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Abstract

Emission regulations become more prevalent in developing countries as car-
fleets grow; but they may be compromised by corruption. To shed light on
this issue, I follow three steps. First, I develop a statistical test for identifying
a specific type of cheating that involves bribing center technicians. Second, I
predict fair probabilities of passing the test for the entire car-fleet by using low-
cheating centers identified in step 1. Third, I estimate a structural model of car
owner retesting and cheating decisions, whose parameters are recovered from
observed testing outcomes and the empirical distribution of the probability of
passing the test. No direct information on cheating decisions is required. I find
that at least 9.6 percent of old-car owners paid bribe amounts of 20 U.S. dollars
to circumvent the regulation. Simulations suggest that eliminating cheating and
increasing the cost of retests would eliminate 1,443 tons of emissions, but would
do so at a high cost for vehicle owners.
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1 Introduction

Automobile emissions are an important contributor to air pollution and greenhouse
gases, especially in developing countries. In Mexico City, automobile emissions are
responsible for 45 percent of volatile organic compounds and 81 percent of total
nitrogen oxides (Molina and Molina 2000). These gases are responsible for ozone
formation, which is harmful for health at low atmospheric levels; and particulate
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matter, which has been shown to be associated with severe respiratory illness. In
contrast, automobile emissions in the United States are responsible for about 29 and
34 percent of these gases, respectively. There are three reasons for this difference: a
younger car fleet, stricter manufacturer controls in the U.S., and extensive cheating
on emission tests in Mexico City. This paper will focus on the third reason.

Compulsory vehicle emission inspections, known as smog-checks, are the most
common means of enforcing emission standards on vehicles throughout the world.
However, their effectiveness in reducing on-the-road emissions has been questioned
widely due to sizable gaps between emission levels from official tests measured at
smog-check centers and emission levels measured on-the-road or off-cycle tests (Glazer
et al. 1993, Wenzel et al. 2004, etc). Some studies have attributed this discrepancy
to a high variance in emissions or a fast deterioration of emission controls. Wenzel et
al. (2004), for example, find that eight percent of the cars in Phoenix that passed an
emission test on the first attempt will fail an immediate off-cycle retest. And, those
cars that failed the first attempt but passed the official test on the second attempt
would fail an immediate retest with a probability of 32 percent.1 Emission testing
requirements may be ineffective for reducing average emissions if emission variance is
high and affordable retesting is available.

Other studies have emphasized “cheating” or smog-check center fraud as the main
source of test ineffectiveness (Hubbard 1998, Zhang et al. 1996, Glazer et al. 1993,
Wenzel 2000, Snyder and Pierce 2008, and the Ministry of Environment in the Federal
District of Mexico 2004), but the evidence they present is often subject to confound-
ing factors. Wenzel (2000), for example, finds that private centers in California have
higher passing rates than government owned centers in Arizona, and attributes this
discrepancy to fraud. Similarly, Hubbard (1998) argues that private centers in Cali-
fornia have incentives to “help” car owners pass the test, citing differences in passing
rates between private and government inspectors to support his argument. In a recent
U.S. study, Snyder and Pierce (2008) blame unethical behavior for persistent differ-
ences in passing rates across smog-check facilities. In Mexico City, remote sensing
studies have found that on-the-road emissions are substantially higher than same-
vehicle emissions measured at testing centers.2 The local Ministry of Environment

1He uses a sample of cars that are submitted to an off-cycle test as part of the requirements for
change of ownership in Phoenix and California. The failure rates reported correspond to Phoenix.
California failure rates on immediate off-cycle tests are 6 and 20 percent respectively.

2There were remote sensing studies in Mexico City in 2000 and 2003 (Schifter et al. 2003).
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(Secretaría de Medio Ambiente, D.F. 2004) attributes the discrepancy to cheating.
This paper assesses the prevalence of cheating on smog checks in Mexico City and

the extent to which cheating undermines regulatory efforts to reduce vehicle emissions.
Documenting and studying cheating is complicated by the lack of information on
cheating decisions and true emissions from cheaters. Some papers in the corruption
literature have overcome similar data issues by comparing administrative records with
survey information or independent assessments (Olken 2006, 2007). This approach
would not be reliable in the case of smog-checks since vehicle emissions may vary
from test to test (Wenzel, 2004). Other papers have relied on indirect evidence to
document and study cheating and corruption (Fisman 2001, Levitt and Jacob 2006,
Duggan and Levitt 2002). This paper’s approach is closer to the latter literature.

The methodology used in this paper overcomes the lack of information issue by
combining a non-parametric test for cheating with a structural model of the emission
testing process. In a first step, I develop a statistical test for identifying a specific
type of cheating that involves bribing the smog-check center personnel. Second, I
estimate a mapping from car attributes into “fair” probability of passing the test by
only using data from centers with little evidence of cheating (identified in step 1).
The mapping is then used to predict the fair probability of passing for the rest of
the car-fleet. Third, I estimate a structural model of car owner testing decisions that
allows for both, retesting and cheating. This allows me to study simultaneously the
two issues with smog checks that have been identified by previous literature. The
parameters in this model can be recovered from observed testing outcomes and the
empirical distribution of the probability of passing the test, which is estimated in step
2. No direct information on cheating is required for the estimation. The maximum
likelihood estimation of the model yields estimates for the prevalence of cheating and
the equilibrium bribe in the cheating market. An extension to the model yields results
on the car owners’ willingness to pay for car maintenance and the social benefits from
increasing enforcement.

The test for cheating in step one relies on the identification of cheating-consistent
patterns in smog-check center records. Interviews with mechanics and anecdotal
evidence suggest that the most common way to cheat is to substitute clean emissions
from “donor” cars for high emissions from high emitting vehicles. This type of cheating
requires bribing a center’s technician to select a suitable donor car among other
customers and match a donor’s second emission reading to the cheater’s registration
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card. Cheating centers can be identified because emission readings from the same
vehicle have a lower variance than readings from different vehicles; hence, test readings
will appear to be serially correlated whenever donor cars are used. Results from this
test suggest that 63 out of 80 centers accept bribes for cheating using donor cars.
Three different robustness tests, that rely on additional evidence, support the main
test’s methodology.

Although this test does identify cheating centers, it cannot be used to identify
individual cheaters. However, the cheating test does provide an important input to
the estimation of the structural model that does estimate cheating prevalence at the
individual level. Specifically, the test identifies a group of low-cheating centers and,
in a second step, I use test information in low-cheating centers to estimate a mapping
between “fair” pass rates and observed car characteristics. This mapping is then
combined with the distribution of car characteristics and observed pass rates across
the entire car-fleet to construct an estimable model for the decisions car owners make
when facing the smog-check requirement.

The structural model of car owner decisions in step three assumes individuals
take their expected probability of passing as given and choose between fair testing,
cheating and paying a bribe or postponing the test beyond the testing deadline. The
probability of cheating is expressed as a function of the expected costs of bribing and
not-bribing decisions. These expected costs depend in part on the fair probability of
passing the test, and the amount paid to the technician as a bribe. Because of the large
number of centers and the homogeneity of the service offered, I assume that centers
are perfectly competitive on bribes (Shleifer and Vishny 1993); hence, car owners and
centers are assumed to be “bribe takers.” The model is estimated by maximizing the
likelihood of the observed sequences of retesting decisions and test outcomes, given
the theoretical probabilities of these sequences from the model. Despite not observing
individual cheating decisions, estimates for the parameters in the structural model
are recovered from an excess of passed tests in the observed sequence of tests and
retests, given the predicted fair probabilities of passing. The likelihood maximization
yields estimates for the bribe amount and the time cost associated with smog checks.
Most importantly, the maximization yields an estimate of cheating prevalence and
the probability of cheating for each vehicle. The parameter estimates from the model
suggest that the average bribe was about 20 U.S. dollars in 2003.

The results of the model estimation likely provide a lower bound of the prevalence
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of cheating, since the predicted “fair” probability of passing may overestimate the
true probability of passing. This would be the case if potential cheaters know which
centers welcome bribes and self-select into them. In the structural model estimation,
the upward bias of the estimated probability of passing would lead underestimating
amount of cheating. In other words, the model predicts that at least 9.6 percent of
emissions tests appear to be fraudulent.

The structural model is used to simulate car owner decisions under increased
enforcement and increased cost of retests. I combine predicted decisions on car main-
tenance with the information on emissions from low-cheating centers to perform a
back of the envelope calculation of the environmental benefits from eliminating cor-
ruption and at the same time increasing the cost of repeated tests. Results suggest
that a set of policies that address both cheating and inexpensive retesting would avoid
1,443 tons of pollution, with the estimated benefit of 1.5 million dollars in reduced
mortality. However, these policies would be accompanied by an increase in costs of
about 3.7 million dollars to car owners. The simulation results highlight how inducing
a small percent of the car-fleet to reduce their emissions using smog-check inspections
comes at a high cost for the entire car-fleet.

The rest of the paper proceeds as follows: Section 2 provides a brief description of
the vehicle regulations and describes the context in which cheating occurs. Section 3
describes the data used for the cheating detection and the structural model estimation.
Section 4 proposes a statistical test for detecting cheating. Section 5 develops a model
for car owner’s decisions with respect to cheating. Section 6 extends the model to
simulate willingness to pay for car maintenance and car maintenance decisions under
different policy scenarios; and Section 7 concludes.

2 Vehicle Regulations in Mexico City

Mexico City introduced twice-a-year smog checks for all vehicles in 1990. The require-
ment is compulsory and universal within Mexico City Metropolitan Area (MCMA),
which comprises of all the Federal District and a large portion of the state of Mexico.
Vehicle owners have a two-month window to attend any smog check center within
their state and full fill the smog-check requirement by passing the emissions test and
obtaining the corresponding certificate. The certificate is given in the form of a sticker
that is pasted on the vehicle’s windshield by center staff. Non-complying vehicles are
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easy to spot on the road by police officers, since they do not carry a valid sticker.
Fines for non-compliance range from 850 to 3,500 pesos (79 to 325 2003 U.S. dollars).3

Smog checks consist of the following steps: upon arrival at each test attempt
the vehicle’s owner pays the emission test fee whenever required (even attempts at
passing the test are free). A center employee enters the vehicle’s information into
the computer. This information includes plate number, model-year, make, number
of cylinders, owner’s address and mileage, all of which can be read from the regis-
tration card and the odometer. Once the vehicle’s information is recorded, one or
two technicians perform a visual test of the vehicle in order to identify any obvious
malfunctioning of the engine or tailpipe. Upon passing the visual test, the vehicle is
placed on the dynamometer and the reader is connected to the vehicle’s tailpipe to
perform the emission test. Emissions are read directly by the computer and cannot
be entered manually. After the test is complete, the corresponding test certificate
is imprinted with the vehicle’s plate number. The technician does not observe the
recorded emissions until the certificate is printed. If the vehicle passes the emission
test, a sticker with the vehicle car plate number is pasted on the vehicle’s wind-
shield. If the vehicle fails the test, the owner may retest indefinitely upon paying the
corresponding fees.

