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The Economic Impacts of Climate Change:  
Evidence from Agricultural Output and Random 

Fluctuations in Weather: Reply

By Olivier Deschênes and Michael Greenstone*

Fisher et al. (2012) (hereafter, FHRS) have uncovered coding and data errors in our 
paper, Deschênes and Greenstone (2007) (hereafter, DG). We acknowledge and are 
embarrassed by these mistakes. We are grateful to FHRS for uncovering them. We 
hope that this Reply will also contribute to advancing the literature on the vital ques-
tion of the impact of climate change on the US agricultural sector.

FHRS’ main critiques of DG are as follows: (i) there are errors in the weather data 
and climate change projections used by DG; (ii) the climate change projections are 
based on the Hadley 2 model and scenarios, rather than the more recent Hadley 3 
model and scenarios; (iii) standard errors are biased due to spatial correlation; 
(iv) the inclusion of state by year fixed effects does not leave enough weather varia-
tion to obtain meaningful estimates of the relationship between agriculture prof-
its and weather; (v) storage and inventory adjustment in response to yield shocks 
invalidate the use of annual profit data; and (vi) FHRS argue that a better-specified 
hedonic model produces robust estimates, unlike the results reported in DG.

Four of these critiques have little basis and we respond to them here in the intro-
duction. Specifically, with respect to:

 	 (ii)	 The more recent daily climate predictions were not available when we wrote 
DG. Nevertheless, the most important issue is providing the reliable esti-
mates of climate change and in this note we report estimates based on the 
climate model we used in DG and a more recent one that we gained access to 
in the meantime.

  (iii)	In the primary table on agricultural profits, DG reports two sets of standard 
errors with the first clustered at the county level and the second based on a vari-
ance-covariance matrix that accounts for spatial correlation, using the method 
proposed in Conley (1999). Thus, the claim of FHRS 2012 seems overblown. 
Nevertheless, to ease comparisons of papers in this literature, this note will adopt 
the FHRS convention of reporting estimated standard errors clustered at the 
county and state levels; we find that inference is largely unaffected by the choice 
between these different assumptions about the variance-covariance matrix.

* Deschênes: Department of Economics, University of California, Santa Barbara, 2127 North Hall, Santa 
Barbara, CA 93106, IZA, and NBER (e-mail: olivier@econ.ucsb.edu); Greenstone: MIT Department of Economics, 
E52–359, 50 Memorial Drive, Cambridge, MA 02142–1347, and NBER (e-mail: mgreenst@mit.edu). We thank 
Wolfram Schlenker for several useful conversations and providing the data files and computer code used by Fisher, 
Hanemann, Roberts, and Schlenker.
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 	 (iv)	We demonstrate below that it is indeed possible to make meaningful inference 
when the models include state by year or region by year fixed effects. Further, 
the data soundly reject the hypothesis of zero regional price, productivity, and/
or cost shocks. For these reasons, we continue to believe that the most reliable 
specifications are those that include state or region by year fixed effects.

 	 (vi)	The online Appendix, available on the AER website, reports on cross-sectional 
(hedonic) models that relate land values and climate variables to infer the 
impacts of climate change using a variety of approaches to model the climate 
variables. As in DG, these results again demonstrate that predicted impacts of 
climate change are heavily dependent on functional form choices of the tem-
perature variables, the covariates used for adjustment, and the particular year of 
data used to fit the model. Therefore we maintain our conclusion from DG that 
the hedonic approach is unlikely to provide credible estimates of the impact of 
climate change on the agricultural sector due to problems of omitted variables.

The remainder of the paper then assesses the impact of the remaining two cri-
tiques on the estimates of the impact of climate change on US agricultural profits. 
Using a corrected version of our data file, a variety of specifications that do and do 
not account for local shocks, and the climate model (i.e., Hadley 2) available when 
we wrote DG, we find that climate change is projected to reduce annual agricul-
tural sector profits by about US$(2002) 4.5 billion by the end of the century.1 We 
obtain similar results when we apply the same specifications to a data file graciously 
provided by FHRS. These results contrast with DG’s finding of a statistically insig-
nificant increase of roughly $1.3 billion. Using a 3 percent discount rate and annual 
projections of climate changes, the present discounted value of the change in agri-
cultural profits between 2010 and 2100 is −$66 billion.2 To put this in context, 
historical annual agricultural sector profits are about $33 billion.

Notably, more recent climate model projections (i.e., the Community Climate 
System Model 3 (CCSM 3) and A2 scenario) indicate greater warming and the 
application of these projections lead to larger damage estimates. The use of such 
climate change predictions causes the change in annual agricultural sector profits to 
increase in magnitude to about $9.9 billion by the end of the century. The present 
discounted value of projected profit changes with these projections over the next 
90 years is $164 billion.

