Vickery-Clark-Groves Mechanism

Source:
http://auctiontheorycourse.wordpress.com/slides-and-notes/
Previously...

• We studied **single-item auctions**

• Bidders have values v_i for an item

• A winning bidder gets a utility of $u_i = v_i - p_i$
 – A losing bidder pays nothing and get $u_i = 0$
Previously...

- **Seller possible goals:**
 - Maximize *social welfare* (efficiency)
 - 2nd-price (*Vickrey*) auction
 - Maximize *revenue*
 - 2nd-price auction with a reserve price (*Myerson*)
 - For example, reserve-price=50 for the uniform distribution on [0,100]
 - Reserve price is independent of the number of players.
 - Optimality assumes a technical assumption on the distributions.
 - Revenue equivalence
Previously …

• We saw that in single-item auctions we can achieve **efficiency** with **dominant strategies**.

• Can this be achieved in other models?
Today

• This class:
 Moving from a specific example (single-item auctions) to a more general mechanism design setting.

• **Main goal:** in the presence of incomplete information, design the right incentives such that the efficient outcome will be chosen.
Example 1: Roommates buy TV

• Consider two roommates who would like to buy a TV for their apartment.

• TV costs $100

• They should decide:
 – Do they want to buy a TV together?
 – If so, how should they share the costs?

I only watch sports

I hate sports
Example 2: Selling multiple items

• Each bidder has a value of v_i for an item.

• But now we have 5 items!
 – Each bidder want only one item.

• An efficient outcome: sell the items to the 5 bidders with the highest values.
Vickrey-Clarke-Groves (VCG) mechanisms

• **Goal:** implement the *efficient outcome* in dominant strategies.

• A **general method** to do this: VCG
 – 2nd-price auction is a special case

• **Solution (intuitively):** players should pay the “damage” they impose on society.
VCG basic idea (cont.)

In more details:

• You can maximize efficiency by:
 – Choosing the efficient outcome (given the bids)
 – Each player pays his “social cost” (how much his existence hurts the others).

\[p_i = \text{Optimal welfare (for the other players) if player i was not participating.} - \text{Welfare of the other players from the chosen outcome} \]
VCG idea in single item auctions

- \(P_i = \)

 Optimal welfare (for the other players) if player \(i \) was not participating.

 = 2\(^{nd}\)-highest value.

 When \(i \) is not playing, the welfare will be the second highest.

Welfare of the other players from the chosen outcome

= 0.

When \(i \) wins, the total value of the other is 0.

\(\rightarrow \) By VCG payments, winners pay the 2\(^{nd}\)-highest bid, and loser pays nothing!
VCG in 5-item auctions

- $p_i =$

Optimal welfare (for the other players) if player i was not participating.

=30+27+25+12+5

The five winners when i is not playing.

Welfare of the other players from the chosen outcome

=30+27+25+12.

The other four winners.

What is my VCG payment?

$70 \quad $30 \quad $27 \quad $25 \quad $12 \quad $5 \quad $2
VCG in k-item auctions

• VCG rules for k-item auctions:
 – Highest k bids win.
 – Everyone pay the $(k+1)^{st}$ bid.

And truthfulness is a dominant strategy here too. (we will prove now!)
Formal model

- n players
- possible outcome w_1, w_2, \ldots, w_m
- Each player has private info t_i
- Each player has a value per each outcome (depends on t_i)
 - $v_i(t_i, w)$ where w is from $\{w_1, \ldots, w_m\}$
- Goal of social planner: choose w that maximizes
 $$\sum_{i=1}^{n} v_i(t_i, w)$$

Single-item auction example:

- 2 players
- $w_1 = “1 wins”, w_2 = “2 wins”$
- $t_i = v_i$ (willingness to pay)
- $v_1(v_1, w_1) = v_1$
- $v_1(v_1, w_2) = 0$
- Goal: choose a winner with the highest v_i.
Formal model

Table

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td>$V_1(t_1, w_1)$</td>
<td>$V_1(t_1, w_2)$</td>
<td>$V_1(t_1, w_3)$</td>
<td>$V_1(t_1, w_4)$</td>
<td>$V(t_1, w_5)$</td>
</tr>
<tr>
<td>Player 2</td>
<td>$V_2(t_2, w_1)$</td>
<td>$V_2(t_2, w_2)$</td>
<td>$V_2(t_2, w_3)$</td>
<td>$V_2(t_2, w_4)$</td>
<td>$V_2(t_2, w_5)$</td>
</tr>
<tr>
<td>Player 3</td>
<td>$V_3(t_3, w_1)$</td>
<td>$V_3(t_3, w_2)$</td>
<td>$V_3(t_3, w_3)$</td>
<td>$V_3(t_3, w_4)$</td>
<td>$V_3(t_3, w_5)$</td>
</tr>
<tr>
<td>Player 4</td>
<td>$V_4(t_4, w_1)$</td>
<td>$V_4(t_4, w_2)$</td>
<td>$V_4(t_4, w_3)$</td>
<td>$V_4(t_4, w_4)$</td>
<td>$V_4(t_4, w_5)$</td>
</tr>
</tbody>
</table>

Assume: w_5 maximizes efficiency

$$w^* = w_5$$

$$\sum_{i=1}^{n} v_i(t_i, w_1)$$ $$\sum_{i=1}^{n} v_i(t_i, w_3)$$ $$\sum_{i=1}^{n} v_i(t_i, w_5)$$ $$\sum_{i=1}^{n} v_i(t_i, w_2)$$ $$\sum_{i=1}^{n} v_i(t_i, w_4)$$
VCG – formal definition

• Bidders are asked to report their private values t_i
• Terminology: (given the reported t_i’s)
 – w^* outcome that maximizes the efficiency.
 – Let w^*_{-i} be the efficient outcome when i is not playing.

