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The computerized ATPCO system, introduced in the early 1990s, allowed air-
lines to rapidly adjust prices and to monitor those of rivals. The result, according 
to the US Department of Justice, was anticompetitive behavior—firms were able to 
more easily cooperate to keep prices high, costing consumers up to 2 billion dollars 
(Borenstein 2003, Klein 1998).

Does the ability to rapidly adjust actions actually encourage cooperation? 
Compared to the one-shot or discrete time strategic interactions usually analyzed 
by game theorists, are outcomes much different when choices are made asynchro-
nously, in continuous time? These questions are not merely of theoretical interest 
because many modern interactions, ranging from just-in-time team production to 
e-commerce pricing, involve asynchronous strategic decisions made in real time.

In this article we take such questions to the laboratory. In a continuous time setting, 
we study variants of the prisoner’s dilemma, the simplest and most famous exam-
ple of a strategic tension between efficient cooperation and inefficient self-interest. 
Pairs of laboratory subjects are matched anonymously in 60-second periods, within 
which they can switch freely between cooperation and defection. They accrue flow 
payouts from one of four parametric variants of the prisoner’s dilemma and then are 
randomly rematched for the next period. Each session runs 32–36 periods. We also 
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run control sessions with one-shot periods and with repeated discrete time subperi-
ods, using identical payoff matrices, period lengths, and matching procedures.

Section I recalls some previous theoretical and experimental work related to our 
investigation, and Section II lays out our experimental design. Section III reports 
first results: continuous time enables median mutual cooperation rates of 90 percent 
or more in most of the variants, more than double the rates seen in our discrete (eight 
stages per period) repeated games, while mutual cooperation becomes quite rare 
in the one-shot sessions. The underlying strategies seem broadly consistent with 
some of the theoretical literature, particularly with Radner (1986), and Simon and 
Stinchcombe (1989).

Adapting previous theory to a continuous time setting with fast but not instan-
taneous reactions, Section IV obtains predictions arising from a class of epsilon 
equilibria in cutoff strategies. It then reports a second wave of sessions that vary 
the number of discrete stages from two to 60 within each 60-second period. As pre-
dicted, the data show a negative, almost linear, relationship between the cooperation 
rate and the length of the stage game. Indeed, the mutual cooperation rates with two 
stages per period are not far from zero, and those with 60 stages are not far from the 
rates seen in continuous time.

Section V offers a broader discussion of the findings and remaining questions, 
and Appendix A collects mathematical details. Three online appendices provide 
additional mathematical derivations, additional data analysis, and instructions to 
subjects.

I.  Some Previous Work

Table 1 parametrizes the standard prisoner’s dilemma payoff bimatrix (see 
Rapoport and Chammah 1965 for a related parametrization). With no loss of the-
oretical generality, the table normalizes the “cooperation” payoff at 10 and the 
“sucker” payoff at 0. Strategy B is strictly dominant, and so (B, B) is the unique 
Nash equilibrium, as long as the “temptation” payoff satisfies x > 10. The restric-
tion y < 10 on the “punishment” payoff ensures that the Nash equilibrium is inef-
ficient, and x < 20 ensures that the sucker-temptation profiles (A, B) and (B, A) also 
yield a lower payoff sum than the cooperation profile (A, A). Thus the dilemma: the 
unique equilibrium is inefficient.

A. Theory

The prisoner’s dilemma was first posed by Melvin Dresher and Merrill Flood in 
1950 and was given its famous framing story by Albert Tucker in that same year.1 
Since then, legions of theorists have sought ways to evade the dilemma and to sup-
port cooperation. John Nash apparently first pointed out (in private correspondence 
quoted in Flood 1952) that finite repetition doesn’t help: all-defect—(B, B) in every 
period—remains the unique Nash equilibrium. Nash also pointed out that patient 

1 Interestingly, the first published description of the game apparently was an experimental paper by Merrill M. 
Flood (1952), reporting an informal 100-period repeated prisoner’s dilemma session with asymmetric temptation 
payoffs.
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pairs of players matched over an infinite sequence of stages can support coopera-
tion, for instance by implementing grim trigger strategies. However, by the Folk 
Theorem (e.g., Fudenberg and Maskin 1986), they can just as easily support (as a 
Nash equilibrium of the repeated game) all-defect and a wide variety of other inef-
ficient profile sequences.

What happens if the game is played over a continuous finite time interval, say 
t ∈ [0, 1]? Perhaps the most obvious approach is to specify a minimum reaction time 
τ and to formalize the game as a finitely repeated game with 1/τ stages (rounding up 
to the nearest integer). The theoretical prediction again is that the dilemma persists, 
and only all-defect survives in Nash equilibrium.

Huberman and Glance (1993) show that cooperation evaporates in spatial ver-
sions of the repeated prisoner’s dilemma when players move asynchronously, in real 
time. According to the authors, the lesson is that coordination and cooperation can 
get an artificial boost when all players must move simultaneously at discrete time 
intervals. Clearly there is a need for more fully articulated models of games played 
in continuous time.

James Bergin and Bentley MacLeod (1993) develop one such model. They 
assume that actions cannot be reversed within time ϵ, look for ϵ-equilibria, and 
pass to the limit as ϵ goes to 0. For the prisoner’s dilemma, they obtain a Folk 
Theorem result: virtually any profile sequence that gives each player an average 
payoff of at least y < 10 can be supported as a Nash equilibrium (indeed, one that 
is renegotiation-proof).

Radner (1986) had previously studied ϵ-equilibria of the finitely repeated prison-
er’s dilemma and (although he did not emphasize it) obtained an insight that we find 
very useful. Assume that players seek to maximize the average payoff over T < ∞ 
repetitions of the game in Table 1. Let ​C​k​ denote the strategy of playing Grim (i.e., 
choosing A until the other player plays B and choosing B thereafter) up through 
period k and playing B in the remaining periods k + 1, …, T. The usual unraveling 
argument notes that ​C​k−1​ is a best response to ​C​k​ for all k = 1, …, T. However, for 
ϵ > (x + y − 10)/T, Radner’s equations (17, 19) show that ​C​T−1​ yields a payoff 
within ϵ of the best response payoff against ​C​k​ for every k = 1, …, T. The insight is 
that, when T is large, you lose considerably more than ϵ if your defection time n is 
much earlier than the other player’s defection time k, but by choosing near-maximal 
n, you never lose more than ϵ, no matter how large or small is k. Thus, waiting longer 
to defect is nearly dominant in Radner’s setup. This suggests that mutual coopera-
tion can prevail.

Simon and Stinchcombe (1989) propose a general model of games played in 
continuous time. They consider discrete grids in the time interval [0, 1) for games 
with finite numbers of players and actions. Given some technical conditions (e.g., 
the number of strategy switches remains uniformly bounded for each player), in 

Table 1—Generic Form of Prisoner’s Dilemma, with 20 > x > 10 > y > 0

A B

A ( (10, 10) (0, x) )B (x, 0) (y, y)
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the limit as the grid interval approaches zero they obtain well-defined games in 
continuous time. Subgame perfection is automatic in these games, but backward 
induction does not work because the real numbers are not well ordered (Anderson 
forthcoming). For example, time t = 1 has no immediate predecessor: for any 
previous time, say t = 1 − h, there are an infinite number of later times that fall 
before t = 1, e.g., t = 1 − h/17. Consequently, some repeated game equilibria 
disappear in the continuous limit, while new equilibria can appear. Consistent with 
Radner’s insight, Simon and Stinchcombe focus on Nash equilibria which survive 
iterated deletion of weakly dominated strategies. For games in continuous time 
similar to the prisoner’s dilemma, they find a unique such equilibrium outcome: 
full cooperation at all times.

Thus existing theoretical literature offers three competing predictions for our con-
tinuous time experiment. The (naively extended) theory of finitely repeated games 
predicts that the all-defect profile (B, B) will predominate; Simon and Stinchcombe 
(and Radner) predict that the full cooperation profile (A, A) will predominate; and 
the extended Folk Theorem predicts virtually any profile sequence that gives each 
player at least the all-defect payoff y.