The remaining point raised by FHRS pertains to the fact that the farm revenue 
measure in the census of agriculture includes products sold, regardless of their year 
of production. Thus, the relationship between annual profits and annual weather real-
izations may be confounded by inventory adjustments. The textbook solution to such 
issues of dynamic inventory adjustment in agricultural and other settings is to use a 
distributed lag model and compute cumulative effects. Thus, the impact of a year’s 
weather realization is captured over several years. In this setting, the coefficients 
on the lag of temperature tend to have the opposite sign as the contemporaneous 
temperature variables. Since the “full” impact of temperature from a distributed lag 

1 All dollar figures are expressed in 2002 dollars.
2 These results are presented in the online Appendix.
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model is the sum of the coefficients, the projected impacts of climate change from this 
model are more than 50 percent smaller than those described above. This approach is 
more demanding of the data and the estimates are less precise than is ideal, however.

Finally, it is worth underscoring a point that we make in DG. All of these esti-
mates are derived under the unrealistic assumption of no technological progress and 
adaptation over the remainder of the century. It seems reasonable to assume these 
economic forces will contribute to reducing the predicted damages.

I. Corrected Impacts of Weather Fluctuations on Agricultural Profits

This section reports estimates of the relationship between weather fluctuations on 
agricultural profits from data files that corrects our mistakes in DG. In particular, we 
have corrected the weather and climate projection data and reconstructed the main 
samples from the US census of agriculture used in DG.

We briefly describe the construction of the weather data samples and climate pro-
jections samples, with more details available in the online Appendix for the inter-
ested reader.3 The daily temperature data are drawn from the National Climatic Data 
Center Summary of the Day Data Files. The key variables are the daily maximum 
and minimum temperature, and we define daily average temperature as the simple 
average of the minimum and maximum temperature. We select weather stations that 
are less than 7,000 feet in elevation and that were operational (i.e., had nonmissing 
measurements) in all 183 days of a year’s growing season (i.e., April to September). 
The station-level data is aggregated at the county level by taking an inverse-distance 
weighted average of all the valid measurements from stations that are located within 
a 200 km radius of each county’s centroid. The growing season rainfall data was 
taken from the Parameter-Elevation Regressions on Independent Slopes Model. 
This model generates monthly estimates of total precipitation and average tempera-
tures at 4 × 4 kilometers grid cells for the entire United States.

The corrections alter the summary statistics. The biggest impact of the data errors 
in DG is that growing season degree-days were too low: the farmland-weighted aver-
age in the DG data is 2,561 while in the corrected sample, the corresponding average 
is 3,821.4 In addition, 79 counties were incorrectly dropped due to the errors in the 
weather data. In contrast, the growing season rainfall variable in DG was error-free.

We utilize two sets of daily predicted climate change data. The first one is from 
the Hadley 2 model coupled with the IS92a scenario (which we label for simplicity 
Hadley 2), the same used in DG. The variables contained in this file are daily pre-
cipitation and daily minimum and maximum temperatures. The data is reported at 
grid points separated vertically and horizontally by 0.5° over the continental United 
States. The second is from the National Center for Atmospheric Research’s CCSM 3 
under the A2 scenario, which together predicts larger temperature increases than 
Hadley 2. The variables available from the CCSM 3 A2 files are the daily mean 
temperatures and precipitation levels for each day during the years 2000–2099. The 

3 The corrected data, as well as the STATA programs, are posted on the AER’s website.
4 Figure A1 in the online Appendix displays the quartiles of historical distribution of growing season degree-

days. It is evident that the spatial discontinuities that plagued the DG (2007) growing season degree-days data are 
not present in the corrected data.
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CCSM 3 grid spans the entire globe; latitude and longitude points are both separated 
by 1.4°. We use the 416 gridpoints that fall on land in the contiguous United States 
to develop climate predictions for the contiguous United States.

For both sets of climate prediction variables, we use inverse-distance weighted 
averaging to assign grid point predictions to counties. All grid points located in a 
200 km radius of a county’s centroid are used to impute the climate prediction. This 
approach produces observations that vary at the county × day × year level.5 From 
these, we defined predicted end-of-century climate change for any county-year as 
the difference between the Hadley 2/CCSM 3 model-predicted average growing 
season weather over 2070–2099 and the 1970–2000 average of the same growing 
season weather variable.6 The farmland-weighted predicted change in average grow-
ing season degree-days over 2070–2099 for Hadley 2 for the counties in our sample 
is 673, which corresponds to an 18 percent increase over the 1970–2000 average of 
3,821.7 The predicted change from CCSM 3 A2 is 1,441, which corresponds to a 
35 percent increase over the 1970–2000 baseline.8

The primary data file is comprised of a balanced sample of counties with valid 
observations on farm revenues and production expenditures (the two variables used to 
construct farm profits), total acres of farmland, and acres of irrigated farmland in 1987, 
1992, 1997, and 2002.9 This sample is meant to replicate the one used in DG as closely 
as possible while correcting for the issues outlined by FHRS. The resulting sample, 
which we label the “REPLY” sample, has 2,342 counties for a total of 9,368 county-
year observations, and accounts for 84 percent of US farmland.10 By comparison, the 
sample used in DG had 2,262 counties for a total of 9,048 county-year observations.