In 2003 there were a total of 80 licensed centers in the Federal District. The li-
censes for these centers were tendered in 1997 and very few new licenses have been
granted ever since. All smog-check centers are privately owned, except for three
institutional centers.4 However, they are all subject to tight regulations from the
government. The smog-check centers are obliged to purchase their testing equipment
and computer software from government-approved providers. The software, which
contains the current emission norms, is renewed annually. The ministry of environ-
ment conducts unannounced inspections of smog-check center facilities on a regular
basis. During these inspections, all mechanical and electronic equipment is checked.
In addition, all facilities are required to have a camera surveillance system and pub-
licly available video transmissions.

3Fines are set in minimum wages. A fine for smog-checking after deadline is 20 daily minimum
wages. A fine for circulating without a valid smog-check certificate is 40 daily minimum wages. A
fine for failing to comply with the smog check requirement within 30 days after first fine is 80 daily
minimum wages. (Gaceta Oficial del Distrito Federal 2004)

4Institutional centers belong to the Department of Defense (SEDENA), the National Power and
Electricity Company (Luz y Fuerza del Centro) and the Department of Water Resources (Sistema
de Aguas).
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Emission standards are somewhat below EPA Tier 1 standard in the U.S. Columns
1 to 5 of Appendix Table 1 show the emission limits in 2003. Vehicles can be retested
as many times as needed within their corresponding two-month window. In 2003
each test cost 175 pesos (16 U.S. dollars) and every second retest was (and remains)
free. This pricing structure has been determined by the Ministry of the Environment.
Column 6 of Appendix Table 1 shows the emission requirements on less-than-10 year
old vehicles for an exemption to the “No Driving Today” program.5

3 Data

This study uses data on vehicle information and test outcomes from emission tests
conducted in the Federal District in 2003. The computers in each smog-check center
are connected to a common network run by the local Ministry of Environment, which
pools the information from all centers into a single data set. The resulting data set
includes information on each test and retest performed on every car that visits an
authorized smog check center.

The data for 2003 include information for all tests and retests for 1.6 million ve-
hicles. The information on each test includes the exact measurement on four relevant
gases. Three out of the four gases are harmful pollutants: hydrocarbons (HC), ni-
trogen oxides (NO) and carbon monoxide (CO); while the fourth, oxygen (O2), is
measured to confirm the proper balance in the combustion process and avoid passing
tampered vehicles. Each test consists of two different readings of each of these four
gases. The first reading is taken at 24 kilometers per hour (kph), and the second one
is taken at 40 kph. In order to pass the emission test, a vehicle must have emissions
below the standard in both readings.

Information available for each test also includes car characteristics (plate number,
model year, brand and size of the engine); test outcomes (pass/fail status, reason for
failure, visual conditions of the car, and whether or not the owner paid a fine for
non-compliance in the last smog-check period); beginning and ending times of the

5The “No Driving Today” program has been in place since 1989 and originally restricted all
vehicles from circulating one day a week. The day of the week a vehicle is restricted varies with
the last digit of the vehicle’s plate number (see Davis 2008 for a recent evaluation of this program).
Since 1997, vehicles are exempt from this program if they are model-year 1993 or newer and they
meet a stricter standard (see column 6 of Table 1). This age requirement changed in 2004. Exempt
vehicles should now be 10 years or newer, regardless of the model-year.
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test in seconds; and smog check center’s information (center’s identity number, and
lane or testing equipment where the test was performed). Appendix Table 1 presents
descriptive statistics of emission readings and car characteristics.

4 Extent of Cheating

Cheating at smog-check centers is a major concern in Mexico City. Anecdotal evidence
and newspaper articles suggest that fraud is a common practice. In 2002, under-
cover newspaper reporters took a car with substandard emissions to seven randomly
selected smog check centers. In six of the seven, the reporters were able to obtain the
emission test certificate by paying an additional “tip” that ranged from 5 to 40 U.S.
dollars. The technicians at the fraudulent centers did not reveal any details about
the cheating procedure. However, they assured the reporters the procedure would not
cause damage to the car’s engine (Padgett 2002).

The local Ministry of Environment has also expressed concern about cheating.
However, they have emphasized cheating in the form of tampering with the engine,
which is likely not the main form of cheating by 2003.6

Anecdotal evidence suggests that most cheating occurs in the form of emission
substitution. When bribed by a customer, technicians use a clean testing car, com-
monly called donor car (auto madrina), to provide the emission readings for the
bribing costumer’s dirty car. The donor car can be any other vehicle that passed the
emission test at the center. A donor car is needed because emissions cannot be en-
tered manually into the center’s computer. The car’s information, on the other hand,
has to be entered manually into the computer, which allows the technicians to enter
the information from a dirty car and match that with emissions from a clean car. An
observable consequence of this type of cheating is that consecutive emissions readings
in a single lane will have strong serial correlation. The serial correlation arises from

6The local Ministry of Environment published a report in 2004 where they expressed concern
about a cheating problem in the form of tampering with the engine. The report states that tampering
is detectable through the levels of other gases such as oxygen and carbon dioxide. They also notice
that after including some checks for these additional gasses in 2002, evidence of tampering was
reduced in the smog check center data. In their report, they propose using additional controls of
this sort to eradicate tampering. These measures, however, do not seem to have solved the cheating
problem. Moreover, because of the additional emission requirements and because vehicles with
computerized systems can be severely damaged when manually altering the combustion process,
tampering is no longer the main cheating method at emission tests.
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having a single car as a provider of emissions for more than one consecutive test.
Presumably, one of these tests is assigned to the vehicle to which it belongs. The rest
of the emission readings are assigned to vehicles owned by bribers.

4.1 Testing for cheating

The statistical test for detecting cheating developed in this section relies on measuring
the serial correlation between tests of different vehicles. In motivating the statistical
test used to detect cheating, it is instructive to observe a sequence of actual emissions
readings in the order they occur. Table 2 shows a fragment of the sequence of emission
readings for a single smog check center in a single lane. Column 1 shows the exact
time at which the test was performed. Columns 2 to 4 show the model-year of the
vehicle tested, the number of cylinders, and the volume of displacement in the engine.
The remaining columns show the reading of each pollutant measured at 24 kph and
40 kph. Notice that the sequences of readings that appear inside the black squares
show striking similarities in all pollutants across tests despite substantial differences
in car characteristics. All readings within these sequences could correspond to the
same donor car, even though they are listed under different vehicle records.

I use an autoregressive model for each measured pollutant to estimate the extent
of serial correlation between consecutive readings. The model controls for flexible
functions of car, car owner and test characteristics. A significant positive coefficient
on the preceding test will be interpreted as evidence of cheating.

More formally, let r̃jit be the true emissions of pollutant j, for car i at time t.
In this case, j will denote one of the four gases that are involved in the test when
measured at 24 kph. To simplify the notation, I will omit the index j in the analysis
that follows. However, the regression analysis proposed below will take into account
all four pollutants. True emissions are given by

r̃it = xiβ+uit, (1)

where xiβ is the mean square error minimizing linear prediction given observable car,
test and center characteristics. The specific set of controls included in xi is detailed
below.

In the current setup, the index i will be a car specific identifier that will also keep
track of the order in which vehicles show up at a center. To ease the exposition,
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assume each center has a single lane. For example, the vehicle arriving after vehicle
i will be denoted i + 1. Emission components in uit are indexed by time, t, since
emissions of the same car may vary from test to test. The index t will then denote
the order in which vehicles were actually tested or “test slot”. The distinction between
i and t is necessary only when cheating occurs. In what follows, I will refer to vehicles
whose owner decides to cheat as “cheaters” or “cheating vehicles”.7 Under no cheating,
these two indexes should be one to one. However, in the presence of cheating, the
same vehicle may be tested in two or more consecutive test slots. For example, if
i − 1 is a donor car, i is a cheater, and i + 1 is not a cheater, then the smog-check
data set will have the following sequence of emissions on test slots t − 1 through
t + 1: r̃i−1t−1, r̃i−1t, r̃i+1 t+1 . If none of the three cars are cheaters, then the sequence
of emissions in the smog-check record will be: r̃i−1t−1, r̃it, r̃i+1 t+1 .

The test for cheating relies on the contiguity between emission readings of the
donor car and all cheaters it provides emissions for. Specifically, it assumes that

(A1) all vehicles the donor car provides emissions for have the consecutive test
slots in the same lane.

In the rest of the paper, I will often use the terms “testing equipment” and “lane”
interchangeably, since there is one testing equipment per lane. Assumption (A1)
excludes the possibility of putting away the donor car from the testing equipment
while other non-cheating vehicles get tested and bringing it back in for a cheater’s
test slot. It also excludes recording the donor car’s “own” emission reading in a
different equipment than the readings used for cheaters’ certificates. However, it
allows for multiple vehicles to cheat using the same donor car, as long as they are all
“tested” consecutively after the donor car. Assumption (A1) is supported by anecdotal
evidence and the observation of sequences of emission test like the one shown in Table
2.8

It is plausible to assume that, under the null of no cheating, there should be
no dependence between subsequent emission readings, conditional on car and center

7Obviously, the decision to cheat is made by the owner, not the vehicle.
8There is anecdotal evidence that the use of donor cars that are not being tested themselves is not

common. However, the use of this type of donor cars would violate assumption (A1). If centers used
a home car as a donor car, e.g. the technician’s car, the donor car’s emissions would not appear in
the test slot preceding a cheater. In this case, the test proposed below would only detect corruption
if the donor car was used consecutively for more than one briber. Groups of consecutive cheaters,
like the one exemplified in Table 2, do occur frequently.
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characteristics. The regression methodology outlined below requires an even weaker
set of assumptions: first, the unobserved components of linearized emissions, uit, are
assumed to be serially uncorrelated, and second, the correlation between the unob-
served component of emissions and every observed car characteristic of the preceding
vehicle is assumed to be equal to zero:

(A2) E(ui−1t−1uit) = 0

(A3) E(xi−1uit) = 0

Notice that, by construction, uit includes only emission determinants that are un-
correlated with observed emission determinants. Thus, assumption (A2) would be
violated if, in the absence of cheating, car emission determinants not controlled for
in xi are serially correlated. For example, consider two cars that arrive simultane-
ously at the center and belong to the same owner, say the same household or same
company, and thus have similar maintenance histories. For these type of car pairs to
violate the identification assumptions, the maintenance histories, or other unobserved
car characteristics, would have to be correlated with emissions but be uncorrelated
with the observed emission determinants previously described. In the estimation of
(1), observed emission determinants include brand, service and size fixed effects, a
flexible function of the age of the car, age-size and age-service interactions, flexible
functions of mileage and time of the day, week and center-lane (testing equipment)
fixed effects. Note that the testing equipment fixed effects would pick up similarities
in emissions such that may come from differences in calibration or any time-fixed
patterns in the type of cars that are directed to a specific lane. To further control for
non directly-observable emission determinants that might induce serial correlation
if similar vehicles coincide in timing and center choices, xi also includes emissions
recorded in preceding and subsequent tests that are performed on neighboring lanes
in the same center. Notice that, since all centers have multiple lanes, vehicles that are
in consecutive places in the queue will be distributed across the different lanes. Hence
similarities within groups of vehicles with similar arrival times are likely picked up by
emissions from vehicles in contiguous lanes that are tested simultaneously or closely
in time. Controlling for these emissions, assumption (A2) would only be violated if
cars that are similar in non-observable ways are directed consistently to the same lane
upon arriving simultaneously at the center.
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Assumption (A3) is presumably easier to meet than assumption (A2). For it to
be violated, some unobserved emission determinant that is uncorrelated with any of
the observed own car and test characteristics would have to be correlated with the
car characteristics of the contiguous vehicle in a single testing lane.