This complete information literature predicts no other role for payoff param-
eters x, y within their admissible range. The famous Gang of Four model intro-
duced by Kreps et al. (1982) incorporates a touch of incomplete information and 
obtains the qualitative prediction that cooperation will decrease when either x or 
y increases. The same prediction arises from Quantal Response Equilibrium (e.g., 
McKelvey and Palfrey 1995), from the heuristics of Rapoport and Chammah 
(1965), and from most other models that include some sort of noise or imperfect 
information.

B. Experiments

Rapoport and Chammah (1965) conducted laboratory experiments with variants 
of the prisoner’s dilemma iterated over 350 stages with fixed pairs of subjects, 
changing the x,y parameters randomly between 50 stage blocks. They find mutual 
cooperation rates above 60 percent in blocks with lowest x, y parameters, and 
cooperation rates under 50 percent in blocks with highest x, y. Rapoport, Guyer, 
and Gordon (1976) fix x = 15, y = 5 in our normalization and report that, over 
300 stages, individual cooperation rates initially declined, then rose modestly and 
averaged about 55 percent overall. Unfortunately, this early work with the finitely 
repeated prisoner’s dilemma did not provide subjects the opportunity to learn the 
logic of backward induction, because there was no stationary repetition of the 
repeated game.

More recent experiments—e.g., Selten and Stoecker (1986), Andreoni and Miller 
(1993), Hauk and Nagel (2001), and Bereby-Myer and Roth (2006)—feature sta-
tionary repetition of ten-stage repeated prisoner’s dilemmas; that is, each subject 
plays a sequence of different ten-stage games against different opponents. These 
papers report that, after several repetitions of the repeated game, most subjects 
cooperate in early stages, but cooperation begins to unravel around the fifth stage 
and is rare after the eighth stage. Thus, even with ample opportunity to learn, the 
unravelling process seems at best incomplete in the laboratory data.
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Potential explanations include the sequential equilibria of Kreps et al. (which were 
motivated by the laboratory results), or widespread altruism. Russell W. Cooper et 
al. (1996) find both of these explanations inadequate. In their experiment, coop-
eration rates decline fairly steadily over periods, not abruptly as in pure sequential 
equilibria, and remain positive in the last period. Moreover, contrary to the best 
calibrated mixed sequential equilibrium, there is an increasing, not decreasing, rate 
at which cooperation declines in later subperiods (their Figure 3). Incomplete unrav-
eling remains a puzzle.

Other experiments study the “infinitely repeated” prisoner’s dilemma, in which 
there is an announced probability q that the matching ends after the current stage. 
Roth and Murningham (1978) produced mixed evidence for the theoretical pre-
diction that cooperation is possible in such games. More recently, Dal Bo (2005) 
finds that individual cooperation rates respond sensitively to q, exceeding 50 percent 
in the most favorable case, while Aoyagi and Frechette (2009) observe individual 
cooperation rates as high as 85 percent under a very high q of 0.9.

Dal Bo and Frechette (2011) show that experience in these repeated games does 
not necessarily lead to greater cooperation and that variation in parameters similar 
to our x and y has a significant impact on cooperation. Individual cooperation rates 
average roughly 35 percent and rise to 76 percent with parameters more conducive 
to cooperation than any used in our own study. These authors conclude that the 
“shadow of the future” seems pivotal to cooperation.2

There are several ways to extrapolate these empirical results to continuous time. 
In 60-second periods, the shadow of the future shrinks steadily to zero. Will coop-
eration also decline steadily to zero? With more than 30 stationary repetitions per 
session and continuous time, our experiments provide unusually good learning 
opportunities. Will subjects learn to unravel cooperation more completely? Or will 
the absence of a well ordering, or asynchronous decisions, or other aspects of con-
tinuous time, twist the strategic behavior in a different direction? Answering such 
questions clearly requires new experiments.

II.  Treatments and Experimental Design

We ran experiments using a new software package called ConG, for Continuous 
Games. Figure 1 shows the user interface. Each subject can freely switch between 
row actions A and B by clicking a radio button (or pressing an arrow key), causing 
the chosen row to be shaded. In our main treatment (Continuous time) the other 
player’s current choice is shown as a shaded column, and the intersection is doubly 
shaded. The computer response time to action switches is less than 50 milliseconds, 
giving players the experience of continuous action. The screen also shows the time 
series of actions (coded here as 1 for A and 0 for B) for the player and her coun-
terpart in the upper right graph, while flow payoffs for each player are shown in 
the lower right graph. The top of the screen also shows the time remaining and the 
accumulated flow payoff.

2 Indeed, under very favorable payoff parameters and a very strong shadow of the future, Dal Bo and Frechette 
eventually observe individual cooperation rates as high as 96 percent.
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We study three treatments of time: Continuous, One-Shot, and Grid. In all treat-
ments, each period lasts 60 seconds, during which subjects are allowed to change 
their actions at will. In Continuous time, subjects observe the unfolding history of 
actions and payoffs, and at the end of the period they earn the integral of the flow 
payoffs shown in the lower right hand graph of Figure 1.

In One-Shot time, subjects do not observe their counterpart’s action until the peri-
od’s end. They earn the lump sum payoffs for the action profile chosen at that point.

Grid time divides each 60-second period into n equal subperiods. Payoffs in each 
subperiod are determined only by the last action profile chosen in that subperiod. 
Only at the end of the subperiod does a player see her counterpart’s choice, and that 
last profile becomes the initial profile of the next subperiod. Payoffs for the entire 
period are the average of the lump sum subperiod payoffs or, equivalently, the inte-
gral across subperiods of the piecewise constant flow payoffs. Thus One-Shot time 
is the same as Grid time with n = 1, and Continuous time is closely approximated 
by Grid time with n > 300.

Our other treatment variable, payoff parameters, examines four different configu-
rations of (x,y), one from each quadrant of the admissible domain (10, 20) × (0, 10). 

Figure 1. Screenshot of Continuous Time Display

http://pubs.aeaweb.org/action/showImage?doi=10.1257/aer.102.1.337&iName=master.img-000.jpg&w=370&h=307
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They are Easy = (14, 4), Mix-a = (18, 4), Mix-b = (14, 8), and Hard = (18, 8). The 
names reflect the presumption that cooperation will be more difficult given either a 
larger temptation x or a larger punishment payoff y.3

In all treatments, subjects are randomly rematched with a new counterpart each 
period. At period’s beginning, each of the four possible initial profiles is chosen inde-
pendently with probability 0.25. Within period, profiles are automatically extended 
forward in time (to the next subperiod in Grid) until a player changes her action.

We first ran four sessions for Continuous and three parallel sessions for One-
Shot.4 Ten subjects participated in each session (except for one Continuous session 
with only eight subjects), which consisted of 32 periods divided into eight blocks. 
Each of the four parameter sets appears once, in random order, in each block, and 
the sequences are matched across the two time treatments. Then we ran another four 
matched sessions, again using the same sequences, under the Grid treatment with 
n = 8 subperiods (hereafter called Grid-8 sessions). This treatment is comparable 
to the 10-stage repeated games featured in previous laboratory studies. We also ran 
three additional Grid sessions, to be described later, that varied n within session.

A key aspect of our design is that period lengths and potential payoffs are kept 
constant across Continuous, One-Shot, and Grid treatments. The only difference 
between these treatments is the frequency with which subjects can adjust their pay-
off-relevant choices.

Subjects in all sessions were randomly selected using online recruiting software 
at the University of California, Santa Cruz from our pool of volunteers, undergradu-
ates from all major disciplines. They were all inexperienced, i.e., had never partici-
pated in a prisoner’s dilemma experiment in our lab. On arrival, subjects received 
written instructions (available in online Appendix D) which also were read out loud. 
Sessions lasted on average 75 minutes, subjects were paid 5 cents per point each 
period, and average earnings were roughly US$17.50 per subject.