We used these data to fit:

(1 ) 	​  Y​ct​ = ​α​c​ + ​γ​t​ + ​X​ ct​ ′ ​ π + ​∑ 
i
  ​ 

 

 ​ ​β​i​​ ​f​i​(​W​ict​ ) + ​u​ct​ ,

where c denotes a county and t references a year. The dependent variable is annual 
agricultural profits (defined as the difference between revenues and production 
expenses) per acre and the equation is weighted by farmland acres. The equation 
includes a full set of county fixed effects, ​α​c​, and year indicators, ​γ​t​. We also con-
sider specifications that replace the year fixed effects with year effects that vary 
geographically to allow for local shocks to productivity, input prices, and output 
prices. The ​X​ct​ vector includes the same set of soil characteristics as in DG.

5 In DG (2007), the climate predictions from Hadley 2 varied at the state*year level only.
6 These measures of predicted climate change are analyzed in the online Appendix; see Figure A2.
7 For the Hadley 2 model, our algorithm predicts cooling by the end of the century for 26 counties, primarily 

located in Colorado. This is possibly due to lack of adjustment for elevation. The inclusion or exclusion of these 
counties does not alter the results meaningfully.

8 FHRS report estimates based on the Hadley 3 model and B2 scenario, which also predicts greater temperature 
increases than Hadley 2. The unweighted increase in growing season degree days is 720 Celsius, which when 
converted to Fahrenheit is comparable to the increase predicted by CCSM 3 A2. We did not use the Hadley 3 B2 
predictions because we do not have access to a daily version of these predictions for the full 21st century.

9 Counties with zero acres of farmland are dropped from the sample.
10 Among these variables, the one that is most frequently missing in the Census of Agricultures is irrigated acres 

of farmland. A balanced sample for all counties with valid observations on farm sales, production expenditures (the 
two variables used to calculate farm profits), and total acres of farmland in 1987, 1992, 1997, and 2002 has 2,963 
counties for a total of 11,852 county-year observations, and accounts for 98 percent of US farmland. We refer to 
this sample as the “FULL” sample. We obtain qualitatively similar estimates if we focus on the balanced panel of 
2,963 counties instead (see online Appendix).
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The variables of interest are the weather ones, ​W​ict​. As in DG, we model tempera-
ture with a quadratic in growing season degree-days.11,12 Growing season degree 
days are calculated from the daily average temperature with a base of 46.4° F and a 
ceiling of 89.6° F. Precipitation is modeled with a quadratic in total growing season 
rainfall in county c in year t.

Table 1 reports on a reanalysis of the annual profits data, which is the primary 
outcome in DG. The column (a) entries report estimates from a version of equa-
tion (1) that restricts the year effects to be constant across the country’s counties. 
This is the specification that FHRS favor in their comment. Column (b) entries are 
based on specifications that allow for year effects specific to each of the nine USDA 
Farm Resource regions.13 The column (c) estimating equation includes year effects 
specific to each of the nine US census divisions, and column (d) includes state by 
year fixed effects as in DG.

Panel A of Table 1 reports the marginal effects of the growing season degree-days 
and precipitation variables evaluated at the national sample means. The table also 
reports the standard error associated with each marginal effect, estimated with cluster-
ing at the county level (in parentheses) and at the state level (in square brackets). The 
estimates are allowed to vary by whether a county is irrigated, which is defined by hav-
ing more than 10 percent of the farmland irrigated. Among the eight estimates (four 
specifications and two sets of counties), the degree-day marginal effects are only statis-
tically significant for nonirrigated counties in the column (1a) specification with year 
fixed effects. This specification indicates that 100 additional growing season degree-
days reduces profits by $1.27 per acre; mean profits per acre in this sample are $31.30.

It is apparent that the strongest evidence in favor of a negative relationship between 
temperature and agricultural profits comes from the column (a) specification, which 
is the one strongly preferred by FHRS. This specification, however, is the most 
susceptible to bias due to unobserved local shocks to prices, costs, or productivity. 
The remaining specifications try to balance controlling for these shocks with differ-
ent varieties of year by region fixed effects, while at the same time leaving enough 
weather variation for meaningful inference.