Let rit be observed smog-check center emissions. Under the null hypothesis of no
cheating, rit, should be equal to true emissions, r̃it. Under the alternative hypothesis,
an observed reading can be either a measure of true emissions or a measure of a donor
car emissions. Hence, observed emission readings under the alternative hypothesis be
expressed as:

rit = cir̃i−kt + (1− ci)r̃it, (2)

where rit are observed emissions of car i in slot t, r̃i−kt are true emissions from the
first donor car that preceded vehicle i in the same lane and ci is a binary variable,
such that ci = 1 if i is a cheater.

Since k is unknown, true emissions, r̃i−kt, are not observed; and therefore, it is not
possible to test for H0 by regressing rit on r̃i−kt. However, we do observe ri−1t−1, the
observed emission reading for car i− 1 in test slot t− 1, which will originate from the
donor car, i− k, whenever i is a cheater under assumption (A1). Under assumptions
(A1)-(A3), an unbiased test for whether a center uses donor cars for cheating is given
by the estimation of the following OLS regression:

rit = γcri−1t−1 + xiγx + νit, (3)

The OLS estimate of coefficient γc can be used as a test statistic for the null
hypothesis of no cheating. Assumptions (A2) and (A3) imply that, in the absence of
cheating, E∗(rit|ri−1t−1,xi) = xiβ.9

The test for cheating outlined above is performed at the center level. In order
to maintain the power of the test constant across centers, I draw a random same-
size sample of tests from each center. For each center, equation (3) is estimated
jointly for all four pollutants using a Seemingly Unrelated Regressions model. I test
for cheating using the chi-square statistic for the joint hypothesis that the serial
correlation coefficients for all four equations are zero. This produces a single p-value

9To see this, note that E∗(rit|ri−1t−1,xi) = E∗(xi|ri−1t−1,xi)β + E∗(uit|ri−1t−1,xi) =xiβ +
E∗(uit|ri−1t−1)= xiβ + E∗(uit|xi−1,ui−1t−1). Under assumptions (A2) and (A3),
E∗(uit|xi−1,ui−1t−1) = 0. See Appendix 1 for the details of this proof.
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for each center. I find evidence of corruption at the 5 percent level for 63 out of 80
centers. Panel A of Table 3 shows the test results for the 10 centers that have the
lowest evidence of donor car cheating and Panel B shows results for the 10 centers that
have the strongest evidence of donor car cheating under a joint test of significance for
all four specifications.

4.2 Robustness tests and other types of cheating

Although, I cannot directly test the validity of assumptions (A2) and (A3), I per-
form three different robustness tests that support the cheating interpretation of the
results. First, I propose an alternative test for cheating that also relies on detecting
the abnormal occurrence of sequences of close emissions, but under slightly different
assumptions. This alternative test allows for some cheating-unrelated serial correla-
tion between observed and unobserved determinants of vehicle emissions to occur, but
constrains this correlation to occur at the center, lane, date and day-shift level (a day
is considered to have 4 shifts). The identification assumption of this test would be
violated if the correlation occurred at a more specific level such as center, lane, date
and hour of the day. The mechanics of this test rely on using permutations of the
data to generate different draws of the empirical distribution of emission differences
between consecutive pairs. Under the null hypothesis of no cheating, these random
draws should not be statistically different than the observed draw. These empirical
distributions generated from the permutations are compared to the observed distri-
bution of pairwise differences. With a large number of draws, I can test for whether
the the observed distribution has a significantly larger amount of small differences
compared to the distributions from permuted data. The generated and observed dis-
tributions are shown in Appendix Figure A1 and the mechanics of this alternative
test are explained at length in Appendix 2. The results of this alternative test suggest
that corruption occurs at 75 out of 80 centers. Although this test appears to have a
stricter standard for ruling out corruption (the p-values for the test in 73 centers are
less than 0.001), the two tests agree on which centers have insufficient evidence for
corruption in 4 out of 5 cases.

The second robustness test for the proposed methodology relies on testing for
the presence of an additional implication of donor car use. Specifically, test results
from the same car should be recorded close in time, in addition to being similar in
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measured pollutants, as two tests from the same car would not be separated by the
time required to disconnect one vehicle and connect the next vehicle to the testing
equipment. The hypothesis that tests that occur closer together in time also have
similar recorded emissions can be tested by interacting time between tests with lagged
emissions. Results confirm this prediction by showing that the serial correlation
between emission readings is more important for short time intervals between tests
(0-5 min) than for long time intervals between tests (15-20 min).10

Finally, notice that the more donor cars are used, the more often vehicle emissions
will be matched with the “wrong” car characteristics. The final robustness test evalu-
ates whether the relationship between car characteristics and emissions varies across
centers by the strength of the cheating evidence in each center. I classify centers in
10 groups according to the p-value of the joint test for whether emissions are serially
correlated. Centers with the lowest p-values are more likely to engage in cheating
using donor cars, while centers with higher p-values are less likely to engage in cheat-
ing. I then run a simple linear regression of emissions on model-year and a constant
for each group. The estimated coefficient on model-year should be more negative for
the group of centers that, based on the statistical test, are unlikely to have cheating
(group 1) and less negative for centers that are more likely to have cheating (group
10). Figure 1 depicts the strength of the estimated relationship between the year the
car was made and the measured emissions by how likely a center is to be engaged in
cheating.

Figure 1 suggests that centers that do not use donor cars are less likely to cheat
in other ways. To see this, note that centers were grouped in Figure 1 according to
a measure of serial correlation, which reflects the prevalence of cheating with donor
cars. However, other types of cheating would also produce a discordance between car
characteristics and emissions. Therefore, an additional implication of Figure 1 is that
centers that are classified as having low cheating of the form of donor cars also have
low prevalence of other forms of cheating.

The validity of this falsification test can be further verified by checking whether
the negative slope in the graphs disappears when an environmental predictor of emis-
sions, such as temperature, is used instead of a car attribute. The environmental
determinant of emissions is always matched to the right emission readings despite the

10The results for this robustness test are available in as Figure WA1 of the online appendix
(http://www.econ.ucsb.edu/~oliva/Research/smogchecks/Web_Appendix.pdf).
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presence of corruption, hence the coefficient should not fall as corruption increases.
A figure analogous to Figure 1 but using temperature instead of model year (Figure
WA2 in Web Appendix) confirms this prediction.

Last, because of potential self selection into cheating and non-cheating centers,
vehicle characteristics may differ across centers with different levels of cheating (see
section 7 and Table WA2 in Web Appendix). If the effect of age on emissions is
non-linear, we would expect the marginal effect of age to differ across centers as well.
Figure WA3 in the Web Appendix replicates Figure 1 holding the age distribution
of vehicles constant across centers. The positive relationship between the coefficients
and the level of cheating rules out that non-linear effects of age are driving the results
of the robustness test.

5 A model of bribing behavior

The results from Section 4 suggest that cheating is a major concern for emission
control policy in Mexico City. The evidence of widespread corruption shown invites
the questions of whether economic incentives can explain the observed behavior and
whether bribing is as cheap to car owners as anecdotal evidence has suggested. In
addition, although the evidence provided suggests a large amount of corruption in
several smog check centers, the statistical evidence is not specific enough as to inform
about the number or proportion of vehicles that rely on corruption for overcoming
the smog check requirement.

This section models the key factors behind the car owner’s decisions in order
to validate and refine the reduced form evidence of corruption in Section 4. Using
the full information available on car owner decisions as well as official test results, I
estimate a dynamic model of bribing decisions that delivers estimates for the implied
opportunity cost of bribing as well as the time cost incurred by vehicle owners when
complying with the regulation. Given that the most polluting vehicles are older
models which cannot exempt the smog-check requirement, the model proposed in
this section focuses on the behavior of owners of non-exemptible vehicles, who are
required to pass an emissions test in order to drive in Mexico City. The estimates
found are consistent with cheating results in Section 4 and with anecdotal evidence
on the prevalence of corruption and the amount of money paid in bribes.
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5.1 Model set-up

The model proposed in this section incorporates the main features of the smog-check
requirement in Mexico City for non-exemptible vehicles: the price of smog checks is
constant across centers and equal to 16 U.S. dollars; retests are unlimited and even
retests are free; the cost of not passing the test and getting caught with an expired
certificate is 79 U.S. dollars; all car owners have the choice of cheating and are not
punished from doing so; finally, centers and car owners are “price takers” with respect
to the bribe.11

I preview the next paragraphs by noting that the notation in this section is entirely
independent from the notation in sections 4.1 and 4.2. Specifically, the time subscript
in this model will count the number of attempts to pass the test that a single vehicle
undergoes within a single smog-check cycle. The beginning of each test or retest
in a single smog-check cycle will correspond to a decision round, denoted t. In each
decision round, indexed by t, a car owner is assumed to decide between three different
actions: cheating and paying a bribe to the technician (st=B); submitting her car
to a fair test (st=A); and postponing the check beyond the deadline (st =X), which
entails a fine upon getting caught. If a car owner cheats and pays a bribe to the
technician, she is guaranteed to pass the test. If she doesn’t cheat, then she faces the
risk of not passing the test, but she also avoids the cost of the bribe. If failing occurs,
the car owner will situate herself at the next decision round or retest within the same
smog-check cycle. The probability of passing the test is assumed to be car specific
known by the car owner. If the car owner postpones the test to the next smog-check
cycle, she will avoid any costs in the current smog check period, but will risk the
payment of a fine in the next smog-check period.12

The model proposed so far does not explicitly allow for car maintenance decisions:
i.e. owners cannot chose to perform a car tune up in order to increase the probability
of passing the emissions test. An important reason for excluding maintenance from the
car owner’s set of options is the absence of observable data on maintenance decisions.
However, given the evidence of wide spread corruption, car maintenance seems un-
likely to be a common response to the smog-check requirement. The model estimation

11Although there is no risk of getting caught for the car owner, the equilibrium bribe may incor-
porate technician’s risk of getting caught.