III.  Main Results

To provide an overview, we compile the fraction ​ρ​ipk​ of time spent in each profile ρ 
by player i and her counterpart j(i, p, k) in period p of session k. Due to the symmetry 
of the game, the four action profiles reduce to three player-pair profiles:
•	 Mutual Cooperation (ρ = c): Profile (A, A);
•	 Mutual Defection (ρ = d): Profile (B, B);
•	 Sucker-Temptation (ρ = s): Profile (B, A) or (A, B).

For example, if player 2 spent equal time in each of the four action profiles in 
period 3 of session 4, the player-pair profile data would be ​c​234​ = ​d​234​ = 0.25 and ​
s​234​ = 0.50. By definition, ​ρ​ipk​ ∈ [0, 1] and ​∑ ρ​ 

 
 ​ ​ρ​ipk​​ = ​c​ipk​ + ​d​ipk​ + ​s​ipk​ = 1. Of 

course, ​ρ​ipk​ = 0 or 1 in the One-Shot treatment, and ​ρ​ipk​ ∈ {m/n : m = 0, 1, 2, …, n} 
in the Grid-n treatment.

3 After normalizing, the payoff parameters used in the studies mentioned in the previous section mostly are in the 
neighborhood of our Easy parameters, and only a few are more challenging than our Mix parameters.

4 A coding error garbled several periods in a single One-Shot session. The data analysis to follow drops these 
periods, but all results are robust to, instead, using the entire dataset or dropping the entire offending session.
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Figure 2 shows mean rates of the three player-pair profiles ρ = c, d, s over succes-
sive four-period blocks,

(1) 	​  ρ​bT​  = ​ 
​∑ k∈T​ 

 
  ​ ​∑ p∈b​ 

 
  ​ ​∑ i​ 

 
 ​ ​ρ​ipk​​​​
  __  

​∑ ρ​ 
 
 ​ ​∑ k∈T​ 

 
  ​ ​∑ p∈b​ 

 
  ​ ​∑ i​ 

 
 ​ ​ρ​ipk​​​​​

 ​ .

The randomized block design ensures that each block b = 1, …, 8 includes an equal 
sample of each of the four parameter sets for each time treatment T = One-Shot, 
Grid-8, Continuous.

Behavior seems fairly settled after block 3 (period 12). From this point onward, 
mean mutual cooperation rates are zero in One-Shot but approach 80 percent in 
Continuous. The mutual cooperation rate in Grid-8 is intermediate at about 30 per-
cent. Mutual defection rates have the opposite pattern, since mean s rates are low in 
One-Shot and Grid-8 and are even lower in Continuous.

Most previous authors report individual cooperation rates κ = c + 0.5s, which 
can be seen in Figure 2 as horizontal dotted lines that bisect the ST bar. Our subse-
quent analysis will focus on settled behavior; unless otherwise noted the data will 
be drawn from blocks 4–8 (periods 13–32). None of the broad conclusions is altered 
by including the noisier data from blocks 1–3, but in some cases the statistical sig-
nificance is lower.

Cumulative distribution functions (CDFs) reveal heterogeneous behavior. In 
Figure 3 we plot CDFs of mutual cooperation rates across periods and pairs for each 
treatment. In the Continuous treatment, the cooperation rate exceeds 80 percent for 
about two-thirds of the pairs, while in One-Shot cooperation virtually never happens. 
In Grid-8, a plurality (not quite a majority) of periods have a mutual cooperation rate 
of zero, but a substantial minority (about a third) have rates of 75 percent or more.

For none of these treatments is behavior clustered symmetrically around the mean. 
The median therefore provides a more reliable measure of central tendency, and it 
will be our focus for the remainder of the data analysis. Table 2 shows the median 

Figure 2. Outcomes over Blocks by Treatment

Cooperation        ST         Defection

0.
0 

   
   

   
   

   
   

   
0.

2 
   

   
   

   
   

   
  0

.4
   

   
   

   
   

   
   

 0
.6

   
   

   
   

   
   

   
0.

8 
   

   
   

   
   

   
   

1.
0



345friedman and oprea: a continuous dilemmaVOL. 102 NO. 1

cooperation rate in each treatment cell (again, for periods 13–32). Results are strik-
ing. For each parameter set, these rates are all zero in One-Shot, but in Continuous 
they range from 81 percent (in Hard) to over 93 percent (in Easy). The cooperation 
rates in Grid-8 are far more heterogeneous, ranging from zero (in Hard) to 75 per-
cent (in Easy). Overall, as can be seen in the bottom row, there is a strong increase 
in cooperation as we move from One-Shot to Grid-8 to Continuous, and pairwise 
Mann-Whitney tests applied to by-subject median cooperation rates confirm this 
ordering at the 1 percent level.

To summarize, 

Result 1: Cooperation prevails in the Continuous treatment, is less than half as 
common in Grid-8, and is quite rare in One-Shot.

Figure 3. CDFs of Cooperation Rates

One-shot

Grid-8

Continuous

Cooperation

C
D

F
1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Table 2—Median Cooperation rates (and bootstrapped standard errors)

Parameters x y Continuous Grid-8 One-Shot

Easy 14 4 0.931 0.750 0.000
(0.014) (0.066) (0.000)

Mix-a 18 4 0.890 0.500 0.000
(0.012) (0.118) (0.000)

Mix-b 14 8 0.905 0.000 0.000
(0.013) (0.028) (0.000)

Hard 18 8 0.811 0.000 0.000
(0.028) (0.005) (0.000)

All 0.893 0.250 0.000
(0.009) (0.105) (0.000)
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Table 2 also suggests that the impact of parameters differs across the time treat-
ments. In Grid-8, cooperation never takes hold when y = 8 (Mix-b and Hard), but 
it is substantial when y = 4. In this last case, the x parameter also seems to have 
an impact. Parameters have no visible impact in One-Shot and a relatively small 
impact in Continuous, probably because cooperation rates are already so extreme 
in those treatments.

To follow up on these impressions, we ran quantile regressions of the form

(2) 	​  c​ij​  = ​ β​0​  + ​ β​x​ ​X​ij​  + ​ β​y​ ​Y​ ij​  + ​ β​x y​ ​X​ij​  × ​ Y​ ij​  + ​ ϵ​ij​ ,

where ​c​ij​ is subject i’s median rate of cooperation (over periods) under parameter 
set j; X and Y are indicator variables taking a value of 1 when x and y take their high 
values and ​ϵ​ij​ is a normally distributed error term. Table 3 reports separate estimates 
for Continuous data and Grid-8 data; there is insufficient variation in the One-Shot 
data to estimate the model. The intercept estimates the cooperation rate in the Easy 
treatment. Increasing either x or y does not significantly change cooperation rates 
in Continuous, but their joint effect (found by adding ​β​x​ , ​β​y​, and ​β​x y​) in the Hard 
treatment is significant at the 5 percent level. In Grid-8 both parameters are highly 
significant, both statistically and economically.

Result 2: Parameters have large negative effects on cooperation rates in the 
Grid-8 treatment but have little or no effect in Continuous and One-Shot.

A. Behavior within Continuous Periods

What forces support the remarkably high rate of mutual cooperation in the 
Continuous treatment? Some clues can be gleaned from the trends within periods. 
The top panel of Figure 4 plots median5 rates of mutual cooperation ​c​0.5​(t) at each 
second for each parameterization. The median initial rate ​c​0.5​(0) is zero due to the 

5 Mean rates are similar but less extreme—they rise more gradually, reach a lower plateau and begin to decline a 
few seconds earlier—because c(t) is bounded above at 100 percent and choices are dichotomous.

Table 3—Quantile Regression Coefficient Estimates  
(and bootstrapped standard errors) for Equation (2)

Variable Continuous Grid-8

Intercept 0.919***  0.75***
(0.018) (0.052)

X  − 0.032  − 0.25**
(0.021) (0.119)

Y  − 0.013  − 0.75***
(0.024) (0.103)

X × Y  − 0.057  0.25*
(0.043) (0.149)

*** Significant at the 1 percent level.
  ** Significant at the 5 percent level.
    * Significant at the 10 percent level.