There are three imperfect diagnostics of the effort to balance these goals. First, 
panel B indicates that the data decisively reject the null hypothesis of zero local 
shocks to agricultural profits in columns (b), (c), and (d). This test was conducted 
jointly in irrigated and nonirrigated counties so the entries in columns (1a)–(1d) are 
identical to those in columns (2b)–(2d). Second, the coefficients on the growing 

11 The subsequent results are qualitatively similar to those that use a measure of degree-days derived from fitting 
a sinusoidal curve between minimum and maximum temperatures as in Schlenker and Roberts (2009). A limitation 
of the sinusoidal approach is that it imposes a fixed parametric nonlinear distribution of temperatures within each 
day across geography and time of year.

12 The Reply’s Supplementary Appendix available at http://www.econ.ucsb.edu/~olivier/research.html reports 
on a second approach to modeling temperature that follows from the work of Deschênes and Greenstone (2011); 
Deschênes, Greenstone, and Guryan (2009); Schlenker and Roberts (2009); and Burgess et al. (2011), who all 
highlight the importance of extreme temperatures in models for mortality, infant birth weight, and crop yields. 
Specifically, this approach characterizes exposure to growing season daily temperatures with a set of temperature-
day categories or “bins” that span the growing season daily temperature distribution. The advantage of the bin 
approach over the degree-days one is that the only functional form restriction is that the impact of the daily mean 
temperature on farm profits is constant within 5° F degree intervals. Estimates of the PDV of the change in agricul-
tural profits between 2010 and 2100 from temperature-day bin models and degree-days models are broadly similar 
to the estimates based on modeling temperature with a quadratic in degree days.

13 See http://www.ers.usda.gov/briefing/arms/resourceregions/resourceregions.htm.

http://www.econ.ucsb.edu/~olivier/research.html
http://www.ers.usda.gov/briefing/arms/resourceregions/resourceregions.htm
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season degree-days variables change across specifications and even switch signs. 
This is consistent with specification (a) confounding local weather and economic 
shocks and (at least the attenuation) is consistent with an increased influence of 
measurement error. Third, the standard errors on the temperature variables are gen-
erally larger from the (b)–(d) specifications but not uniformly so and in almost all 
cases the increases are less than 50 percent of the specification (a) standard errors.14

Our conclusion from this table is not that there is a single specification that con-
tains the truth, but rather that each of them has plusses and minuses. This is probably 
our greatest methodological difference with FHRS. In the remainder of the analysis, 
we continue to report results from all four of these specifications. We also report 
combined estimates, which are calculated as the weighted average of the key coef-
ficients, where the weight is the inverse of the standard errors.

Finally, panel C shows the results from a test of equality of the weather param-
eters across irrigated and nonirrigated counties. We fail to reject the null hypothesis 
of equality across all specifications and for both weather variables. As a result, most 

14 The standard errors clustered at the state level which implicitly control for a higher degree of spatial correla-
tion are not uniformly larger than the county-clustered ones, as in FHRS.

Table 1—In-Sample Estimates of the Effect of Growing Season Weather  
on Farm Profits Based on Corrected Data

Nonirrigated counties (N = 7,743) Irrigated counties (N = 1,625)
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

Panel A. Marginal effects (at sample mean)
Growing season degree-days × 100 −1.27 −0.39 0.10 −0.18 −1.51 0.87 1.48 1.09
Standard error clustered by county (0.25) (0.35) (0.37) (0.75) (2.19) (1.87) (2.17) (2.87)
Standard error clustered by state [0.39] [0.41] [0.54] [0.56] [1.81] [1.60] [1.82] [2.48]
Growing season precipitation −0.58 0.61 0.13 0.03 0.06 2.30 1.77 0.91
Standard error clustered by county (0.24) (0.24) (0.23) (0.26) (1.62) (1.59) (1.56) (1.53)
Standard error clustered by state [0.55] [0.39] [0.35] [0.33] [1.48] [1.27] [1.45] [1.69]

Panel B. Tests of significance on various models for year fixed effects

F-statistic on interacted year effects — 29.45 29.21 10.66 — 29.45 29.21 10.66
[p-value] — [0.01] [0.01] [0.01] — [0.01] [0.01] [0.01]

Panel C. Tests of equality of weather variables across irrigated and nonirrigated counties

F-statistic on degree-days 0.01 0.51 0.46 0.27 0.01 0.51 0.46 0.27
[ p-value] [0.91] [0.47] [0.50] [0.60] [0.91] [0.47] [0.50] [0.60]
F-statistic on precipitation 0.14 1.11 1.09 0.34 0.14 1.11 1.09 0.34
[ p-value] [0.71] [0.29] [0.30] [0.56] [0.71] [0.29] [0.30] [0.56]

Year effects Yes No No No Yes No No No
USDA region × year effects No Yes No No No Yes No No
Census division × year effects No No Yes No No No Yes No
State × year effects No No No Yes No No No Yes

