This is

\[0.7 \times \sqrt{90,000} + 0.3 \times \sqrt{40,000} = 270. \]

Now calculate his utility if he buys the insurance policy. This is

\[0.7 \times \sqrt{80,000} + 0.3 \times \sqrt{60,000} = 271.46 \]

He would buy it.

(b) Let \(P \) be the premium and \(Q \) be the payout if Drake doesn’t get job. Expected payout is \(0.3Q \), so we need \(0.3Q \leq P \). Efficiency in risk sharing means that Drake would be fully insured, so that his net income is the same no matter what happens. This means that \(Q = 50,000 \). Drake’s certainty equivalent if he gets no insurance is the solution to \(\sqrt{X} = 270 \) or \(X = 270^2 = 72,900 \). If Drake pays \(P \) for full insurance, his income is certain to be \(90,000 - P \). We need \(90,000 - P \geq 72,900 \) for Drake to buy the insurance. That is, \(P \leq 17,100 \). Putting these conditions all together, we need \(P \geq 15,000 \) for the insurance company to at least break even and we need \(P \leq 17,100 \) for Drake to buy the insurance.

(c) Who will buy the insurance at a price of \$15,000\? Expected utility if you buy the insurance is \(\sqrt{75,000} = 273.8 \). Expected utility of no insurance if your probability of getting a job is \(q \) will be \(q \times 300 + (1 - q) \times 200 = 200 + 100q \). Only people with probability \(q \leq 0.738 \) will buy insurance. Beantown’s customers will be 100 people with \(q = 0.5 \), 100 with \(q = 0.6 \) and 100 with \(q = 0.7 \). Its expected payout per customer will be \(0.4 \times 50,000 = 20,000 \). Its revenue per customer is only \$15,000.

(d) Beantown could charge a premium just over \$25,000. This would attract people who have a probability of \(0.5 \) of getting a job. If they charged \$25,000, expected utility of these people if insured would be \(\sqrt{65,000} = 254.9 \) as compared to the utility of 250 that they would get with no insurance. These people would buy insurance so long as \(\sqrt{90,000 - P} \geq 250 \) which means \(P \leq 90,000 - 62,500 = 27,500 \).

A uniform rate would not allow Beantown to make money and attract customers with higher probability of getting a job than \(0.5 \). To attract people with probability \(0.6 \) of getting the job, it would have to offer them a price such that \(\sqrt{90,000 - P} \geq 260 \). This means \(90,000 - P \geq 67,600 \), which means \(P \leq 22,400 \). But to break even the insurance company would need to receive at least \(0.45 \times 50,000 = 22,500 \).

(e) Suppose that somebody has probability \(q \) of getting a job. He will want this policy if

\[q \sqrt{76,000} + (1 - q) \sqrt{56,000} \geq 200 + 100q. \]

This is the case if

\[275.6q + 236.6(1 - q) \geq 200 + 100q. \]
Simplifying, we have $61q \leq 36.6$ and $a \leq 0.6$. So this contract would attract the .5 and .6 types and not the others. Beantown’s expected payout per customer would be $30,000 \times 0.45 = $13,500, so it would make a profit selling this insurance for $14,000.

(f) Hint: If your probability of getting a job is q, and you buy no insurance, your expected utility is $200 + 100q$. If you buy full insurance, your expected utility is 254. If you buy the the 10,000 policy at 3500 is

$$q\sqrt{86,500} + (1-q)\sqrt{46500} = 215.6 + 78.5q.$$

Make a similar calculation for the other two policies. Each of these is a linear expression. Draw the lines on a graph. Think about how you will tell who will choose each policy.