347friedman and oprea: a continuous dilemmaVOL. 102 NO. 1

random assignments of initial actions ​ρ​ipk​(0), only a quarter of which are mutually 
cooperative. Strikingly, ​c​0.5​(t) rises to 100 percent by t = 5 seconds and remains 
there until only a few seconds remain. Then it falls rapidly, all the way to zero except 
in the Easy treatment.

The lower panel of Figure 4 aggregates across parameter sets but shows other 
quantiles ​c​Q​(t). The behavior at Q = 0.85, the 85th percentile, is mutual coopera-
tion at each second, and ​c​0.75​(t) also is 1.0 except during the first two seconds. Lower 
quantiles indicate that cooperation ceases in the last few seconds for the majority 
of players. The graph of ​c​0.15​(t) shows that the cooperation ceases for more than 
15 percent of the subjects when about 16 seconds remain (and doesn’t begin for this 
fraction until 14 seconds have elapsed). The figure also shows that the cooperation 

Figure 4

Notes: The top panel shows median rates of cooperation on a one-second grid in Continuous. The bottom panel 
shows cooperation rates at various quantiles of the distribution on the same one-second grid.
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level falls below 75 percent only when 5 seconds remain, and below 50 percent only 
when one second remains.

Figure 5 collects examples of the underlying individual behavior. Panel A shows 
one pair of players randomly initialized at the mutual defection profile ρ = d. At about 
t = 2 seconds, one of the players (marked in dotted heavy lines) switches to action A, 
putting the pair in Sucker-Temptation profile ρ = s. The other player (gray line) fol-
lows about a second later, and the pair remains in profile c the rest of the period. Player 
Gray earns 9.95 points, very close to the full cooperation payoff of 10, and player Dot 
is close behind at 9.7 points. Similar behavior by another pair is shown in panel B, 
except that Dot defects with about three seconds left in the period, and Gray follows 
within a second. Again, they earn just a bit under 10 points each (Gray 9.77, Dot 9.86).

Such behavior is quite typical. Ninety-five percent of player pairs initially assigned 
to profile ρ = d or s sooner or later move to ρ = c, and the median time it takes to 
get there is only 2.89 seconds. As in panel (b), one of the players usually cuts off 
cooperation near the end of the period, and the other player quickly follows.

Table 4 shows that in the 20 × 38 = 760 player-periods observed in the settled 
final five blocks (20 periods) of the Continuous treatment, almost half of the obser-
vations include no defection from the mutual cooperation profile, and another 
30 percent include only a single defection. About 9 percent defect twice, as in panel 
C of Figure 5. In this example, from an initial d profile player Dot switches within a 
couple of seconds to cooperate and player Gray quickly follows. As in the previous 
panels, profile c prevails for a time, but in this case, at about t = 35 seconds, Dot 
defects. Less than a second later, Gray follows suit. The resulting profile d doesn’t 
last long. Dot soon switches back to A and Gray again follows quickly, restor-
ing cooperation that lasts until almost the end of the period. With 2 or 3 seconds  
remaining (about the median, as shown in the last column of Table 4) Dot defects 
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from mutual cooperation for the last time, and Gray again quickly follows. In this 
period, Dot earned 9.50 and, despite being twice suckered, Gray earned 9.60.

B. Cutoff Strategies, Simple and Augmented

Such behavior seems analogous to that observed in many repeated games set-
tings, including Aoyagi and Frechette (2009), Dal Bo and Frechette (2011), and 
Engle-Warnick and Slonim (2006). To describe it in our setting, consider the follow-
ing idealized strategy. Having achieved the mutual cooperation profile early in the 
period, a player using a simple cutoff strategy will unilaterally cut off cooperation 
only in the last few seconds but will match any prior defection as soon as possible. 
The median cutoff time in our data is with less than three seconds left, as shown in 
the last column of Table 4. The median response time to a defection is τ = 0.621 
seconds or about 1 percent of the period.6

Augmenting such simple cutoff strategies, players occasionally “test” the other 
player’s reciprocity reflexes (or attention), as Dot does at t = 35 seconds in panel (c). 
We refer to Dot’s subsequent return to cooperation as “repentance,” which is quickly 
accepted by Gray. Sometimes following a defection from cooperation, we see the 
other player offer “forgiveness” by switching briefly to action A; the defector usu-
ally follows quickly, restoring mutual cooperation. In an augmented cutoff strategy, 
a player will accept repentance, and may offer forgiveness, as long as his switch to 
A occurs before the chosen cutoff time and after sufficient time has passed that the 
other player does not profit from his defection.7

Almost 12 percent of the observations in Table 4 involve three or more defections, 
which suggests that not all observed behavior is consistent with these augmented 
cutoff strategies. Panel D of Figure 5 shows what seems to be a simple mistake: a 
player defected but returned almost instantly to the cooperation profile and remains 
there. In panel E, player Gray pulses briefly to defection at about t = 13 seconds, 
and returns before Dot reacts. This earns her a fraction of a penny, and she tries it 
again, and then many times again in the time interval (22, 28) seconds. At that point, 
Dot defects and Gray stops “blitzing.” A similar blitzing episode plays out more 
rapidly in the time interval (45, 49). A final pattern we call “rollercoastering”—both 

6 To be more precise, after filtering out the blitzes and roller coasters described below, the median duration of all 
profiles ρ = s that follow ρ = c is 0.621, and the mean is 0.91 seconds.

7 Our working paper discusses this last point at greater length. A figure analogous to Figure 6 below, but includ-
ing earnings in the subsequent profile, shows that in fact such defections are not profitable on average.

Table 4—Number of Breaks from Mutual Cooperation, Corresponding Share of 
Players, and Corresponding Median Time (in seconds) of Last Mutual Cooperation

Number of breaks Share Cutoff time

0 0.479 60.0
1 0.305 57.6
2 0.089 57.9
3 0.057 57.3
4 0.022 57.6
5+ 0.047 57.3
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players blitz as in panel (f) and earn average flow payoffs (10 + x + y)/4, which is 
only 1 to 3 points short of the cooperative rate of 10 points.

Since very few subjects consistently exhibit any such behavior, we regard these 
deviations from cutoff strategies mainly as either brief errors or inexpensive escapes 
from boredom. Perhaps a stronger piece of evidence is the fact that following defec-
tion from mutual cooperation prior to the last 10 seconds, the defector repents in 
82 percent of cases, and the other player offers forgiveness in another 16 percent. In 
only 1.7 percent of these cases do players simply stay in defection, and they eventu-
ally resume mutual cooperation in 85 percent of cases. Thus most deviations from 
cooperation before the last few seconds are quite transitory.

Result 3: Subjects in the Continuous treatment tend to use simple or augmented 
cutoff strategies, defecting near the end of the period. Earlier deviations from 
mutual cooperation are typically short lived and are followed by a return to mutual 
cooperation.

Observed behavior in the Grid-8 treatment can also be interpreted as arising from 
cutoff strategies. Conditional on reaching a cooperative profile, the median Grid-8 
subject defects during a cooperative profile only once.

Are cutoff strategies an expensive luxury? In the Continuous treatment, defec-
tions from mutual cooperation are usually matched so quickly that, prior to the last 
few seconds, they do not seem to improve expected earnings. Likewise, unilateral 
moves to cooperation can be matched (or retracted) so quickly that they cost very 
little relative to staying in d. Figure 6 plots CDFs of the direct payoff impact 
of switching from mutual cooperation and from mutual defection, relative to the 
counterfactual of staying put. It shows that the costs of initiating cooperation and 
the benefits of initiating defection are nearly always below one cent and do not 
vary much across parameters. The vertical dashed lines in the figure show that, 
by contrast, the payoff effects in Grid-8 are much larger and differ substantially 
across parameters.