• The VCG mechanism:
 – Outcome w^* is chosen.
 – Each bidder pays: $\sum_{j \neq i} v_j(t_j, w^*_{-i}) - \sum_{j \neq i} v_j(t_j, w^*)$

The total value for the other when player i is not participating
The total value for the others when i participates
Truthfulness of VCG - Proof

• The VCG mechanism:
 – Outcome w^* is chosen.
 – Each bidder pays: $\sum_{j \neq i} v_j(t_j, w^*) - \sum_{j \neq i} v_j(t_j, w^*)$

• **Method of proof:** we will assume that there is a profitable lie for some player i, and this will result in a contradiction.
Truthfulness of VCG - Proof

• **Buyer’s utility (when \(w^* \) is chosen):**

\[
v_i(t_i, w^*) - p_i = v_i(t_i, w^*) - \left(\sum_{j \neq i} v_j(t_j, w^*_j) - \sum_{j \neq i} v_j(t_j, w^*_j) \right)
\]

\[
= v_i(t_i, w^*) + \sum_{j \neq i} v_j(t_j, w^*_j) - \left(\sum_{j \neq i} v_j(t_j, w^*_j) \right)
\]

\[
= \sum_{i=1}^{n} v_i(t_i, w^*) - \left(\sum_{j \neq i} v_j(t_j, w^*_j) \right)
\]

\[
= SocialWelfare(w^*) - \left(\sum_{j \neq i} v_j(t_j, w^*_j) \right)
\]

• **Assume:** bidder \(i \) reports a lie \(t' \) \(\rightarrow \) outcome \(x \) is chosen.

• **Buyer’s utility (when \(x \) is chosen):**

\[
SocialWelfare(x) - \left(\sum_{j \neq i} v_j(t_j, w^*_j) \right)
\]
Truthfulness of VCG - Proof

• **Buyer’s utility from truth** (*w*\(^*\) is chosen):

\[
\text{SocialWelfare}(w^*) - \left(\sum_{j \neq i} v_j(t_j, w^*_{-i}) \right)
\]

• **Buyer’s utility from lying** (*x* is chosen):

\[
\text{SocialWelfare}(x) - \left(\sum_{j \neq i} v_j(t_j, w^*_{-i}) \right)
\]

• Lying is good when:

\[
\text{SocialWelfare}(x) - \left(\sum_{j \neq i} v_j(t_j, w^*_{-i}) \right) > \text{SocialWelfare}(w^*) - \left(\sum_{j \neq i} v_j(t_j, w^*_{-i}) \right)
\]

• Impossible since *w*\(^*\) maximizes social welfare!
Truthfulness of VCG - intuition

• The trick is actually quite simple:
 — By lying, players may be able to change the outcome.
 — But their utility depends on the total efficiency.

→ Therefore, players want the efficient outcome to be chosen. Lying my ruin this.
Example 1: Roommates buy TV

- TV cost $100
- Bidders are willing to pay v_1 and v_2
 - Private information.
- VCG ensures:
 - Efficient outcome (buy if $v_1 + v_2 > 100$)
 - Truthful revelation.

In our model:
- Welfare when buying: $v_1 + v_2$
- Welfare when not buying: 100 (saved the construction cost)
Example 1: Roommates buy TV

• Let’s compute VCG payments.

• Consider values $v_1=70$, $v_2=80$.
 - With player 1: value for the others is 80.
 - Without player 1: welfare is 100.
 $\Rightarrow p_1 = 100-80 = 20$
 - Similarly: $p_2 = 100-70 = 30$
 - Total payment received: 20+30 < 100

• Cost is not covered!

In general, $p_1 = 100-v_2$, $p_2 = 100-v_1$

\[p_1 + p_2 = 100-v_1 + 100-v_2 = 100-(v_1+v_2-100) < 100 \]

• Whenever we build, cost is not covered.
Example 1: Roommates buy TV

Conclusion: in some cases, the VCG mechanism is not budget-balanced. (spends more than it collects from the players.)

This is a real problem!

There isn’t much we can do: It can be shown that there is no mechanism that is both efficient and budget balanced.

– Even in simple settings: one seller and one buyer with private values.

– “Myerson-Satterthwaite theorem”
Context: Public goods

• The roommate problem is known as the "public good" problem.

• Consider a government that wants to build a bridge.
 – When to build? If the total welfare is greater than the cost.
 – How the cost is shared?
 – Efficiency vs. Budget Balance (cannot achieve both).

• Another example: cable infrastructure.
Summary: VCG

• Efficiency is desired in various settings.

• We saw: one can always achieve this with (dominant-strategy) equilibrium.
 – “implementation”

• This is the only general goal that is known to be “implementable”.

• **Pros:** No distributional assumptions, strong equilibrium concept, individually rational.

• **Cons:** not budget balanced, prone to other manipulations.