12Notice that smog-check periods are different than decision rounds. Each smog-check period starts
with a first decision round. Subsequent decision rounds in the same smog-check period appear as
the vehicle fails the tests and retests.
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does not exclude maintenance from happening, but it does constrain maintenance to
be unrelated to car owner’s decisions regarding the smog check requirement. Indirect
evidence can help us assess how unlikely is maintenance comes from the differences
in probability of passing between the first test and the retest among vehicles that fail
the first test. It seems unlikely that a first test, vehicle repairs, and a retest can occur
all in the same day. Hence, we can safely assume that the car owners that return
for a retest on the same day, which make for 80 percent of all retests, will not have
performed any repairs to their vehicle since the first failed test. We can then com-
pare the share of passing vehicles among same-day retesters with the share of passing
vehicles among different-day retesters. Assuming that (a) there is the same number
of cheaters among the two groups, and (b) the repairs guarantee passing the test; we
can roughly calculate the number of vehicles that have performed maintenance by
solving the following equation for M :

P̂ r(pass|different day) ≈ M + P̂ r(pass|same day)(1−M)

where P̂ r(pass|different day) is the share of vehicles that passed the rests condi-
tional on having it on a different day than the first test, M is the share of vehicles that
performed maintenance among all vehicles that went for a retest on a different day
and P̂ r(pass|same day) is the share of vehicles that passed the retest among those
who came back on the same day. The above calculation yields M̂ = 0.074. Given
that different-day retesters are 20 per cent of all retesters, this calculation suggests
that only up to 1.5 percent of all retesters may have conducted maintenance. Hence,
this maintenance response to the smog-check is relatively unimportant in 2003. Al-
ternatively, assuming that individuals that perform car maintenance pass with 0.90
probability, yields 2 percent of vehicles that might have undergone maintenance. This
calculation suggests that omitting maintenance as a relevant alternative will not have
a large impact in our structural estimation results.

As is standard in discrete choice models, we can represent car a owner’s decisions
in a random utility framework. I assume a car owner’s utility is linear in money and
she chooses the action st ∈ {X, A, B} that maximizes her expected utility. Random
utility depends of unknown parameters (denoted with greek letters) ω, β, δ, and τ ;
known constants (denoted in latin letters) c, and f ; vehicle-specific probability of
passing, P ; and random utility components �s

t , which are decision round and choice
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specific.13 Parameters ω and β as the time cost associated with each visit and the
bribe paid, respectively. Both parameters are known to the car owner, but unknown to
the econometrician. In this initial setup, these parameters are assumed to be constant
across vehicle owners. However, the estimated version of this model allows the time
cost, ω, to vary across car owners and smog-check centers. The constants c and f

denote the fee charged by the center for every odd test (even tests are free) and the fine
that applies to belated smog-checks, respectively. Both are measured in pesos and are
known to both, car owners and the econometrician.14 The probability of passing the
test, P , is assumed to be vehicle-specific and known to both, the econometrician and
vehicle owners. Random utility shocks, denoted by τ�s

t , are specific to choice s and
decision round t and are assumed to be independent across choices and across decision
rounds. These utility shocks can be understood as unobserved events that may change
the relative cost of each choice, including for example, unforeseen time constraints
that make postponing the test more attractive, a donor car constraint, etc. The
random utility components, τ�s

t , are observed by the car owner right before making
their decision at the beginning of round t, but not before that. As is usually done
in discrete choice models, I assume that these shocks are extreme value distributed
with mean zero and scale parameter τ . Finally, the unknown parameter, δ, can
be interpreted as a discount factor on the fine that applies to belated smog-checks,
f . This parameter may be interpreted as a combination of time preference and the
probability of punishment.

Given the notation described above, the expected utility for each of the available
choices at odd rounds is given by:

Etuod
t (X) = −δf + τ�X

t

Etuod
t (B) = −ω − c− β + τ�B

t

Etuod
t (A) = −ω − c + (1− P ) · Et(V ev

t+1 ) + τ�A
t

(4)

When t is an even round, the expected utilities are

Etuev
t (X) = −δf + τ�X

t

Etuev
t (B) = −ω − β + τ�B

t

Etuev
t (A) = −ω + (1− P ) · Et(V od

t+1 ) + τ�A
t

(5)

13c should not be confused with with ci from Sections 4.1 and 4.2. In this section, c without a
subscript denotes a known constant equal to the cost of odd tests (16 U.S. dollars).

14The test fee is 16 U.S. dollars and the fine is approximately 79 U.S. dollars.
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The value of decision round t is given by: V od
t = max

�
Etuod

t (X), Etuod
t (B), Etuod

t (B)
�� Ωt

�

and V ev
t = max (Etuev

t (X), Etuev
t (B), Etuev

t (A)|Ωt), where Ωt = {�X
t , �B

t , �A
t }.

There is a trade off between the uncertainty of a fair test and the cost of bribing.
The expected utility of a fair test in equations (4) includes the expected value of
entering a new decision round, EtV ev

t+1 , multiplied by the probability of failing the
test, (1 − P ). If the car owner decides to cheat and pay a bribe, then her expected
utility does not include the expected value of entering another round, because after
paying the bribe she passes the test with certainty.

The value of entering another decision round differs between even and odd rounds,
since the centers do not charge a testing fee for even retests. However, because there
is an unlimited amount of retests, the utility associated with each of the decisions
is independent of t. Hence, the value of entering another decision round is also
independent of t, conditional on whether t is even or odd.

The stationarity of the expected utility and the extreme value distribution as-
sumption for the random shocks in the model facilitate the estimation. Following
McFadden and Domencich’s (1996), the extreme value distribution assumption re-
sults in a closed form expression for the expected value of subsequent rounds:

Et−1V od
t = τ

�
k + log

�
exp

�
−δf

τ

�
+ exp

�
−ω−c−β

τ

�
+ exp

�
−ω−c+(1−P )·EtV

ev
t+1)

τ

���

Et−1V ev
t = τ

�
k + log

�
exp

�
−δf

τ

�
+ exp

�
−ω−β

τ

�
+ exp

�
−ω−(1−P )·EtV

od
t+1

τ

��� (6)

where k is the Euler constant and τ is the scale parameter of the random utility
shock distribution. The stationarity of expected utility facilitates the solution to (6),
since Et−1V od

t = Et+1 V od
t+2 ∀ odd t and Et−1V ev

t = Et+1 V ev
t+2 ∀ even t. In estimating

the model, I use a nested fixed point algorithm to solve for the system of equations
in (6) as a subroutine to the standard maximum likelihood problem (Rust, 1987).15

For computational reasons, I also estimate a two round version of the model. The
two round version has the same payoffs than the infinite horizon model in the first
round. However, it assumes that there is a maximum of three attempts to pass the
test and all individuals choose to pay a bribe upon failing two consecutive times.
Therefore, in the second round E2u2(A) is given by:16

15For a formal proof of the existence and uniqueness of the fixed point see the Web Appendix 1.
16The ev and od superscripts, that denote even and odd rounds respectively, are omitted in the

two round model to avoid redundancy.
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E2u2(A) = −ω + (1− P )(−ω − c− β) + τ�A
2 (7)

The expected value of entering another decision round in t = 1 is given by

E1V2 = τ

�
k + log

�
exp

�
−ω − β

τ

�
+ exp

�
−ω + (1− P )(−ω − c− β)

τ

�
+ exp

�
−δf

τ

���
(8)

The two round version of the model is more efficient to compute for two reasons:
first, the estimation requires computing only tone expected value of entering another
round and seconds, the model has a closed form representation given by (8). Hence,
estimating the two round version does not require computing the numerical solution
described above.

In both models, the extreme value distribution of the random shocks implies that
the probability of each choice is given by a multilogit-like expression. For example,
the probability of st = B in the infinite horizon model is given by

Pr(st = B) =
exp

�−ω−c−β+ δf
τ

�

1 + exp
�−ω−c−β+ δf

τ

�
+ exp

�
−ω−c+(1 −P )Et V ev

t + δf
τ

�

for all odd t’s, with st = X as the base category. Similar probability expressions
can be derived for each of the other choices for both even and odd rounds (see Web
Appendix 2).

5.2 Estimation methodology

This Section describes how the structural parameters−time cost, ω, bribe, β, discount
rate, δ, and random shock variance, τ− in the model of Section 5.1 can be identified
from estimation. The identification of these parameters, despite the lack of data
on bribing decisions, represents a methodological contribution of this paper. The
identification strategy proposed relies on being able to estimate the probability of
passing the test without cheating for at least two different types of vehicles. We
proceed assuming this condition is met. In practice, P , is estimated in a first stage as
its predicted value given the car’s characteristics and the parameter estimates from a
low-cheating subsample identified in Section 4.2.17

17Section 6.1 discusses in further detail how the results of Section 4 are used in the estimation
procedure.
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The parameters ω, β, δ and τ will be estimated by maximizing the likelihood
of observed decisions and test outcomes, where the likelihood is constructed using
the model’s representation of the probability of each decision-outcome history, as
discussed later in this section. A history of decisions and test outcomes is given by
the sequence of bribe/no-bribe/postpone decisions and pass/fail test outcomes. For
example, one possible history of decisions and test outcomes would be not bribing
and failing in the first test, then bribing and passing in the second test.

Denote the observed test result in test round t as Rt, where Rt = 1 indicates a
passing result, Rt = 0, and Rt = N/A indicates that vehicle was not tested in round t.
The complete set of decision and test outcome histories for the infinite horizon model
is described by the sequences of test outcome vectors, (s1, R1), (s2, R2), ..., below,
where the first entry in each vector corresponds to a vehicle owner decision and the
second entry corresponds to a test result

H1: (s1 = X, R1 = N/A)

H2: (s1 = B, R1 = 1)

H3: (s1 = A, R1 = 1)

H4: (s1 = A, R1 = 0),(s2 = X, R2 = N/A)

H5:(s1 = A, R1 = 0),(s2 = B, R2 = 1))

H6:(s1 = A, R1 = 0),(s2 = A, R2 = 1)

H7, H8, ... :(s1 = A, R1 = 0),(s2 = A, R2 = 0),...
A car owner that does not bribe an fails in the first test and then bribes and

passes in the second test would correspond to H5. The sequence of potential histories
continues to infinity, since a vehicle can get retested as many times as the car owner
chooses. However, as I explain below, the first few histories are sufficient to estimate
the infinite horizon model, and I do not need to consider every potential history to
estimate the parameters of interest. The possible histories in the two round model
are the same as in the infinite horizon model except for the last one, which is given
by

H7 :(s1 = A, R1 = 0),(s2 = A, R2 = 0), (s3 = B, R3 = 1)

An expression for the probability of each of histories H1 to H7 for both the infinity
horizon and the two round models can be derived from the probabilities for each
decision and the probability for passing the test. For example, the probability of
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history H4 can be derived from the model to be:

Pr(H4) = Pr(s1 = A) · (1− P ) · Pr(s2 = X),

where Pr(s1 = A) is the theoretical probability of attempting without bribing in
the first round, 1 − P is the probability of failing the test and Pr(s2 = X) is the
theoretical probability of postponing the test to the next smog check cycle. The
model probabilities for each of remaining histories as well as the formula for the
likelihood function are listed in the Web Appendix 2.