IV.  Second Round Predictions and Experimental Results

The last section distilled from the data an intuitively appealing explanation for 
the high rates of mutual cooperation. In continuous time, the temptation to defect 
from ρ = c nearly vanishes when a player expects her counterparty to reciprocate 
immediately. Likewise, at ρ = d, signaling a willingness to cooperate has negligible 
opportunity cost. Augmented cutoff strategies therefore are quite economical. They 
seem quite prevalent in our data and clearly are capable of supporting very high 
rates of cooperation. In our Grid-8 treatment, and in previous experiments with the 
finitely repeated prisoner’s dilemma, the same forces are attenuated but still might 
support the observed moderate rates of cooperation and heterogeneity across param-
eter sets.

Intuitive appeal is a good start, but the explanation raises several questions. Why 
don’t the cutoff strategies unravel? Could they constitute some sort of equilibrium? 
Does the explanation have any testable implications? Are there connections to exist-
ing theory?
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Our answers to these questions are inspired by Radner (1986), who shows that 
highly cooperative outcomes can be supported as part of an equilibrium if agents are 
willing to deviate slightly from best responses. Appendix A adapts Radner’s model to 
a continuous time interval normalized on [0,1] with small reaction lags τ ≥ 0. Like 
Radner (1986), our analysis focuses on a very particular subset of ϵ-equilibria that can 
generate a high level of cooperation. Of course, as with Radner’s model, many other 
ϵ-equilibria can be constructed for this game, so ours is not the definitive analysis.

To achieve our focus, we impose a number of strong simplifying assumptions that 
we do not fully justify but that seem consistent with the data. First, we follow Radner 
in assuming that agents cooperate initially and in restricting the strategy space to 
simple cutoff strategies. Though restrictive, this assumption broadly matches our 
empirical findings—recall that subjects usually achieve cooperation quickly and, in 
nearly 80 percent of cases, they defect no more than once. Second, we assume that 
all players share the same reaction lag τ ≥ 0.

Third, because subjects frequently cooperate until the end, we assume that sub-
jects are insensitive enough to payoff shortfalls that we don’t rule out full-time con-
ditional cooperation, i.e., waiting until the end before unilaterally cutting off mutual 
cooperation.8 Radner’s (1986) key insight is that full-time conditional cooperation 
is almost a dominant strategy in a long finite horizon game. To see that this insight 
extends to a continuous time setting with quick reaction times, consider the follow-
ing thought experiment.

Suppose that your opponent plays a simple cutoff strategy K(u) with cutoff time 
u ∈ (τ, 1). Your best response, of course, is to play K(s) with s = u − τ, but sup-
pose that you instead cut off cooperation too early, at time s = u − z > 0, with 
z ≥ τ. Relative to the best response, you lose (10 − y)(z − τ) because over a time 
interval of length z − τ you get the punishment payoff y instead of the cooperation 

8 A notable consequence of this assumption is that the required degree of insensitivity, ϵ, depends on the size of 
the reaction lag, τ.

Figure 6

Notes: Empirical cumulative distributions of returns from switching from mutual defection and from mutual coop-
eration. Return is the flow payoff in dollars accumulated by the switcher until the next switch by either player, less 
the flow payoff that would have been accumulated in the original profile over the same time interval.
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payoff 10. This loss represents a substantial fraction of potential earnings when z is 
substantially greater than τ.

On the other hand, suppose that you plan to cut off cooperation too late, say at 
time s = u + z ≤ 1 for some z ≥ 0. Then relative to the best response you earn the 
sucker payoff 0 instead of the defection payoff y until you react to your opponent’s 
defection, and you also forgo the temptation x − 10 available before your opponent 
reacts to your defection. Hence your loss is (x + y − 10)τ. Crucially, this loss is 
independent of z; it depends only on the reaction speed and the payoff parameters. 
It follows that, no matter which cutoff time u your opponent selects, it is an ϵ-best 
response to set s = 1 as your cutoff time, for any ϵ ≥ (x + y − 10)τ. Thus K(1), 
full-time conditional cooperation, is nearly a dominant strategy when τ is small.

Section A1 of Appendix A extends this sort of argument to the case where a player 
is uncertain of his opponent’s cutoff time u but knows the distribution from which it 
is drawn. Proposition 1 of the Appendix shows that K(1) becomes an undominated 
strategy in an appropriate limit as τ → 0. Thus Radner’s insight allows us to recover 
something reminiscent of Simon and Stinchcombe’s result.

Section A2 of Appendix A looks for ϵ-equilibria when τ is fixed at a small but 
positive value. Such equilibria take the form of a mixture of cutoff times,9 such 
that each cutoff time potentially used is nearly a best response to the mixture. The 
set of such equilibria seems to be quite large, so we focus on strategies that are not 
dominated by the simple and focal strategy, K(1). This strategy of full-time condi-
tional cooperation is the analog in our setting of the famous grim trigger strategy, 
and mixes that remain after deleting strategies dominated by K(1) are called ND 
distributions.

Proposition 2 of Appendix A shows that any ND distribution constitutes an 
ϵ-equilibrium for any ϵ ≥ (x + y − 10)τ. Appendix A notes that it is realistic 
empirically and sensible theoretically to assume that F is not negatively skewed, and 
to assume that (except perhaps for mass points at s = 1 and s = 0) it has a density 
f. For this case it shows that all strategies employed in any ND ϵ-equilibrium involve 
cutoffs after time

(3)	​ s​L​  =  1  − ​   2x _ 
10  −  y

 ​ τ.

Under the stronger assumption that cutoff times are uniformly distributed on [​s​L​, 1] 
with ​s​L​ > 0, Appendix A derives the prediction that the median overall fraction of 
cooperation will be

(4)	​ c​0.5​  =  1  − ​   ​√ 
_
 2 ​x _ 

10  −  y
 ​ τ.

Online Appendix B shows that the predicted level of cooperation is arguably zero when 
the expression for ​s​L​ is negative in (3) and is surely zero when the expression for ​c​0.5​ is 

9 Due to the strategic symmetry of the prisoner’s dilemma, one looks for a single mixture, not a pair of mix-
tures. Given asynchronous choices, it seems infeasible for players to coordinate on precise interior clock times, so 
Proposition 2 assumes that mixes are nondegenerate over t ∈ (0, 10).
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negative in (4). We should reiterate that these equations come from a particular class  
of ϵ-equilibria, and there exist other sorts of equilibria with different predictions. 
However, as we show below, this class describes our data remarkably well.

In our Continuous treatment, τ depends on subjects’ endogenous reaction time, 
which we estimate to be 0.01 minutes. With τ that small, equations (3–4) predict that 
cutoff times occur very near the end of the period for all (x, y) parameters that we 
used. The intuition is that the temptation to defect and the risks from suffering defec-
tion are quite small in this case. By contrast, in the Grid-8 treatment, τ is exogenous: 
subjects are forced to wait τ = 0.125 of the period to react to a unilateral defection 
by a counterpart. The equations then predict considerably earlier cutoff times that 
vary substantially with the (x, y) parameters. Of course, with τ = 1.0 in the One-Shot 
treatment, the equations give negative values, and the prediction is no cooperation.

These predictions match well the patterns observed in the data. Table 5 calculates 
(4) under each parameter set using τ = 0.01 and τ = 1/8 for Continuous and Grid-8 
respectively. It also reproduces median final cooperation times (a literal interpretation 
of the prediction) and median overall cooperation rates for Continuous and Grid-8. 
The predictions capture the comparative statics reported in Result 2—the impact of 
parameters (especially of y) is large in Grid-8 but is modest in Continuous. Even the 
point predictions are quite close to the data, except that the Grid-8/Easy observations 
are about 16 percentage points (a bit more than one subperiod) above the prediction.

Result 4: Parameter effects in Continuous and Grid-8 are rather well explained 
by a class of epsilon equilibria in cutoff strategies.

Table 5—Rates of Cooperation Predicted by Equation (4), Observed Median Rates 
and Observed Final Times of Mutual Cooperation (with bootstrapped standard errors).