Notes: All dollar figures in billions of 2002 constant dollars. “Irrigated” counties are defined as those where 
10 percent or more of the total farmland is irrigated. The means of the dependent variable (i.e., county-level farm 
profits per acre) in nonirrigated and irrigated counties are $31.3 and $85.8, respectively. There are 2,342 for a total 
of 9,368 county-year observations. Standard errors in parentheses are clustered at the county level. Standard errors 
in brackets are clustered at the state level. F-statistics and p-values in panel B are identical for columns (1a) and 
(2a), (1b) and (2b), (1c) and (2c), and (1d) and (2d) because the year effects are not interacted by irrigation status 
in the models. F-statistics and p-values in panel C are identical for columns (1a) and (2a), (1b) and (2b), (1c) and 
(2c), and (1d) and (2d). This is because these tests are for the equality of the weather variables across irrigated and 
nonirrigated counties. See the text for more details.
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of our remaining analysis is based on models that assume that the weather param-
eters are the same across irrigated and nonirrigated counties while allowing for an 
intercept difference. This test is conducted jointly across irrigated and nonirrigated 
counties so the entries in (1a) and (2a), (1b) and (2b), etc. are identical.

II. Corrected Estimates of the Impact of Climate Change on Farm Profits

This section develops corrected predicted impacts of climate change on US agri-
cultural profits. Specifically, we combine the estimates from the estimation of equa-
tion (1) with the projected differences in growing season weather from Hadley 2 and 
CCSM 3 A2. The predicted impact on aggregate farm profits for county c in year t 
is given by15

(2) 	  IMPAC​T​ct​ = ACRE​S​c​ × ​( ​∑ 
i
  ​ 
 

 ​ ​​   
 

 β​​i​​ Δ​W​ict​ )​,

where Δ​W​ict​ is the predicted change in weather variable i in county c in year t. These 
changes are specific to a climate change model and scenario. We “reweight” the cal-
culations since the regression model is for profits per acre and the variable ACRE​S​c​  
represent the average acres of farmland during the sample period in county c. Finally, 
to obtain the impact for the country as a whole, we sum the county-specific impacts 
(IMPAC​T​ct​) across all counties in the sample.

Table 2 reports on the predicted impact of climate change on annual farm prof-
its at the end of the century from equation (2). Panel A uses the Hadley 2 climate 
predictions. There are some minor differences between the samples, calculation of 
weather variables, and calculation of climate predictions that FHRS utilize and the 
ones we utilize.16 As we discussed above and in the online Appendix, these differ-
ences reflect differences in data resolution and in the methods to create county-level 
weather data and climate predictions from monitor observations and grid point pre-
dictions, respectively. 17

Consequently, the table begins by demonstrating the influence of these differences 
on the results. Row 1 is obtained using FHRS’s 2012 preferred sample, weather 

15 In models with quadratics in growing season weather, each county’s predicted impact is calculated as the dis-
crete difference in per-acre profits at the county’s predicted degree-days and precipitation after climate change and 
its current climate (i.e., the average over the 1970 –2000 period).

16 With respect to the weather variables, the correlation between the DG variables for growing season weather 
and the FHRS ones are all in excess of 0.98.

17 One key difference is that FHRS derive their climate change predictions using monthly-level model data, and 
this data allows for correcting for any model error by comparing the model-predicted historical baseline with the 
actual historical baseline. A limitation is that it is necessary to make assumptions about the within-month distribu-
tion of daily temperatures to derive daily-level variables from monthly-level variables. 

In contrast, we use daily-level model data that allows us to derive predictions on daily variables and, in turn, 
growing season degree-days without making assumptions about the within-month relationship between monthly 
minimum and maximum temperatures and daily temperature. To the best of our knowledge, the daily-level model 
data from Hadley 2 and CCSM 3 A2 does not contain sufficient model-based predictions on the historical baseline 
to correct the daily-level climate change predictions for model error.

With respect to the issue of model error, the online Appendix reports the present discounted value of predicted 
climate change damages between 2010 and 2099. These estimates include a set based on the Hadley 3 A1FI model 
and scenario that adjust for the difference in the model-predicted historical baseline and the actual historical base-
line. The resulting estimates are quantitatively similar to the ones from the other climate models where baseline 
correction is not feasible.



3768 THE AMERICAN ECONOMIC REVIEW December 2012

variables, and climate predictions, which were graciously provided by Wolfram 
Schlenker. Everything is the same in row 2, except that the FHRS weather variables 
are replaced with the DG ones. Relative to row 2, row 3 now utilizes the DG sample 
(86 additional counties) and the DG climate predictions. The preferred estimates 
are in row 4, which imposes the restriction that the weather coefficients are equal 
in irrigated and nonirrigated counties as was supported by the test in Table 1. Our 
interpretation of these results is that the differences between FHRS’ data and our 
corrected data are not consequential, since within a specification or column all of the 
estimates have overlapping confidence intervals.