Because bribing is unobserved, it is impossible to distinguish between histories H2

and H3. In both cases the car owner will be observed to have a single try at the smog
test and obtain a pass. Similarly, it is impossible to distinguish between histories H5

and H6. In what follows, I will refer to the two pairs of histories that we cannot
observe separately as “confounded” histories and to the histories that are observed
independently (H1, H4 and H7) as “unconfounded” histories. The methodological
contribution of this paper is to show that all four unknown parameters are identified
and, therefore, we can predict the probability of all seven histories despite observing
confounded decisions.

The full proof of identification is outlined in detail in the Web Appendix 3. Here I
discuss briefly the main sources of identification and provide some insights on how the
model pins down the most important parameters of the model. Broadly speaking, the
identification of all structural parameters comes from being able to observe official
failure rates (and official missed test rates) in the first two attempts to pass the
smog check, conditional on also observing the true probability of passing. Given that
the cost of the test is different in odd and even attempts, the failure rates in first
tests and retests provide distinct information about the four underlying parameters
of the model. The next paragraph focuses on providing intuition about how the bribe
and the time cost parameters are separately identified in the model. The source of
identification of the two remaining parameters is more obvious, since missed tests
help pin down δ (the time discount times probability of getting caught parameter)
and knowledge on the constant c helps pin down the scale parameter, τ . For details,
we refer the reader to the formal proof in the Web Appendix 3.

Even though the model in Section 5.1 is estimated using Maximum Likelihood,
identification is more intuitive from identifying the key moments that are used to
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solve for the model parameters. The intuition for the identification of the bribe and
time cost parameters, β and ω, is as follows: Start by assuming that both, the bribe
paid, β, and the time cost, ω, are constant across car owners and that we can identify
a group of vehicles that have the same known probability of passing, P �.18 We can
observe the failure rate in the first test among this subclass of vehicles, which will
equal the probability that they test honestly (without cheating) times the probability
of failure, Pr(s1 = A|P �)(1−P �).19 This rate is informative about the size of the bribe
and the time cost: First, Pr(s1 = A|P �) is increasing in the amount of the bribe, β,
since higher bribes will deter car owners from cheating. Second, Pr(s1 = A|P �) is
decreasing in the time cost, ω, since a large opportunity cost of time means getting
to the back of the line upon failing the test is very costly.

Hence, a low failure rate (conditional on the probability of passing) is also con-
sistent with a high time cost. If we only observed the official rate of failure for
the first test and for a single group of vehicles with common probability of passing,
we would not be able to separately identify these two parameters. This identifica-
tion issue is illustrated by Panel A of Figure A2 in the Appendix. This figure is
a three dimensional surface that plots the theoretical probability of failing the first
test, Pr(s1 = A|P )(1 − P ), for P = 0.4 as a function of the bribe and the time
cost parameters. This figure also plots two level curves on the bribe-time cost plane,
which represent bribe-time cost combinations that would result in a low probability
of observed failure (dark level curve) and a high probability of observed failure (light
level curve). An identification issue would arise if we only observed the failure rate
in the first test for a group of vehicles with a common probability of passing the test.
For instance, take the low probability of failure case. Since multiple combinations of
the bribe and the time cost levels would be consistent with this low observed level,
we would not be able to separately identify the bribe and the time cost parameters.

Panel B of Figure A2 in the Appendix illustrates how observing the failure rates
for the retests as well as for the first test helps overcome this identification issue.
Because the fee for even tests, including the first retest, is zero, the relationship
between failure rates in even tests and the model parameters is different than in

18The estimated model allows time cost to differ across vehicle owners by having a component
that is proportional to the value of their vehicle.

19In terms of the probabilities listed in Web Appendix 2, the fraction of failed first tests among
vehicles with probability of passing P � is given by the sum of Pr(H4|P �) to Pr(H7, H8, ...|P �), which
equals Pr(s1 = A|P �)(1− P �).
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odd tests. The theoretical relationship is illustrated by Panel B of Figure A2 in the
Appendix. Notice that this figure contains the same surface depicted in Panel A,
but adds an additional surface which represents the probability of failure in a retest,
Pr(s2 = A|P )(1−P ), for P = 0.4 as a function of the bribe and time cost parameters.
The fact that these two surfaces intersect contributes to solving the identification issue
posed in the previous paragraph. To illustrate this point, imagine the observed failure
rate in the first test can be mapped to bribe-time cost combinations corresponding
to the dark level curve in Panel A, and the observed failure rate in the retest can be
mapped to the light level curve in Panel B that intersects it at bribe = 450 and time
cost = 220. The intersection of these two level curves pins down the bribe and time
cost parameters in the model.20

6 Results from estimation

6.1 Predicting the probability of passing

As explained in Section 5.2 the identification of the structural model relies on observ-
ing the distribution of the probability of passing for the car fleet. If the smog check
center data were reliable, I could approximate the distribution by using the empirical
distribution of pass/fail outcomes. However, pass rates in the data are confounded
by cheating; hence, the empirical distribution strongly overstates pass rates. As an
alternative, I estimate a mapping between car characteristics and the probability of
passing the emissions tests using only tests from centers that have low evidence of
cheating, identified in Section 4. More specifically, after sorting centers in 10 groups,
where the last group has the highest evidence of donor car cheating, I estimate the
mapping using all centers in the first group. The parameters estimated from this

20The reason why the two surfaces representing the decision to test without cheating intersect is
two-fold. First, for all levels of the bribe and time cost, individuals are more likely to bribe in even
tests than in odd tests. This is because risking test failure in an odd test is cheap as the retest is for
free, while risking test failure in an even test is expensive because of the non-zero smog-check fee.
This explains why the probability for the first round test decision, which is one of the alternatives to
bribing, lies above the probability of the second round test decision for low values of the bribe and
time cost parameters. Second, for high values of the bribe and time cost parameters, individuals
are more likely to skip the smog check requirement all together and fall into non-compliance status.
Individuals are more sensitive to these additional test costs when the smog check fee is high than
when the smog check fee is zero; hence the surface representing the decision to test without cheating
is steeper in the first test attempt.
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subsample of tests are then used to predict the probability of passing for cars in
the remaining centers.21 Predicted probability of passing the test is close or slightly
above observed passing rates for the centers with low cheating evidence (first and
second deciles of the cheating test), and up to six percentage points below centers
with medium to high evidence of cheating. This is consistent with cheating centers
having passing rates that are abnormally high.22

While using tests from non-cheating centers significantly reduces the chances that
the probability of passing is overstated, self-selection by car owners into cheating
centers based on their own tendency to cheat may lead to omitted variable bias in
the estimates. Specifically, if the owners of high emitting cars self-select into cheating
centers, there will be an over-representation for low-emitting cars in non-cheating
centers. This type of self-selection may cause the estimated mapping to overstate the
predicted probability of passing.

The empirical evidence on self-selection into cheating and non-cheating centers is
mostly as expected. There is evidence of selection of older, large engine and highly
driven vehicles into low-cheating centers. However, most differences are small and
there is a substantial amount of overlap in characteristics of cars at cheating centers
and non-cheating centers. If unobserved determinants of the probability of passing
follow a similar selection pattern, the predicted probability of passing will be biased
upward, although the bias is unlikely to be very large. Upward bias in the probability
of passing will generate downward bias in the simulated prevalence of cheating.23 24

Although the test for cheating discussed in Section 5.1 is aimed at detecting “donor
car” type of cheating, other forms of cheating in the no-cheating sample are likely
absent in the non-cheating sample. This can be inferred from Figure 1 (and Web

21Results of the probability of passing estimation are available in the Web Appendix (Table WA1).
22Observed passing rates and predicted probability of passing by cheating test decile are available

in the Web Appendix (Table WA3)
23Descriptive statistics by cheating/non cheating status according to the cheating test are shown

in Web Appendix to this paper as Table WA2.
24Selection is stronger for the first and second deciles of the cheating test distribution (descriptive

statistics by all deciles of cheating test are available upon request). Hence, an alternative method-
ology uses the second and third deciles of the cheating test distribution to predict the probability of
passing the test. This strategy reduces the self selection problem but also results in noisier predic-
tions of the probability of passing, since centers in these groups may have some cheating. The results
from this alternative methodology (available on request) yield a lower average predicted probability
of passing (0.74 instead of 0.75) and a higher predicted cheating rate (14 percent instead of 9 per-
cent). This is consistent with self-selection leading us to overestimate the probability of passing the
emission test and underestimate cheating in the structural model.
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Appendix Figures WA2 and WA3) which shows that for centers with high p-values in
the cheating test, car characteristics are better predictors of emissions. We would not
observe this pattern if other types of cheating were substituting the use of donor cars
in high p-value centers. In addition, low discrepancies between predicted probability
of passing rates observed passing rates for centers with high p-values for the donor-car
cheating test seem to suggest that these centers have low cheating over all.

6.2 Parameter estimates and the prevalence of cheating

The results from estimating the infinite horizon model for the second half of 2003
are presented in Table 4. Because the numerical maximization of this model is com-
putationally intense, the model was estimated with a five percent random sample of
all non-exemptible vehicles (vehicles that cannot exempt the driving restriction) with
rational result histories (e.g. no retesting after passing), consistent car characteristics
across rounds and non-missing values for car characteristics and test outcomes. Non-
exemptible vehicles are older and have higher emissions than exemptible vehicles.25

The sample was also restricted to vehicles that do not switch centers between the first
test and the retest. Recall that the identification of the model relies on the difference
in costs between the first and second tests. However, if a vehicle owner decides to
go to a different center after the first failed test, he loses the retest discount, and
therefore the model cannot be identified from these observations since there is not
price difference between the two tests. About one percent of vehicles appear to have
changed centers after failing the first test, which cannot be explained by the model.
The final sample used for the estimation has 17,659 vehicles.

The parameter estimates are presented in Panel A (Column [1]) of Table 4. Time
cost, ω, is modeled as a linear function of the approximate log-value of the car from
2003 newspapers: ω = ω0+ω1 · ln(car value). To the right of the parameter estimates,
I report the standard errors from the numerical Hessian of the likelihood function.
These errors are not corrected for the first stage estimation of the probability of
passing (see footnote 26). Notice that time cost varies positively with the price of
the car and has some variation across periods. Column [3] of Table 4 computes
the minimum, mean and maximum values of the time cost implied by the model
parameters. The time cost for each period varies between 106 and 151 pesos (7.5 U.S.

25A decision model for exemptible vehicles would have to incorporate the incentive to pass the
exemption threshold: driving one more day a week. This model is left for future work.
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dollars and 14 U.S. dollars respectively). However, notice that the point estimates
for time cost parameters are not very precisely estimated.

The equilibrium bribe is 193 pesos (18 U.S. dollars), which is a plausible value
according to newspaper articles on the matter (50 to 400 pesos). The estimate for the
parameter δ is, 0.61. Recall that this parameter is the combination of a time discount
rate, given that the fine is usually paid a few months after the deadline expires, and
the probability of paying the fine, f , for missing the test on one smog check cycle
missing a test. Officially, missing a test is not easy since the car owner has to show a
proof of fine payment in order to get their vehicle smog-checked the next period; and
further avoiding the smog-check may result in multiple traffic tickets. However, the
large percentage of car owners that miss a test, which results in a relatively large δ,
suggests that there might be a way around paying the fine.