Parameters x y Predicted Cooperation median rate Final time

Panel A. Continuous

Easy 14 4 0.967 0.931 0.994
(0.014) (0.009)

Mix-a 18 4 0.958 0.890 0.973
(0.012) (0.007)

Mix-b 14 8 0.901 0.905 0.974
(0.013) (0.006)

Hard 18 8 0.873 0.811 0.959
(0.028) (0.006)

Panel B. Grid-8

Easy 14 4 0.588 0.750 0.750
(0.066) (0.054)

Mix-a 18 4 0.470 0.500 0.625
(0.118) (0.092)

Mix-b 14 8 0.000 0.000 0.000
(0.028) (0.032)

Hard 18 8 0.000 0.000 0.000
(0.005) (0.006)
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A. Grid-n Sessions and Results

A class of ϵ − equilibria in cutoff strategies governed by reaction lags τ > 0 
accounts nicely for the data so far. Of course, the true test of any explanation lies in 
its excess predictive power—in verified implications beyond the facts it was con-
structed to explain. The key prediction of the model is that cooperation rates rise 
from zero (observed in One-Shot) to about 90 percent (observed in Continuous) as 
the forced reaction lag, τ, shrinks to its minimal feasible value for humans.

To better test this prediction, we conducted additional laboratory sessions 
that exogenously controlled τ at multiple levels. In a Grid-n treatment, the num-
ber n of subperiods exogenously imposes the minimum reaction time τ = 1/n. 
Equation (4) predicts a monotonic (indeed linear) decrease in cooperation as τ 
rises from zero.

Figure 7 plots the theoretical predictions for Mix-a parameters and τ = 1/n as  
solid black lines connecting the dots for n = 60, 30, 15, 8, 4, 2 subperiods. For refer-
ence, the horizontal gray lines plot median rates of cooperation observed in Mix-a 
Continuous and One-Shot (τ = 1) periods. The prediction is that as the grid gets 
coarser, cutoff times fall from nearly continuous levels at n = 60 to One-Shot levels 
at n ≤ 4.

We ran three sessions of Grid-n, each lasting 36 periods and using only the 
Mix-a parameters. In each of three 12-period blocks, we ran each n twice in con-
secutive periods and varied n in the sequence Incr = (2, 4, 8, 15, 30, 60) or Decr 
= (60, 30, 15, 8, 4, 2) or Random. (In two sessions the blocks were sequenced 
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Incr-Decr-Random, and in the other session the blocks were sequenced Decr-Incr-
Random.) Note that the within session variation of n allows us to observe each 
subject’s behavior at each value of τ, generating a particularly stringent test. To 
focus on settled behavior, we once again examine data after the first 12 periods 
(after subjects have experienced each n twice); the results are similar (though a bit 
noisier) if we include all data.

The median subject in the Grid-n sessions employed a cutoff strategy, departing 
from the c profile only once per period, just as in Continuous and Grid-8. As pre-
dicted, the observed timing of cutoffs depended negatively on n. Figure 7 plots the 
median final cooperation time and the median rate of cooperation as a function of 
τ = 1/n. When periods are divided into 2 or 4 subperiods (τ = 0.5 or 0.25) coop-
eration never gets off the ground. However, as the grid gets finer and reaction lags 
become smaller, cooperation rates start to rise towards Continuous levels at n = 60 
(τ = 0.016). Most strikingly, the observed median rates of cooperation and cutoff 
times tightly bracket the point predictions of the model.

Result 5: As the grid becomes finer in Grid-n sessions, the threshold times and 
cooperation rates approach those observed in Continuous. Moreover, both median 
cutoff times and cooperation rates fall nearly linearly with τ and closely track the 
point predictions given by equation (4).

V.  Discussion

Our principal findings can be summarized briefly. First and foremost, in the 
Continuous time treatment, we found remarkably high levels of mutual cooperation 
in all four parameterizations of the prisoner’s dilemma. Even with “hard” param-
eters (maximal temptation and minimal efficiency loss), the all-cooperate profile 
was played 81 percent of the time by the median pair of subjects in later periods. 
The other parameterizations led to median mutual cooperation rates of 89 to over 
93 percent. By contrast, in the Grid-8 control treatment, with rapid repeat pairings 
over eight subperiods, defection was more prevalent than cooperation, and coopera-
tion was rare in the One-Shot control treatment.

Second, the parameterization had a considerably stronger impact (in the predicted 
direction) in the Grid-8 treatment than in Continuous time. In the One-Shot treat-
ment, parameters had negligible impact because cooperation was always rare.

Third, within the 60 second Continuous periods, median rates of cooperation 
quickly reached 100 percent and remained there until the last few seconds of the 
period, when they dropped off abruptly.

Inspired by a strand of existing theoretical literature, we postulated a particular 
class of epsilon equilibria and derived formulas predicting how cooperation rates 
respond to adjustment lags and to payoff parameters. These predictions accounted 
well for the Continuous, Grid-8, and (trivially) One-Shot data. They also nicely 
explained a set of second-round data from Grid-n sessions, which varied the number 
of subperiods from 2 to 60. Thus the formulas correctly predict defection in one-
shot games, cooperation in continuous time and intermediate results on the path 
between the two.
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The underlying intuition is simple. When your opponent can react very quickly, 
defecting from mutual cooperation is likely to earn you the temptation payoff 
only briefly and may cost you the cooperation payoff for the rest of the period. 
Likewise, briefly switching from mutual defection is cheap for you, and may 
catalyze a sustained move to a higher payoff profile. Hence rapid reactions tend 
to stabilize mutual cooperation and destabilize mutual defection, at least until late 
in the period.

Conventional wisdom is that cooperation is susceptible to unraveling when 
the time horizon is finite. Sufficiently late in the period, your incentive is to 
defect. Your opponent’s incentive is to defect before you do, and yours is to 
defect before she does, so backward induction might seem to unravel coopera-
tion. However, experimentalists since Selten and Stoecker (1986) have found 
that, even given good learning opportunities, unraveling typically doesn’t actu-
ally go very far.10

Our work shows that the unraveling argument loses its force when players can 
react quickly. The faster she can react, the less incentive you have to preempt your 
opponent, and the earlier you defect, the more you stand to lose from preempting 
her. Extending the ideas of Radner (1986), and Simon and Stinchcombe (1989), 
we took some first steps towards formalizing this argument in terms of epsilon 
equilibrium. Unraveling is quite limited when players are willing to sacrifice a 
small part of their potential payoff and they can react sufficiently rapidly. The 
faster they can react, the smaller the potential sacrifice and the greater the level of 
cooperation.

Our results set the stage for new theoretical advances. Although the epsilon 
equilibrium analysis in Appendix A organizes and explains our empirical results, 
it rests on several simplifying assumptions that are not fully justified. Additional 
insights may be gained by a more definitive analysis, or by considering alter-
native approaches. More broadly, as noted in Section I, strategic interaction in 
continuous time may be affected by asynchronicity and by the fact that the real 
numbers are not well ordered. These features of continuous time play only a 
minor part in Appendix A, but new theoretical analysis may find more substantive 
roles for them.

Much empirical work also remains. Future laboratory studies could test robust-
ness of our predictions to different payoff parameters, to longer or shorter peri-
ods or more periods, and to variations on near continuous time, e.g., alternating 
moves, or perceptible lags in implementing action switches, or temporary action 
lock-ins. More generally, further studies might examine whether continuous time 
can ever reduce efficiency, 11 and seek additional practical insights into the forces 
that encourage or discourage efficient cooperation.

10 Nash anticipated this result, as well as our augmented cutoff strategies. According to Flood (1952, footnote on 
p. 24), Nash wrote of the 100-period iterated prisoner’s dilemma “… one should expect an approximation to [grim 
trigger] … with a little flurry of aggressiveness at the end and perhaps a few sallies, to test the opponent’s mettle 
during the game.”

11 See Anderson, Jenny. 2009. “US Proposes Ban on ‘Flash’ Trading on Wall Street.” New York Times, September 
17 (http://www.nytimes.com/2009/09/18/business/18regulate.html) for a possible practical example. In terms of 
matrix games, consider x > 20 in Table 1. Unlike in a true prisoner’s dilemma game, the sucker-temptation profile 
is now efficient. In discrete time, efficiency might be achieved by alternating the two ST cells, and such coordination 
might be more difficult in continuous time.