With respect to the substantive issue of predicted climate change impacts, the 
row 4 Hadley 2 estimates range from predicted losses of $7.5 to $1.7 billion, corre-
sponding to −23 percent to −5 percent of current annual agricultural sector profits. 
The weighted average of these estimates is a change in annual agricultural profits 
of −$4.5 billion or 14 percent at the end of the century, when the weights are the 
inverse of the standard errors. Furthermore, just as in Table 1, allowing for local 
shocks (i.e., the “b,” “c,” and “d” columns) tends to reduce the magnitude of the 
predicted loss, although this does not always come at the expense of reduced statis-
tical precision. For example, the state-clustered standard errors in column (1b) are 
always smaller than the state-clustered standard errors in column (1a).

Row 5 in panel B reports the corresponding end-of-century annual climate dam-
age estimates using the CCSM 3 A2 predictions. These are necessarily larger in 
absolute value since this climate model predicts a significantly larger increase in 
growing season temperatures, as well as a reduction in growing season rainfall. 
The predicted losses range from $14.8 to $4.8 billion. The inverse standard error 
weighted average of the predicted impacts under CCSM 3 A2 is −$9.9 billion, more 
than twice as large as under the Hadley 2 model; this is about 30 percent of current 
annual agricultural profits.

The online and supplementary Appendices reports the present discounted value 
(PDV) of the predicted annual impact of climate change on aggregate farm prof-
its over 2010–2099, based on a discount rate of 3 percent18. The mean of the 
PDV estimates from the Hadley 2 projections and the four specifications indi-
cates that the US agricultural sector is predicted to suffer losses of $66 billion 
over the remainder of the twenty-first century. The corresponding figure from the 
CCSM3 A2 predictions is a loss of $164 billion. Thus, these estimates, which do 
not allow for long-run adaptation or directed technical change, imply that climate 
change will cause a loss of about 2 and 5 years of current profits in the agricultural 
sector, respectively.

III. Dynamics, Storage, and Distributed Lag Models

FHRS make the important point that in a given year farmers are able to store some 
of their grain output and sell it in future years.19 The 2006 US Statistical Abstract 

18 These estimates utilize yearly county-level climate change predictions for each year between 2010–2099.
19 In practice, storage occurs on the farm, off-farm in storage spaces rented by farmers, and off-farm in commer-

cial storage facilities (i.e., elevators). Therefore the critique that storage confounds the relationship between farm 
profits and weather depends crucially on whether farmers maintain ownership of the grain or whether grains are 
purchased by a second party prior to or during storage.
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Table 804 reveals that the absolute value of the change in inventories accounts 
for only 1.4 percent of “total cash receipts from marketings” during the period  
1994–2003. In crafting DG, this statistic caused us to conclude that storage was not 
a major factor. FHRS, however, show convincingly that among farms without live-
stock, the value of a year’s production exceeds sales in bountiful years and is below 
it in lean years. They argue that this invalidates the use of annual profit data to learn 
about the impacts of weather realizations.

In practice, this dynamic inventory adjustment means that, for example, a bushel 
of corn that is stored this year will be sold in a subsequent year. Analogously, draw-
ing down inventories this year will reduce the crops available for sale in future years. 
The point is that the full impact of a year’s weather realization on profits can only be 

Table 2—Comparison of Estimates of the Predicted Impact of Climate Change on US Aggregate 
Farm Profits, Based on FHRS and DG Samples, Data and Code, for Average Year over 2070–2099, Billions 

of 2002 Dollars

(1a) (1b) (1c) (1d)

Panel A. Predicted impact in average year over 2070–2099 under Hadley 2

1. FHRS sample of counties, FHRS weather variables, FHRS climate predictions −11.1 −7.2 −3.0 0.2
Allow weather coefficients to vary across irrigated and nonirrigated counties (1.9) (3.1) (2.3) (4.7)

[3.8] [3.7] [5.4] [5.7]
2. FHRS sample of counties, DG weather variables, FHRS climate predictions −9.0 −5.6 −2.3 −2.5
Allow weather coefficients to vary across irrigated and nonirrigated counties (2.1) (3.3) (2.6) (4.6)

[3.4] [2.7] [3.8] [4.4]
3. DG sample of counties, DG weather variables, DG climate predictions −7.7 −5.0 −2.2 −2.1
Allow weather coefficients to vary across irrigated and nonirrigated counties (1.8) (2.9) (2.2) (3.9)