Finally, the estimate for the standard deviation of the random shock implied by
the estimate of τ is somewhat large: 60.11 (5.5 U.S. dollars). This may be a result of
the simplicity of the model, since it does not account for much of the heterogeneity
across individuals. It could also reflect an overly optimistic option value for the future
choices: a larger variance of the error term in (4) and (5) leads to a higher probability
that a large and positive shock will appear in any of the future choices.

Panel B of Table 4 shows the fit of the model as well as the predicted probabilities
for each history from H1 to H7. The fit of the model is in general quite good since all
outcomes are predicted within 2.5 percentage points of accuracy and most of them
within one percent. The fit is best for the probability of postponing, H1 and H4,
and worse for confounded histories, H5 and H6. The total cheating prevalence rate
estimates from this method can be approximated by the sum of predicted histories
H2 and H5, which yields 9.6 percent.

A way to assess the size of the bias in the structural model estimate for the rate
of cheating is through a simple calculation: Suppose we knew that the probability of
passing the test for those vehicles that decide not to cheat is equal to P̃ . Then, the
observed passing rate would be a weighted average of one and P̃ where the weights
correspond to the percentage of cheaters and the percentage of non-cheaters. If we
approximate the probability of passing the test of non-cheating vehicles, P̃ , as the
observed passing rate in non-cheating centers, 0.759, we can then approximate the
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rate of cheating by solving for Pr(cheating) in the following equation:

0.786 = Pr(cheating) + (1− Pr(cheating))× 0.759

where the observed passing rate is equal to 0.786. According to this simple calculation,
Pr(cheating) ≈ 0.109. Hence, the downward bias in the structural model estimate
for cheating resulting from selection of clean cars into non-cheating centers appears
to be small.

The results for the two period version of the model are presented in Table 5. This
model is more restrictive, since it assumes that any owner that attempts and fails the
test two times chooses to cheat and pay a bribe in the third round. Not surprisingly,
the fit of this model is less good than the infinite horizon model; yielding differences
between predicted and observed outcomes of up to 6 percentage points. However,
the parameter estimates for the bribe and the predictions for cheating are similar
to the infinite horizon model: 231 and 8 percent respectively. This model is less
computationally intensive than the infinite horizon version of the model. This makes
it feasible to show consistent standard errors from bootstrapping, which account
for the estimation error in the passing probabilities.26 The standard errors that
incorporate the estimation error in the predicted probability of passing are larger
than the errors from the inverted numerical hessian. The bribe and the discount
factor parameters (β and δ) and are more precisely estimated than the time and scale
parameters (ω0, ω1 and τ).

6.3 Implied willingness to pay for car maintenance

Cheating interferes with the objectives of the regulatory policy by lowering the will-
ingness to pay (WTP) for having cleaner vehicles. The regulation of vehicle emissions
will not be binding if the cost of not complying with the regulation is low. Other
aspects of Mexico City’s regulation may also reduce the incentives for owners to either

26In order to compute bootstrapped standard errors, I assume individuals decide on a center and on
cheating behavior jointly based on imperfect information of center’s cheating practices. Furthermore,
I assume that some centers are inherently more corrupt than others. For each bootstrapped sample
of vehicles, I repeat the cheating test at the center level and identify the centers in the first decile
of the cheating test chi-squared statistic, which correspond to the centers with the lowest evidence
of cheating. I use this sample to estimate the probit model for the probability of passing the test
and predict the probabilities of passing for the remaining vehicles. Finally, I estimate the structural
model using the observed histories of the sampled vehicles with no access to an exemption.
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perform car maintenance or to buy new cars. These include the possibility of retesting
indefinitely at a low cost (Wenzel 2004) and also having a low fine or equivalently, a
low probability of paying a fine for not passing the emissions test.

This section extends the model in Section 5 to approximate the WTP for car
maintenance implied by a given value of the parameters. The model in Section 5
does not incorporate maintenance as an option available to the car owner. This was
justified on the grounds of the extended corruption evidence found in Section 4 and of
indirect evidence from same-day retests. The model estimates, however, can be used
to approximate the WTP for pre-smog-check car maintenance. This calculation is
important for two reasons. First, it will provide a test of internal consistency for the
model under the current policy parameters: if the WTP for car maintenance implied
by the model is above the cost of maintenance for a substantial proportion of the
sample, then the model will violate internal consistency since the maintenance option
would be preferred by several car owners according to the model predictions. Second,
it will allow the evaluation of changes in policy aimed at increasing the number of
vehicles that get repaired. The policy simulations will be explained at length in
Section 6.4.

The key feature of the model that allows for this extension is that we can calculate
the estimated expected cost of facing the smog check regulation for each individual
for a given value of the parameters by solving numerically for the fixed point of
the system of equations in (6). Because utility is expressed in “dollar” terms (more
accurately, in peso terms), the expression for Et−1(V odd

t ) given in (6) is the expected
cost facing the smog-check requirement given the best possible response of the car
owner to the available options, which include retesting an infinite amount of times,
bribing and postponing (or not complying with) the requirement. This expected
cost is increasing in the price of the bribe, the fine and the cost of the test, and is
decreasing in the probability of passing the test.

The estimation of the WTP for car maintenance proceeds in two steps. First, I as-
sume that the car maintenance decision is made before the set of decisions modeled in
Section 5: car owners evaluate the expected cost of facing the smog-check requirement
with and without maintenance, and perform car maintenance only if car maintenance
saves them money. When computing the expected cost without car maintenance, the
owner takes into account all costs modeled in Section 5. Second, I make a few neces-
sary assumptions about the costs and benefits of car maintenance that are based on
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documented values. I assume that owners who perform maintenance on their vehicles
will pass the the emissions test with 90 percent probability in the two smog check
cycles following the maintenance (a full year). I assume that performing maintenance
also improves the vehicle’s gas mileage, and that the gas mileage is improved more
for high-emitting cars than for low-emitting cars.27 Given the above assumptions,
the six-month equivalent of the willingness to pay for car maintenance is equal to the
change in expected value from improving the probability of passing to 90 percent in
one smog-check cycle, plus the improvements in gas mileage:

WTPi = Eit−1

�
V odd|ω̂0, ω̂1, β̂, δ̂, τ̂ , 0.9, yi

�
+ g(p̂i(xi),xi)

−Eit−1

�
V odd|ω0, ω̂1, β̂, δ̂, τ̂ , p̂i(xi), yi

�

where p̂i(xi) is the predicted probability of passing according to vehicle characteristics,
yi is the log-value of the vehicle, and g(p̂i(xi),xi) are the approximate 6-month gas
mileage benefits from a car tune-up. The WTP is compared by each car owner to the
six-month equivalent of the tune-up cost, which I assume to be 400 pesos based on
the prices for car tune-ups in Mexico City reported in the consumer survey of 2005. If
the WTP is higher than the cost, the car owner performs maintenance on her vehicle.

The first column of Table 5 shows that the model estimated in Section 5 is in-
ternally consistent. The first column of Table 5 shows that the fraction of people
that are predicted to perform car maintenance according to the model extension and
the parameters estimated in Section 5 is 0.6 percent. In the next section, I adjust
the cost of the test, the equilibrium bribe, and the fine in order to evaluate the ex-
tent to which these changes increase the number of owners that find maintenance to
be preferable, and I also evaluate whether these changes are cost-effective ways to
improve air quality.

6.4 Policy evaluation

A crackdown on corruption through either increased enforcement or increased fines to
cheating smog-check centers should result in a higher equilibrium bribe price. A high

27I assume all vehicles with 50 percent or less probability of passing the test receive a 4 percent
reduction in their gas mileage due to maintenance and that the reduction falls linearly with the
probability of passing until reaching 0 for vehicles that pass the test with certainty. The 4 percent
average reduction in gas mileage is taken from www.fuel economy.gov for vehicles that have failed a
smog-check.
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enough price of the bribe can presumably eliminate corruption entirely. However,
emissions would only be reduced if car owners that would cheat under a low bribe
price, decide to perform car maintenance under a high bribe price.

The model proposed in Section 5.1 and the extension discussed in the previous
section allow us to predict the individual response to an increased bribe. The ex-
tended model allows individuals to decide whether or not they want to perform car
maintenance to increase the probability of passing the test before they are faced with
the postponing/bribing/testing decision.

In order to approximate the environmental benefits from eliminating corruption, I
simulate owners’ decisions under the minimum bribe price that reduces the number of
cheaters to zero. Total emission reductions will be calculated as the sum of differences
between current average emissions and after-maintenance emissions for all vehicle
owners whose simulated decision is to perform car maintenance. My assumptions for
after-maintenance emissions are explained below.

Notice that the number of owners that opt for actually reducing their emissions
when facing the high bribe is most likely lower than the number of cheaters in the
current scenario. Vehicle owners can also react to an increased bribe by accepting
higher risks of failing the test and having to take a retest, or by choosing not to comply
with the regulation and and risking paying the corresponding fine. The second column
of Table 5 shows the number of owners that choose to perform car maintenance in
response to an increased bribe price is indeed very low (0.4%). Most vehicle owners
react to the increased bribe by accepting a higher risk of failing the test. This is
unsurprising given that the cost of every other retest is zero. Hence, the only cost
incurred by retesting once is the time cost.

The third column of Table 5 presents the results of an alternative set of policies
aimed at reducing the appeal of all non-maintenance options. The policies include
equating the cost of the odd and even retests (both are now 175 pesos), increasing the
minimum fine for non-compliance to 1,800 pesos and further increasing enforcement
such that the equilibrium bribe price is increased to 700 pesos. Under this set of
policies, about four percent of owners decide to reduce their emissions by performing
car maintenance. For this set of policies to be cost-effective, the additional costs faced
by all car owners must be lower than the benefits of emission reductions. The rest
of this section will estimate the benefits to society from reduced emissions as well as
the costs of these policies.
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The calculation of the benefits from reducing emissions is done in four steps.
First, I estimate emission reductions due to increased maintenance by computing
the difference between emissions after maintenance and predicted emissions without
maintenance. Predicted emissions are based on the sample of low-cheating tests.
Emissions after maintenance are assumed to be the average emissions of all vehicles
whose predicted probability of passing the test is above the 90th percentile. Since true
emissions are not available, I use predicted emissions from 2003 low-cheating centers
for both 90th percentile averages and owners who decide to perform maintenance.

Second, I use the fuel-based methodology for emission inventories proposed by
Singer and Harley (1999), and applied by Schifter et al. (2004) for Mexico City,
to convert emission concentrations at vehicles’ exhaust, which is recorded by the
smog check readings in parts per million (ppm), to total emission tons released into
the environment. This methodology uses fuel economy, miles driven and pollutant
densities. The results of this calculation are given in Column 1 of Table 6.