357friedman and oprea: a continuous dilemmaVOL. 102 NO. 1

Appendix A

This Appendix collects mathematical details. The goal is not to lay broad theoreti-
cal foundations for strategic interaction in continuous time given reaction lags, but 
rather to derive equations (3–4) of the text and to tighten connections to the theoreti-
cal work of Simon and Stinchcombe (1989) and Radner (1986).

A.1 Near Dominance

Consider continuous play of the prisoner’s dilemma game with flow payoff shown 
in Table 1. Recall the restriction 20 > x > 10 > y > 0 on the temptation and pun-
ishment parameters. Normalize the time interval to [0, 1]. In terms of the experiment, 
this corresponds to a single period measured in minutes, where the median reaction 
time was approximately τ = 0.01 minutes.

Given a known reaction time τ > 0, a simple cutoff strategy, denoted K(s), 
specifies a time s ∈ [0, 1] with unconditional defection (choosing action B) at all 
later times t ≥ s ∈ [0, 1] and conditional cooperation at all earlier times t < s. 
Conditional cooperation means that the player chooses action A until her opponent 
first chooses B, after which, with lag τ, she switches to B and remains there until 
time runs out. Of course, K(0) represents unconditional and immediate defection, 
and K(1) represents full-time conditional cooperation.

Let the space of pure strategies consist of all simple cutoff strategies with a given 
reaction time, ​  ​τ​ = {K(s): s ∈ [0, 1]}. A mixed strategy is represented by a cumu-
lative distribution function F(s) for the cutoff times s ∈ [0, 1]. The analysis below 
sometimes assumes that F has a well-defined density f : [0, 1] → [0, ∞]. A justifica-
tion is asynchronicity: it is infeasible for players to coordinate on specific clock 
times t ∈ (0, 1); of course, they can coordinate on the endpoints t = 0, 1, so mass 
points may appear there.

The first task is to compute the expected payoff of an arbitrary cutoff time 
relative to full-time conditional cooperation. Let u represent the opponent’s 
unknown cutoff time. A player choosing cutoff strategy K(s) obtains payoff 
[10u + 0τ + y(1 − u − τ)] if u < s − τ, or [10s + xτ + y(1 − s − τ)] if 
u > s + τ. For u ∈ [s − τ, s] her payoff is 10u + 0(s − u) + y(1 − s), and for 
u ∈ [s, s + τ] it is 10s + x(u − s) + y(1 − u).

Given that potential opponents’ strategies are drawn from mixture F with density 
f, the expected payoff for K(s) with s ≤ 1 − τ is

(5) 	  π(s | F)  = ​ ∫ 
0
​ 
s−τ

​ [​10u  +  y (1  −  u  −  τ)] f (u) du

 	  + ​ ∫ 
s−τ

​ 
s

  ​ [​10u  +  y (1  −  s)] f (u) du

	 + ​ ∫ 
s
​ 
s+τ

​  ​[10s  +  x (u  −  s)  +  y (1  −  u)] f (u) du
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 	  + ​ ∫ 
s+τ

​ 
1

 ​  ​[10s  +  x τ  +  y (1  −  s  −  τ)] f (u) du.

The payoff for full-time conditional cooperation, K(1), is the same over the region 
u < s but differs over the region s ≤ u ≤ 1. Here, instead of the integrands  
in (5), the player gets 10u + y(1 − u − τ). Thus the difference in expected  
payoff is

(6)	 π (s | F)  −  π (1 | F)  = ​ ∫ 
s
​ 
s+τ

​ [​10(s  −  u)  +  x (u  −  s)  +  y τ] f (u) du

 	  + ​ ∫ 
s+τ

​ 
1

 ​ [​10 (s  −  u)  +  x τ  −  y (s  −  u)] f (u) du

	 =  −(10  −  y)​∫ 
s
​ 
1

​ (​u  −  s) f (u) du  +  x τ [1  −  F (s)]

 	  +  (x  −  y)​∫ 
s
​ 
s+τ

​ (​u  −  s  −  τ) f (u) du.

Inspection of the last line of (6) suggests that it will be zero or negative when τ 
is sufficiently small. That is, full-time conditional cooperation seems to do better 
than other cutoff strategies in the limit, consistent with the results of Simon and 
Stinchcombe. More precisely,

Proposition 1: Fix s ∈ [0, 1) and choose an arbitrary cumulative distribution 
function F: [0, 1] → [0, 1]. Then li​m​ τ↘0​    ​  [π(1 | F, τ) − π(s | F, τ)] ≥ 0.

Proof:
To cover cases in which F has no density, rewrite (6) and preceding equations as 

Stieltjes integrals with dF(u) everywhere replacing f (u)du. In the last line of (rewrit-
ten) equation (6), the first term is clearly nonpositive and independent of τ. The 
second term clearly vanishes as τ↘0. The integrand (u − s − τ) in the third term 
converges uniformly to zero as τ↘0, so this final term also vanishes in the limit. 
Hence, the entire expression reduces in the limit to the nonpositive first term. The 
conclusion follows immediately. QED

A.2 Equilibrium Predictions

The next task is to characterize a useful set of equilibrium distributions of cutoff 
times for fixed positive reaction lags τ. Recall that our focus is on ϵ-equilibrium, 
which allows for small shortfalls in expected payoffs relative to a best response. To 
formalize the idea, recall that SuppF, the support of distribution F, is the smallest 
closed set containing all points of increase of F. When F has density f, the support 
is the closure of {s: f (s) > 0}.
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Given some ϵ ≥ 0, we say that a distribution F is an ϵ-equilibrium if, for every 
s ∈ SuppF, we have π(s | F) ≥ su​p​ x ∈ [0, 1]​     ​ π(x | F) − ϵ. That is, in ϵ-equilibrium, 
every cutoff actually used is nearly a best response to the overall distribution.

We shall not try to characterize the full set of ϵ-equilibria but will focus instead 
on those that are (weakly) better responses than full-time conditional coopera-
tion. Motivated by the discussion at the end of the previous section, we say that a 
distribution F representing a mixture of cutoff strategies is nearly dominant (ND) 
if it has a well-defined density over (0, 1) and equation (6) is nonnegative for all 
s ∈ SuppF.

The following proposition justifies our focus. It says that ND distributions are in 
fact ϵ-equilibria for ϵ commensurate with the reaction time τ.

Proposition 2: Let F: [0, 1] → [0, 1] represent a ND mixture over the space ​ ​τ​ 
of pure cutoff strategies, and let ​s​L​ be the smallest solution to π(​s​L​ | F) = π(1 | F). 
Then

	 (a)	F  is an ϵ-equilibrium for any ϵ ≥ ​  ϵ ​ = (x + y − 10)τ ;

	 (b)	 SuppF ⊂ [​s​L​, 1]; and

	 (c)	 1 − ​s​L​ = Aτ + O(​τ ​2​), where A > 0 is given in a formula below involving 
the skewness of F and the payoff parameters x and y.

Recall that O(​x ​n​) is conventional notation for any term that is negligible of order n, 
i.e., after being divided by ​x ​n​ the term remains bounded as x → 0.

Proof:
The discussion in the text preceding equation (3) establishes that ​  ϵ ​ = (x + 

y − 10)τ is a uniform upper bound on the payoff shortfall of K(1) relative to 
any simple cutoff strategy, including the ex post best response—that is, the best 
response to the opponent’s realized cutoff time u earns at most ​  ϵ ​ more than K(1). It 
follows that ​  ϵ ​ is an upper bound on the expected payoff shortfall of K(1) relative to 
the ex ante best response. A trivial consequence is that it remains an upper bound 
for the shortfall of any strategy with expected payoff greater than K(1). Part (a) 
follows immediately.