[3.0] [2.4] [3.3] [4.0]
4. DG sample of counties, DG weather variables, DG climate predictions −7.5 −4.9 −2.2 −1.7
Restrict weather coefficients to be equal across irrigated and nonirrigated counties (1.9) (2.9) (2.3) (4.0)

[3.0] [2.3] [3.4] [3.8]

Panel B. Predicted impact in average year over 2070–2099 under CCSM 3 A2

5. DG sample of counties, DG weather variables, DG climate predictions −14.8 −11.5 −5.7 −4.8
Restrict weather coefficients to be equal across irrigated and nonirrigated counties (3.8) (6.4) (4.6) (8.3)

[6.4] [4.5] [7.4] [8.9]

Year effects Yes No No No
USDA region × year effects No Yes No No
Census division × year effects No No Yes No
State × year effects No No No Yes

Notes: Table 2 reports estimates of the predicted impact of climate change on US annual aggregate farm profits 
for the average year over 2070–2099. All estimates are derived from models with quadratics in growing season 
degree-days and precipitation. All estimates are derived from models with quadratics in growing season degree-
days and precipitation, and the effects of the weather variables are allowed to vary across irrigated and nonirrigated 
counties, except in rows 4 and 5. Standard errors in parentheses are clustered at the county level. Standard errors 
in brackets are clustered at the state level. Estimates in rows 1 and 2 are based on a sample of 9,024 observations. 
Estimates in rows 3–5 are based on a sample of 9,368 observations. Row 1 uses the same regression model, sample 
(N = 9,024), data, and code as FHRS, except that it reports predicted impacts in profits ($2002 billion) rather than 
percent impacts. In addition, it estimates the FHRS model by weighting the regression by annual acres of farmland 
(as opposed) to historical average farmland as in FHRS. Further, it estimates the FHRS model while allowing for 
USDA-region specific year effects (column 1b) and US Census division specific year effects (column 1c). Row 2 
uses the corrected DG weather sample, profit measure, and code, but uses FHRS’ sample (N = 9,024) and data on 
Hadley 2 climate change predictions. Row 3 is the corrected DG estimates derived under Hadley 2 and that allows 
the effects of the weather variables to vary across irrigated and nonirrigated counties. Row 4 is the corrected DG 
estimates derived under Hadley 2 and that restrict the effects of the weather variables across irrigated and nonirri-
gated counties to be the same, as supported by the evidence in Table 1. Row 5 is the corrected DG estimates derived 
under CCSM 3 A2, based on the same specification as row 4.
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observed over periods longer than a year because inventory decisions allow farmers 
to spread the impacts over several years.20

The relevant issue for this paper is that this compensatory behavior suggests that 
it may be important to consider an alternative version of equation (1) to capture the 
full impact of a year’s weather realization. Specifically, the ideal empirical approach 
in the presence of farmers’ inventory management is a distributed lag model that 
relates annual profits, which includes revenues from sales of products regardless of 
their date of production, to current and lagged weather variables. The inclusion of 
lagged weather variables and calculation of the cumulative effect of weather shocks 
is necessary because the quantities that a farmer sells in a given year are affected by 
the full history of weather realizations through her storage decisions. This solution 
is not especially novel; indeed, Stock and Watson (2003) motivates their discus-
sion of distributed lag models with the example that a year’s weather shock affects 
orange juice markets over several periods.

Table 3 presents the estimates from simple distributed lag models that allow for 
a dynamic relationship between observed farm profits and a year’s weather realiza-
tion. The results are reported in the following order: (i) predicted impacts associ-
ated with the contemporaneous weather variables; (ii) the lagged weather variables; 
and (iii) the cumulative impact (i.e., the sum). In practice, we include a single lag 
because we have a relatively short panel and this approach is demanding of the data.

There are several important findings in Table 3 that are evident in both panels A 
and B. First, the inclusion of the lagged weather variables leaves the impact of the 
contemporaneous weather variables largely unchanged in the context of their stan-
dard errors (to see this, compare the (i) estimates with the estimates in rows 4 and 5 
of Table 2). Second, the impact of the lagged weather variables tends to have the 
opposite sign of the impact of the contemporaneous variables although it is usu-
ally of a smaller magnitude. This finding is consistent with economic theory that 
predicts that the full impact of a year’s weather realization may be apparent over 
periods longer than a year due to farmers’ use of inventory management to smooth 
shocks to income. Third, it is apparent that including lags reduces the precision of 
the estimated overall effect.

In the context of making projections about climate change, the key finding is that 
models that account for lagged weather generally predict smaller cumulative losses 
than the ones that account only for contemporaneous weather. For example, the 
weighted average (again using the inverse of the standard errors as the weight) of 
the Hadley 2 baseline model’s estimates in panel A is −$1.3 billion, compared to 
−$4.5 billion from the model that just includes contemporaneous weather variables. 
In the case of the CCSM 3 A2 estimates, the corresponding estimates are −$3.4 bil-
lion and −$9.9 billion from the models with and without the lag, respectively.