Third, I follow Small and Kazimi (1995) in attributing ambient concentrations
of air pollutants to vehicle emissions in tons. Health costs from pollution have been
estimated for ambient concentrations of air pollutants such as particulate matter
(PM10 ) and ozone (O3), but have not been estimated for NOx and HC, which are
the pollutants measured in the smog check readings. However, PM10 and O3 are
partially formed from NOx and HC, so following Small and Kazimi (1995), I use
the elasticities of conversion from the literature (e.g. Charlson and Wigley, 1994)
to estimate the concentration of air pollutants due to emissions in tons of primary
pollutants. Also, I follow Song et al. (2010) to link O3 to HC emissions. They
estimate that one percent increase in volatile organic compounds (V OC) emissions
(HC are a sub-class of V OC) results in about a half percent increase on average O3

ambient concentration. These calculations are in Column 2 of Table 6.28

Fourth, I calculate the health costs of emissions by summing up mortality costs
from the different pollutants. I use Schwartz’ (1994) estimates of mortality from
PM10 concentration and Bell et al. (2004) estimates from O3-related mortality. In
the case of CO, I use the direct health impacts on infant mortality from Neidell and
Currie (2005). To calculate the mortality costs in dollars, I use the value of statistical
life used by Molina and Molina (2002) for Mexico City. The lives-per-ton calculations

28In their work within the MILAGRO project, they find that, contrary to what was previously
believed (e.g. Molina and Molina, 2002), ozone formation in Mexico City is VOC-sensitive.
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implied by these numbers are in Column 3 of Table 6
Table 6 summarizes the benefit calculations from the set of policies proposed in

Column 3 of Table 6. Column 1 is the result of steps 1 and 2 above: it is the sum of
emission differences in tons per year across all vehicles that are simulated to opt for car
maintenance. Column 2 corresponds to step 3 above: it presents the factors needed
to convert a ton of primary emissions into its contribution to ambient concentration
of air pollutants computed using Small and Kazimi’s (1995) methodology for PM10

and Song et al. (2010) conversion rates. Column 3 corresponds to step four: it shows
the mortality estimates from the literature for each atmospheric pollutant assuming a
population of 20 million is exposed to the increase in concentration. Column 4 shows
the deaths per ton of vehicle emissions and is the product of columns 2 and 3. Column
5 shows the value of statistical life taken from Molina and Molina (2002). Column 6
shows the cost in dollars of a ton of pollutant and is the product of columns 4 and 5.
Columns 7 and 8 are the product of columns 1 and 4, and 1 and 6 respectively: they
present the benefits of the set of policies considered in number of lives per year and
in 2003 U.S. dollars respectively.

Notice that, although CO emission reductions are very large, the health benefits
are dominated by changes in NOx emissions. One one hand the emissions of NOx gas
from mobile sources constitute a large percentage of total NOx emissions, and hence
of PM10 concentrations. On the other hand, PM10 has, by far, the worst documented
health consequences of any of the gases considered. In contrast, large health impacts
from atmospheric CO have not been documented in the literature. Hence, I restrict
to Neidell and Currie’s (2005) estimate for infant mortality due to CO for the cost
calculations.

The set of policies considered has at best a modest impact in air pollution, es-
pecially when compared with the additional costs to car owners that they generate.
The estimated emission savings from eliminating corruption, charging for retests, and
doubling the fine (Column 6) are roughly equivalent to half a day of vehicle emissions
in Mexico City. The effect on total emissions is small because the proportion of vehi-
cles that respond to the policy change is only four percent of the non-exemptible car
fleet. The emission reductions from this set of policies would save approximately four
lives per year (Column 7), which are equivalent to 1.5 million dollar savings. In con-
trast, the estimated cost for car owners of this set of policies amounts to 3.7 million
dollars. This cost can be estimated by adding up the increases in the expected cost
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of facing the test across the entire car fleet. About 2.2 million of this additional cost
is a transfer to smog-check centers: retests are costly under the proposed policy. The
rest of the cost is in the form of additional time costs from increased retesting among
individuals that do not opt for car maintenance and unobserved costs represented by
the random shocks to utility.

It is worth noting the likely consequences of some of the simplifying assumptions
that were necessary for the calculation. One important assumption is that mainte-
nance costs are equal across vehicles. However, the actual costs of car maintenance
aimed at reducing emissions may be lower than the cost of tune-ups for some vehicles
(e.g. some vehicles may substantially increase their probability of passing the test
by changing the air filter, replacing the spark plug wires, etc.) and larger for others
(e.g. if major repairs are needed to meet the emission standards and these are more
costly than tune ups). The net effect of varying maintenance costs on the benefits is
ambiguous, since it could be the case that some vehicles with high maintenance costs
(and potentially high emissions) are miss-allocated into performing car maintenance
and some additional vehicles with low maintenance costs (but potentially relatively
low emissions) may opt for car maintenance.

Also, predicted emissions used in this calculation were identified by using the low-
cheating centers identified in Section 4.1 and the upward bias related to the selection
problem discussed in Section 6.1 might also be present for predicted emissions. More
specifically, self-selection into non-cheating centers might result in an underprediction
for vehicle emissions. This would cause a downward bias in the calculated benefits
from the proposed set of policies. However, notice that for the set of policies to be
cost-effective according to the calculations in Table 5, the downward bias would have
to be of more than half.

7 Conclusions

Researchers and governments have questioned the effectiveness of smog checks in
reducing vehicle emissions. They have cited repeated testing and cheating as potential
explanations for why vehicles with high on-the-road emissions have been able to pass
the emissions test. This paper uses indirect evidence to show that cheating is a
wide spread practice in Mexico City. I develop a test for cheating relies on detecting
serial correlation patterns in consecutive emissions generated by the use of donor cars.
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This test predicts that 79 percent of centers have engaged in donor car use, a cheating
practice that involves using emissions from a clean car to substitute for emissions of
a cheater.

The test for cheating is also an input for the estimation of a structural model of car
owner decisions that recovers the underlying parameters of the cheating decision and
is used to simulate individual responses to the smog check requirement. Although
cheating decisions are unobserved, the parameters of the model can be recovered
without any explicit information on cheating decisions. The model’s identification
relies on the difference in costs between odd and even retests, and on observing the
distribution of the probability of passing the test.

The maximum likelihood estimation of the model yields an estimate for the bribe
amount of about 20 U.S. dollars. This estimate is within the range of bribes that has
been reported in newspapers. The simulations of individual decisions suggest that
about 9 percent of car owners choose to cheat on the smog check. Because cheating
is an alternative to car maintenance, and the price of the bribe is relatively low, the
model suggests that incentives for car maintenance are very low or non-existent.

An extension to the model further allows to estimate the benefits and costs from
boosting incentives for car maintenance through plausible policies such as increased
enforcement and higher retesting costs. These combined policies are predicted to
induce car maintenance in 4 percent of the vehicles. The resulting emission reductions
are equivalent to less than one day of Mexico City traffic a year. However, the emission
reductions come at a high cost for the entire car fleet: smog check-costs for car owners
increase by about 3.7 million per cycle. These calculations suggest that, forcing car
owners to pass smog checks twice a year is not a cost effective policy for reducing
vehicle emissions in Mexico City.
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Appendix 1: Consistency of test for cheating

The statistical test from the regression methodology has null hypothesis:

H0 : rit = r̃it = xiβ + ui,

and, according to (A1), alternative hypothesis:

H1 : rit = cir̃i−kt + (1− ci)r̃it

Under assumptions (A1) - (A3), the OLS coefficient γ̂c from regression 3 is a consistent test
statistic of null hypothesis.

Proof: Under the null hypothesis:

E∗(rit|xi, ri−1t−1) = xiβ + E∗(uit|xi, ri−1t−1)

Define wi = [xi, ri−1t−1] and W = [w2,w3, ...,wN1 ,wN1+2,wN1+3, ...,wN1+N2 , ...], where Nl

indexes the number of tests in lane l; and l = 1, 2, ..., L, where L is the total number of lanes in all
80 centers. Then

E∗(uit|xi, ri−1t−1) = wiE(wiw�
i)
−1E(wiuit) (9)

Equation 9 will equal zero under the null hypothesis if all elements of E(wiuit), i.e. E(ri−1t−1uit)
and E(xiuit), are zero. Under the null, E(ri−1t−1uit) = E(r̃i−1t−1uit). Hence, the first term equals
zero because

E(r̃i−1t−1uit) = E((xi−1β + ui−1t−1)uit) = E(xi−1βuit) + E(ui−1t−1uit) = 0,

by assumptions (A2) and (A3). The second term equals zero, E(xiuit) = 0, since uit = r̃it −
E∗(r̃it|xi) = r̃it − xiβ.

Appendix 2: Robustness check 1: Permutations Test for Cheating

As mentioned in section 4.1, under donor car cheating, some consecutive tests are closer to each other
than what we would expect from two randomly arriving vehicles. This alternative test acknowledges
that some cheating-unrelated serial correlation between observed and unobserved determinants of
vehicle emissions may occur, but constrains this correlation to occur within certain time and location
windows. The permutations test assumes that, under a no cheating regime, car arrivals to smog
check centers are random conditional on the center, lane, date and day-shift level (a day is consid-
ered to have 4 shifts). More formally, this is equivalent to assuming car arrivals are independent
and identically distributed random draws from some unknown distribution within center-date-time
blocks. Under the independent arrival assumption, shifting the observed order of the tests should
not affect the distribution of differences between consecutive tests in the absence of cheating. I
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will test for the null hypothesis of no cheating by comparing the distribution of distances between
consecutive tests in the order they occurred with several distributions of distances when the order
is randomly permuted.

In order to measure the difference between consecutive tests, I consider all readings for each car,
i.e. each pollutant in each of the different driving conditions. This amounts to 8 readings per test:
HC at 24kmh, HC at 40kmh, CO at 24kmh, CO at 40kmh, O2 at 24kmh O2 at 40kmh, NO at
24kmh and NO at 40kmh. The measure of multivariate distance I will use is

dt =
�
DtV

−1D�
t

� 1
2 ,

where Dt = (rs
1,t, r

s
2,t, ..., r

s
8,t)− (rs

1,t−1, r
s
2,t−1, ..., r

s
8,t−1), rs

j,t is a transformed measure of pollutant j

in test t29, and V is the estimated variance covariance matrix across standardized pollutants. This
multivariate distance measure is commonly known as Mahalanobis distance and is similar to the
Euclidean distance except that differences of each pollutant are weighted not only by the variance
of each pollutant but also by the covariance across pollutants. Hence, if pollutants HC and CO are
positively correlated, a large difference in HC will have a smaller weight whenever the difference in
CO is also large. Notice that t indexes tests in the order in which they occurred. The solid lines in
Appendix Figure 1 show the distribution of dt for two different smog-check centers in Panels A and
B.