Part (b) is immediate from the definition of ​s​L​ and the evident continuity of (6) 
in s for s ∈ (0, 1). If s < ​s​L​, then the “smallest solution” property ensures that 
π(s | F) < π(1 | F) and so s ∉ SuppF.

For part (c), note that in the last term in the last line of (6), the integrand expres-
sion (u − s − τ) is negative and has absolute value less than τ over the relevant 
interval, which has length τ. Thus this last term is O(​τ ​2​) and negative. For notational 
simplicity, assume for the moment that this term is 0.

Part (b) ensures that F(s) = 0 for s ≤ ​s​L​, so over this range we can rewrite the 
payoff advantage (6) as

(7)	 π (s | F)  −  π (1 | F)  =  −(10  −  y) ψ (s | F)  +  x τ,
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where ψ(s | F) = ​∫
s
​ 1​   ​(u − s) f (u) du ∈ (0, 1 − s) has value ​

_
 u ​ at s = 0 and is a 

decreasing function with derivative F(s) − 1. The payoff advantage is clearly nega-
tive for such s as long as

	 ψ (s)  > ​   x τ _ 
10  −  y

 ​ ,

i.e., for s < ​ψ​−1​(x τ/(10 − y)). For s ∈ [0, ​s​L​), the function ψ has slope −1 and 
hence is simply ψ(s) = ψ(0) − s. As illustrated in Figure 8, we can now character-
ize the lower support point ​s​L​ by the equation π(​s​L​) − π(1) = 0 or, using (7),

(8)	​   x τ _ 
10  −  y

 ​  =  ψ (​s​L​)  =  ψ (0)  − ​ s​L​  = ​ _ u ​  − ​ s​L​.

Of course, the shape of the distribution F determines the position of ​
_
 u ​ within [​s​L​, 1].  

We have ​
_
 u ​ = α​s​L​ + (1 − α)1, where α ∈ (0, 0.5) represents an upward skew and 

α ∈ (0.5, 1) represents a downward skew. Substituting ​
_
 u ​ − ​s​L​ = (1 − α)(1 − ​s​L​) 

into (8) and solving for ​s​L​, we obtain

(9)	​ s​L​  =  1  − ​   x τ __  (1  −  α)(10  −  y) ​ .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6
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xτ
10−y

u
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Figure 8. Plot of ψ(s) and the Determination of ​s​L​
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Repeating the analysis while keeping track of the O(​τ​2​) term in (6) yields messier 
expressions, but ultimately one obtains an analog of equation (9) with a (differ-
ent) O(​τ ​2​) term appended. The remaining technicality is that the hypothesis allows 
positive probability mass at the points, 0 and 1; it is routine to check that the argu-
ment still goes through in this case, using Stieltjes integrals where appropriate. 
Part (c) then follows, with constant A = x/[(1 − α)(10 − y)]. QED

A few remarks are in order before proceeding further. In part (a), the ex post best 
response to the realized cutoff u is of course more profitable than the ex ante best 
response, which is constrained to be the same for all realized u. Hence, the expected 
shortfall for K(1) is less than ​  ϵ ​, and often considerably less. The upshot is that a ND 
distribution is an ϵ-equilibrium for a range of ​  ϵ ​’s smaller than ϵ = (x + y − 10)τ, 
often considerably smaller.

In part (c), equation (9) reduces to (3) in the unskewed case α = 0.5. As asserted in 
the text, this case represents a lower bound for α ∈ (0, 0.5), the upward skewed case.

We regard downward skew as less relevant, theoretically as well as empirically. 
Theoretically, the Radner argument shows that cutoffs below the midpoint are 
less robust to deviations than those above the midpoint. Empirically, we find that 
observed cutoffs have considerable upward skew. Nevertheless, the downward skew 
case is pedagogically useful. For any fixed positive values of τ, x, y, one can find a 
value of α sufficiently close to 1 so that the expression for ​s​L​ is zero (or negative). 
The interpretation is unraveling: when the distribution is sufficiently downward 
skewed, it pays to cut off cooperation earlier than the modal time, and cutoff times 
unravel all the way down to zero, as in the traditional analysis.

The next task is to predict the median fraction ​c​0.5​ of time in mutual cooperation. 
Given the [0, 1] time normalization, and the assumption of simple cutoff strategies 
initially in mutual cooperation, the fraction of cooperation coincides with the time 
of first defection. Hence it is the minimum y of two independent draws from the ND 
distribution F. Classic work on order statistics, e.g., Robert V. Hogg and Allen Craig 
(1970), shows that this minimum has density g(y) = 2(1 − F(y)) f (y). The median 
value m = ​c​0.5​ of y therefore is the root of the equation 0.5 = ​∫

0
​ m​ g​(y) dy. Inserting 

the expression for g and dividing by 2, the equation becomes

	 0.25  = ​ ∫ 
0
​ 
m

​ f​ (y) dy  − ​ ∫ 
0
​ 
m

​ F​ (y) f (y) dy  =  F (m)  −  0.5 [F (m)​]​2​.

Multiplying through by 4, we see that z = F(m) satisfies the quadratic equation 
2​z​2​ − 4z + 1 = 0, whose relevant root is z = (4 − ​√ 

_
 16 − 8 ​)/4 = 1 − 1/​√ 

_
 2 ​. 

Hence the median time of first defection, and thus the predicted median mutual coop-
eration rate, is

(10)	​ c​0.5​  =  m  = ​ F​−1​ (z), where 1  −  z  = ​   1 _ 
​√ 

_
 2 ​
 ​ .

When F is the uniform distribution on the interval [​s​L​, 1] for ​s​L​ ∈ (0, 1), then m can be 
written out explicitly. In this case, z = F(m) = (m − ​s​L​)/(1 − ​s​L​). Multiplying by the 
denominator 1 − ​s​L​ and recalling from (3) that ​s​L​ takes the form 1 − Aτ, we obtain
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	 m  =  z (1  − ​ s​L​)  + ​ s​L​  =  z Aτ  +  1  −  Aτ  =  1  −  (1  −  z) Aτ  =  1  − ​  Aτ _ 
​√ 

_
 2 ​
 ​ .

Inserting A = 2x/(10 − y) we obtain equation (4).
Thus, as a function of reaction time τ, the fraction of time in mutual coopera-

tion is predicted to be linearly decreasing, with slope −A/​√ 
_
 2 ​, with A the given 

increasing function of the parameters x, y. For example, for the Mix-a parameters 
x = 18, y = 4, the slope is predicted to be −36/6​√ 

_
 2 ​ ≈ −4.24.

A.3 Gaps in the Theory

Online Appendix B completes two remaining tasks. It shows that two different 
ways of obtaining ​s​L​ in discrete time closely approximate each other and explains 
why negative values of ​s​L​ in (3) predict zero cooperation.

Important theoretical tasks remain unfinished. The current theoretical analysis 
does not fully justify the restricted strategy space and the focus on ND distributions. 
We conjecture that (in some sense that needs to be made precise) augmented cutoff 
strategies weakly dominate other feasible strategies when τ is negligible. Intuitively, 
the augmentation “testing” looks for exploitable lags in the opponent’s strategy, and 
the augmentations “repentance” and “forgiveness” render the opponent’s defection 
from ρ = c unprofitable by requiring sufficient lags before returning to action A. 
Delete the other strategies in the first round, and restrict the strategy space to aug-
mented cutoff strategies. Then we further conjecture that simple cutoff strategies 
become weakly dominant when τ is negligible. Intuitively, both testing and blitzing 
lose money against a simple cutoff strategy, and forgiveness is then redundant. If 
some such conjectures are correct, then the restricted strategy space would be justi-
fied by iterated dominance, roughly analogous to arguments used by Simon and 
Stinchcombe (1989).

Our justification for ND distributions in the space of cutoff strategies was ulti-
mately empirical—they seem roughly consistent with observed behavior, and they 
suggested themselves to us due to the prominence of K(1). It might be worth looking 
for other prominent epsilon equilibria in the space of cutoff strategies, and to see 
whether they could lead to predictions that differ substantially from ours. We hope 
that theoretically minded researchers will investigate these matters.
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