20 The structural relationship between storage decisions and weather realizations is a complicated process that 
depends on several factors including the weather realization’s expected impact on current and future crop prices, 
storage costs, the length of time before a crop can be stored without spoiling (stored corn and soybeans can spoil 
due to molds and insects), and the interest rate. A careful examination of this behavior is a fascinating topic for 
research but requires a long panel dataset with detailed information on farmer behavior. Such an analysis is beyond 
the scope of this note.
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IV. Conclusions

FHRS (2012) have uncovered coding and data errors in our paper (DG 2007). We 
are embarrassed by these mistakes and grateful to FHRS for discovering them and 
advancing knowledge on this important issue.

Our reanalysis of agricultural profits with corrected data presented here and in 
the online Appendix leads to three primary findings. First, contrary to the results 
in DG (2007), the corrected data suggest that an immediate shift to the projected 
end-of-the-century climate would reduce agricultural profits. This impact is larger 
when projections from more recent climate models are used and smaller in econo-
metric models that allow for local shocks to input and output prices and pro-
ductivity. Second, the PDV over the remainder of the century of the projected 
impacts from a recent climate model is roughly $164 billion, or about 5 years of 
current annual profits. This estimate is likely to overestimate the loss, because it 
fails to allow for any technological advances or adaptation in response to higher 
temperatures. Third, the estimated losses are more than 50 percent smaller than 
those from the standard approach and generally statistically insignificant when 
one uses a textbook distributed lag model and calculates the dynamic cumulative 

Table 3—Estimates of the Predicted Impact of Climate Change on US Aggregate Farm Profits, for 
Average Year over 2070–2099, Billions of 2002 Dollars, in Models that Allow  

for Lagged Effects of Weather

(1a) (1b) (1c) (1d)

A. Predicted impact in average year over 2070–2099 under Hadley 2

Model with lagged weather (1 Lag)
(i) Impact of contemporaneous weather −8.4 −6.5 −4.0 −0.9

(2.1) (3.1) (2.4) (3.6)
(ii) Impact of lagged weather 7.3 4.8 4.1 −2.8

(2.6) (2.3) (2.4) (3.8)
(iii) Cumulative impact of contemporaneous and lagged weather −1.1 −1.7 0.1 −3.7

(2.8) (3.6) (3.2) (5.7)

B. Predicted impact in average year over 2070–2099 under CCSM 3 A2

Model with lagged weather (1 Lag)
(i) Impact of contemporaneous weather −16.7 −15.8 −10.2 −4.3

(4.5) (6.9) (5.2) (7.9)
(ii) Impact of lagged weather 14.1 11.1 9.8 −4.3

(5.8) (5.4) (5.5) (8.4)
(iii) Cumulative impact of contemporaneous and lagged weather −2.6 −4.7 −0.3 −8.6

(5.9) (7.5) (6.4) (11.7)

Year effects Yes No No No
USDA region × year effects No Yes No No
Census division × year effects No No Yes No
State × year effects No No No Yes

Notes: Figures are in billions of 2002 constant dollars. Each county’s predicted impact is calculated as the discrete 
difference in per-acre profits at the county’s predicted degree-days and precipitation after climate change (aver-
aged over the 2070 –2099 period) and its current climate (i.e., the average over the 1970 –2000 period). The result-
ing change in per-acre profits is multiplied by the number of acres of farmland in the county and then the national 
effect is obtained by summing across all 2,342 counties in the “REPLY” sample. The same calculation is applied 
to contemporaneous and lagged weather variables. Average annual aggregate profits in the 2,342 counties in the 
sample are US$(2002) 32.8 billion. Standard errors are clustered at the county level. See the text for more details.
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effects that account for farmers’ dynamic inventory adjustments in response to 
temperature realizations.21

The meaning of these results lies in the eyes of the beholder. For what it is worth, 
we believe that these results fail to make a convincing case for large negative impacts 
of climate change on aggregate profits in the US agricultural sector. In this respect, 
they lead to a different conclusion than some of FHRS’s important work on the likely 
impacts of climate change on the yields of particular crops (see also Schlenker and 
Roberts 2009). This difference may simply reflect the difference between crop yields 
and profits as outcomes, where the latter is more amenable to adaptation even in the 
short run, and provides a more complete indicator of productivity in the agricultural 
sector than crop yields alone. In contrast, recent research suggests that there may be 
substantial negative impacts on agriculture and health in poorer countries, especially 
those with already intemperate climates (Guiteras 2009; Burgess et al. 2011). Much 
uncertainty remains, however, about the likely economic impacts of climate change, 
and so further research is necessary.
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