In the absence of cheating, the distribution of dt should not change when changing the order in
which tests occurred. Hence the no cheating assumption can be tested by comparing the observed
distribution of dt with distributions simulated by randomly permuting the data. To allow for common
determinants of emissions across “nearby” vehicles, I will shift the order randomly within center-
date-time blocks.30 After permuting the data within the previously defined time-location window,
I generate dtn , which is analogous to dt except that it is obtained from a new order of the data, tn,
corresponding to permutation n. Panels A and B of Figure 1 show ten different dashed lines; each of
which corresponds to the distribution of the dtn associated with a different random permutation of
the data (n = 1, ...,10). The center depicted in Panel A of Appendix Figure 1 shows little evidence
of fraud: permuting the order of tests generates distributions of dtn (dashed lines) that are very
similar to the observed one: dt (solid line). In contrast, the center depicted in Panel B shows strong
evidence of corruption: the observed distribution of dt has a larger proportion of small consecutive
differences in tests compared to the distributions of dt1 , dt2, ...dt10 , in which cars are assumed to
arrive randomly to the center.

A formal statistical test can be derived from this methodology. First, I compute a test statistic
that describes the relevant part of the distribution. Since I’m looking for an excessive amount of

29
The transformation used is given by rs

j,t = √
rj,t . Other standardizations, such as ln(rj,t ), yield similar results.

30
Blocks will be defined by the smog-check center, the date and time of the day, which can be morning (8 to 12

hrs.), afternoon (12 to 16 hrs.) or evening (16 to 20 hrs.). The average number of tests per block is 83, with less than

1 percent of blocks with fewer than 11 checks. Alternative definitions of the blocks, such as center-lane-month-day

of the week and center-lane-month-half of the month yield similar results. The validation of the results with the

inclusion of lane in the block definition is particularly important, since one may argue that different testing machines

within the center may be calibrated differently and, hence, generate similar consecutive readings.

46



differences close to zero, or an excessive amount of small dt draws, I chose the fifth percentile, q̂d
.05,

of the distribution of dt.31 I will compare this statistic with the distribution of the fifth percentile
of dtn for n = 1, ..., 1000. I.e., I will generate an empirical distribution of qd

.05 by performing 1000
different random permutations of the smog test ordering. The comparison yields p-values for the null
hypothesis of no cheating. The test is performed at the center level for each of the 80 smog-check
centers in the 2003-2nd-half round of D.F.’s smog-check center data. The p-values for all centers are
less than 0.001, which rejects the null hypothesis of no cheating for all centers with 99.9 percent of
confidence.

The permutation test generates very clear results regarding the extent of cheating across centers.
According to this test, all centers participate in fraud. Results are robust to changes in the definition
of the blocks within which data is reordered and to alternative test statistics (alternative results not
shown).

31
Other test statistics such as the proportion of vehicles under dt = 1 and the tenth percentile of dt yield similar

results.

47



!"#$%&'(&)$#*$+&,-*.&%/,&0.$"*-#1&2+$3"%$#0$ !"#$%&4(&)$#*$+&,-*.&.-1.&0.$"*-#1&2+$3"%$#0$

5/*$6(&
78&9:/1&0.$0;&0$#*$+&<"*"&=+/:&>??@&A>#<&."%=BC&D8E8&

@8&D/**$<&%-#$6&0/++$62/#<&*/&$"0.&/=&7?&<-==$+$#*&+"#</:&2$+:F*"*-/#6&/=&*.$&/+-1-#"%&<"*"8&G.$&6/%-<&%-#$&0/++$62/#<&*/&*.$&"0*F"%&/+<$+&/=&*.$&<"*"8
>8&G.$&:$"6F+$&/=&<-6*"#0$&0/++$62/#<6&*/&*.$&6HF"+$&+//*&/=&*.$&6F:&/=&6HF"+$&<-==$+$#0$6&I$*,$$#&2/%%F*"#*6&6*"#<"+<-J$<&IK&*.$&3"+-"#0$&0/3"+-"#0$&:"*+-L&

E-1F+$&'7(&5/#2"+":$*+-0&*$6*&=/+&0.$"*-#1

48



!"#$%&'(&!)*+"+,%,-.&*/&0",%1)$&,#&0,)2-&3$2-

!"#$%&4(&!)*+"+,%,-,$2&*/&0",%1)$&,#&0,)2-&3$2-&"#5&6$-$2-

0,71)$&'8(&95$#-,/,:"-,*#&*/&;-)1:-1)"%&<*5$%

=*-$2(&3>,2&/,71)$&,%%12-)"-$2&,5$#-,/,:"-,*#&+.&2>*?,#7&->$&21)/":$&->"-&@"A2&->$&+),+$&"#5&->$&-,@$&:*2-&
A")"@$-$)2&,#-*&->$&->$*)$-,:"%&A)*+"+,%,-.&*/&/",%1)$&,#&->$&/,)2-&-$2-&B!"#$%&'C&"#5&>*?&->$&:*))$2A*#5,#7&
21)/":$&/*)&->$&A)*+"+,%,-.&*/&/",%1)$&,#&->$&)$-$2-2&,#-$)2$:-2&,-&B!"#$%&4CD&95$#-,/,:"-,*#&*/&->$2$&-?*&
A")"@$-$)2&,2&":>,$E$5&+.&/,#5,#7&->$&,#-$)2$:-,*#&*/&->$&%$E$%&:1)E$2&->"-&:*))$2A*#5&-*&->$&*+2$)E$5&)"-$2&*/&
/",%1)$&,#&$":>&-$2-&B-$2-&"#5&)$-$2-CD

49



!"#$%&%'()*)('

+,')%$--$+.-',+/'

012')#)%34$+.'

567 587 597 5:7 5;7 5<7

=/$*"4)'*)>$?()-@'

%+A)(B6CCD

=/$*"4)'*)>$?()-@'

%+A)(E6CC6

2+/3+/"4)'

*)>$?()-@'

%+A)(E6CC:

2+/3+/"4)'

*)>$?()-@'

%+A)(B6CC9

=&F($?'

4/".-3+/4"4$+.'

*)>$?()-

G.(H'3/$*"4)'".A'

?+/3+/"4)'

*)>$?()-@'%+A)('

B6CC8

02 8DD 9DD 8DD 9;D 6DD 6DD

1G 8;DD 8;DD 8;DD 8;DD 68DD 68DD

2G 8 9 8 9 6 6

G8 6; 6; 6; 6; 6; 6;

1+4)-I

!"#$%&'(&!")"*$+$)&,-+.*"+$-

!+A)('="/"%)4)/- J-4$%"4) K++4-4/"33)A'

L4".A"/A'J//+/-

M%3($)A'

)-4$%"4)-

567 587 597

!"$.4)/?)34 N9:O:8 PDO;8 !)".'4$%)'?+-4 :;ODQ

!N-(+3) QO;Q 68OQ9 !$.$%&%'4$%)'?+-4 8<O;8

# 89DO<Q P6OQ9 !"#$%&%'4$%)'?+-4 <CO86

! DO<8: DODPC LJ'+,'/".A+%'->+?R Q:O9<

" ;QOCP :QO6:

=".)('KI'S$44)A'".A'3/)A$?4)A'3/+F"F$($4$)-',+/')"?>'>$-4+/H

GF-)/*)A'0$-4+/$)- T?4&"( S$44)A

5:7 5;7

06I'=+-43+.) DODP98 DOD6<C

09@0:I'K/$F)U1+'F/$F)'N'="-- DOQ;; DOQ:88

0:I'1+'F/$F)NS"$(N=+-43+.) DODD9Q DODDD6

DO66:8 DO6QC8

0QI'1+'F/$F)NS"$(N1+'F/$F)NS"$(NF/$F) DOD:9C DOD;6<

T(('0$-4+/$)- =/)A$?4)A

5<7

06I'=+-43+.) DOD6<C

08I'K/$F) DOD:Q<

09I'1+'F/$F)N="-- DO<C:<

0:I'1+'F/$F)NS"$(N=+-3+.) DODDD6

0;I'1+'F/$F)NS"$(NK/$F) DOD96D

0<'1+'F/$F)NS"$(N1+'F/$F)N="-- DO6:P8

0QI'1+'F/$F)NS"$(N1+'F/$F)NS"$(NK/$F) DOD;6<

V+4"('F/$F$.W DODQP<

1+4)-I

6O'V"F()'T9'->+X-'4>)'/)-&(4-'+,'4>)'4X+N3)/$+A'%"#$%&%'($R)($>++A')-4$%"4$+.'+,'4>)'F/$F$.W'

F)>"*$+/'%+A)('A)*)(+3)A'$.'L)?4$+.'<'&-$.W'"';Y'/".A+%'-"%3()'Z6Q@9<;'*)>$?()-[O'=".)('T'

->+X-'4>)'%+A)(\-'3"/"%)4)/')-4$%"4)-'".A'=".)('K'->+X-'4>)'"?4&"('".A',$44)A'3/+F"F$($4$)-'"-'

X)(('"-'4>)'-$%&("4)A'3/+F"F$($$4)-',+/'"(('A)?$-$+.'>$-4+/$)-@'$.?(&A$.W'4>)'&.+F-)/*)A'+.)-O

9O''V>)'-4".A"/A')//+/-',+/'3"/"%)4)/-'".A'3/)A$?4$+.-'?+//)-3+.A'4+'F++4-4/"33)A'-4".A"/A'

)//+/-O'V>)-)')//+/-'X>)/)'+F4"$.)A',/+%'6DD'/)3($?"4$+.-'+,'4>)'4)-4',+/'?>)"4$.W@')-4$%"4$+.'+,'

4>)'%"33$.W'F)4X)).'?"/'?>"/"?4)/$-4$?-'".A'3/+F"F$($4H'+,'3"--$.W@'".A'!]J'+,'?"/'+X.)/'

A)?$-$+.'%+A)(O

6O'L+&/?)I'L)?/)4)"/^"'A)'!)A$+'T%F$).4)@'_$-4/$4+'S)A)/"(''

8O']$%$4-'"/)'W$*).'$.'3"/4-'3)/'%$(($+.',+/'02'".A'1G'".A'$.'3)/?).4'+,'*+(&%)',+/'2G'".A'G8O

V"F()'T6I'J%$--$+.'/)-4/$?4$+.-'$.'8DD9'N8DD:

9O'V>)'.&%F)/-'$.A$?"4)'4>)'%"#$%&%'()*)('+,')%$--$+.-'"'*)>$?()'.))A-'4+'"44"$.'$.'"((':'W"-)-O

!"#$%&%'()*)('+,')%$--$+.-'4+'+F4"$.'-%+WN?>)?R'?)/4$,$?"4)

/"0%$&'1(&/23&4$).35&*35$%&4")"*$+$)-&"#5&5$*"#5&63)&0).0$-

8O'S+/'.+4"4$+.@'-))'.+4)-'+.'V"F()':O'V>)'("-4'/+X'+,'=".)('K'+,,)/-'4>)'4+4"('"%+&.4'+,'

F/$F$.W@'$O)O'4>)'-&%'+,'08@'0;'".A'0QO

0;@'0<I'1+'F/$F)NS"$(NK/$F)U1+'F/$F)NS"$(N1+'F/$F)N="--

50


