Introduction to Auction Theory

Econ 177
Introduction: A Historical Perspective

• Herodotus reports that auction were used in Babylon as early as 500 B.C.
• 193 A.D. the Pretorian Guard sold the Roman Empire by means of an auction
• Wide array of commodities sold by means of auction
 – Tobacco, fish, fresh flowers
 – Bond issues by public utilities and long-term U.S. Treasury securities
 • Total value measured in trillions!
 – Facilitate transfer of assets from public to private hands
 • Industrial enterprises in Eastern Europe and former Soviet Union
 • Rights to harvest natural resources such as oil and timber
 • Rights to use the electromagnetic spectrum for communications
 – Since 1994 the FCC has conducted 87 spectrum auctions with combined revenue of $60 billion
• IPOs
 • Google IPO in 2004 raised $1.67 billion
Common Auction Formats

• Open ascending price or English auction
 – Auctioneer begins by calling out low price and raises it in small increments provided there are two or more active bidders
 – Auction ends when there is only one remaining bidder

• The open descending or Dutch auction
 – Descending counterpart to English auction
 – Not commonly employed, but it is of conceptual interest
Common Auction Formats

- **First-Price, Sealed Bid Auction**
 - Bidders submit bids in sealed envelopes
 - At a pre-determined time, auctioneer opens all envelopes and ranks bids
 - Highest bidder obtains object and pays his bid amount

- **Second-Price, Sealed Bid Auction**
 - Bidder submit bids in sealed envelopes
 - At a pre-determined time, auctioneer opens all envelopes and ranks bids
 - Highest bidder obtains object and pays second highest bid amount
Common Auction Formats

• All-Pay auction
 – Bidders submit bids (open or closed)
 – At a pre-determined time, auctioneer opens all envelopes and ranks bids
 – Every bidder pays what they bid regardless of whether or not they have the highest bid
 – Highest bidder obtains object
 – Examples
 • Penny Auctions (Quibids, Swoopo, Bidcactus, Beezid, Ubid etc.)
 • Elections, almost any kind of contest or sports event, research and development, wars, lobbying, queues
Valuations

• We assume bidders have a use-value or simply a “value” for the object
 – Reservation price
 \[U(1,w-r) = U(0,w) \]

• If seller knew bidder values, she could offer object to bidder with highest value at or just below his willingness to pay

• Auctions are used because seller is unsure about values bidders attach to object being sold
 – Seller does not know the values of potential bidders
 – Bidders may know their own values, but not the values of potential opponents (or the seller)
Valuations

• Private values paradigm
 – Bidder knows value of object to himself but not others at time of bidding
 – Knowledge of other bidders’ values would not affect how much the object is worth to given bidder
 – Assumption most plausible when values are derived from consumption or use alone

• Common values
 – Value is the same for all bidders
 – Each bidder has their own imprecise estimate of the value of the object
 – Appropriate when value of object is derived from a market price that is unknown at time of bidding
 – Tract of land with unknown quantity of oil underground

• Interdependent values
 – Each bidder receives a private signal about her value
 – Each bidder’s value is based on a combination of the private signals.
Revenue versus Efficiency

• Two criteria for evaluating performance of an auction
 – Revenue or expected selling price
 – Allocative efficiency: Does the object get sold to the bidder who values it the most or who will make the best use of it for society?
 • Important goal in the case of privatization.
 • U.S. Congress directed the FCC to choose an auction design for allocating spectrum licenses that (to quote Al Gore) puts “licenses into the hands of those who value them the most” (Milgrom 2004, p.5)
 – Tradeoff between revenue and efficiency
 • Features of auctions that increase revenue typically reduce efficiency

• Other issues in choosing a mechanism
 – Susceptibility to collusion and simplicity/transparency of auction rules
Reserve Prices

• Until now we have implicitly assumed that the seller is willing to part with the object at any positive price.

• If the object has some intrinsic value to the seller, she would be foolish to sell it for less than this value.

• This possibility can be avoided by specifying a reserve price below which the object will not be sold.

• Note: A seller may want to set reserve price even if her own value for the object is zero!
Reserve Prices

• In some real-world auctions it is announced that there is a reserve price, but the actual reserve is kept as a secret
 – If the reserve is not met it is simply announced that the object has not been sold.
 – The seller may want to keep the reserve a secret if she plans to negotiate with the highest bidder if the reserve is not met, or to try to re-auction again later.
• Role of reserves and second-chance offers
Entry Fees

• Sometimes it costs money to participate in an auction.
• Entry fee is paid by participants whether they win the auction or not.
• Entry fees result in negative earnings for losing bidders
Agenda

• We model auctions as a strategic game:
 – Players: The bidders and the seller(s)
 – Strategies: Bidders decide how much to bid; the seller decides the auction format and rules (the auction design)
 • eg. reserve price
 – Payoffs: Depend on the design of the auction and the bids, but typically the surplus from the trade is split in some way between the winning bidder and the seller.
Agenda

• Objectives of the game theoretic study of auctions are:
 – To model and predict auction outcomes
 • how do bidders decide how much to bid
 – To understand how changes in auction rules affect bidding behaviour, impact on revenue
 – To identify the circumstances in which auctions are an *efficient* mechanism for allocating scarce resources.
 – To understand why theoretical predictions may fail to predict auction outcomes
 – Avoid getting ripped off!
Penny Auctions
www.quibids.com

Econ 177
Prof. Garratt
by
Team Outlandish
Artemisa Olivas, Brett Vallercamp, Harrison Hassig, Greg Balter, and Jason Shen