Robust Inference for Misspecified Models Conditional on Covariates

Alberto Abadie† Guido W. Imbens† Fanyin Zheng§

May 2012

Abstract

Following the work by White (1980ab; 1982) it is common in empirical work in economics to report standard errors that are robust against general misspecification. In a regression setting these standard errors are valid for the parameter that in the population minimizes the squared difference between the conditional expectation and the linear approximation, averaged over the population distribution of the covariates. In this note we discuss an alternative parameter that corresponds to the approximation to the conditional expectation based on minimization of the squared difference averaged over the sample, rather than the population, distribution of the covariates. We argue that in some cases this may be a more interesting parameter, for example when the sample is the population, e.g., all fifty states of the United States. We derive the asymptotic variance for this parameter, generally smaller than the White robust variance, and we propose a consistent estimator for this asymptotic variance.

JEL Classification: C14, C21, C52
Keywords: Robust Standard Errors, Conditional Inference, Bootstrap, Confidence Intervals

*Financial support for this research was generously provided through NSF grants 0820361 and 0961707. We are grateful for comments by Hal White and participants in the econometrics lunch seminar at Harvard University, and in particular for discussions with Gary Chamberlain that greatly improved the manuscript.
†John F. Kennedy School of Government, 79 John F. Kennedy Street, Cambridge MA 02138, USA. E-mail: alberto_abadie@harvard.edu, web: www.hks.harvard.edu/fs/aabadie/.
‡Department of Economics, Harvard University, M-24 Littauer Center, 1805 Cambridge Street, Cambridge, MA 02138, and NBER. Electronic correspondence: imbens@harvard.edu, http://www.economics.harvard.edu/faculty/imbens/imbens.html.
§Department of Economics, Harvard University, 1805 Cambridge Street, Cambridge, MA 02138, and NBER. Electronic correspondence: fzheng@fas.harvard.edu.
1 Introduction

Following the seminal work by White (1980ab, 1982), researchers in economics routinely report standard errors that are robust to misspecification of the models that are being estimated. Müller (2011) gives the corresponding confidence intervals a Bayesian interpretation. A key feature of the approach developed by White (see also Eicker (1967) and Huber (1967)), is that in regression settings it focuses on the best linear predictor (blp) that minimizes the distance between the linear predictor and the true conditional expectation, averaged over the joint distribution of all variables, with a similar interpretation in nonlinear settings. However, in some regression settings it may be more appropriate to focus on the conditional best linear predictor (cblp) defined by minimizing this distance, averaging over the empirical instead of the population distribution of the covariates. First, the conceptual contribution of this note is to extend the White results to such settings. For a large class of estimators, including maximum likelihood and method of moment estimators, we first formally characterize the generalization to nonlinear models of the conditional best linear predictor. We then derive a large sample approximation to the variance of the least squares and method of moments estimators relative to this conditional estimand. In general, in misspecified models, the robust variance for the conditional estimand is smaller than the White robust variance. Second, in the technical contribution we propose a consistent estimator for this variance so that asymptotically valid confidence intervals can be constructed. The proposed estimator generalizes the variance estimator proposed by Abadie and Imbens (2006) for matching estimators and more generally the differencing methods used in Yatchew (1997, 1999). In correctly specified models the new variance estimator is an alternative to the standard White robust variance estimator. In misspecified models the new variance estimator is the first estimator for the robust variance for the conditional estimand.

Whether conditional or unconditional estimand should be the primary focus is context specific and we do not take the position that either the conditional or unconditional estimand is always appropriate. This is closely related to discussions about “random” versus “fixed” regressors, although here the focus is on the implications for the choice of estimand under misspecification, rather than on the implications for finite sample inference. We discuss some examples, first to clarify the distinctions between the two
estimands and, second, to make an argument for our view that in at least some settings the conditional estimand, corresponding to the fixed regression notion, is of interest. For example, we argue that in cases where the sample is the population there is a strong case for using the estimand conditional on at least some covariates. Such cases are common in economic analyses, for example when analysing data where the units are all states of the United States, or all countries of the world. Most importantly, we argue that there is a clear and unavoidable choice to be made by the researcher that has direct implications for inference. In making this choice the researcher should bear in mind that the variance for the conditional estimand is generally smaller than that for the population or unconditional estimand, and thus tests for the former will generally have better power than tests for the latter.

Note that although we focus on estimands defined in terms of the finite sample distribution of the covariates, our inference relies on large sample approximations. Because of the reliance on asymptotic approximations, it generally does not matter whether we do the inference conditional on the covariates or unconditional. To focus on the conceptual contribution of the current paper and maintain comparability with the preceding literature we focus on unconditional inference.

The rest of this note is organized as follows. In Section 2 we discuss the conceptual issues raised by this note heuristically in a linear regression model setting. In Section 3 we discuss the motivation for the conditional estimand. Next, in Section 4 we present formal results covering least squares, maximum likelihood, and method of moments estimators. In Section 5 we apply the methods developed in this note to a data set collected by Imbens, Rubin and Sacerdote (2001). In Section 6 we present a small simulation study. Section 7 concludes. The appendix contains the proofs.

2 The Conditional Best Linear Predictor

In this section we lay out some of the conceptual issues in this note informally in the setting of a linear regression model. In Section 4 we provide formal results, covering both this linear model setting and more general cases including maximum likelihood and method of moments.
Consider the standard linear model

\[Y_i = X_i' \theta + \varepsilon_i, \]

(2.1)

with \(Y_i \) the outcome of interest, \(X_i \) a \(K \)-vector of observed covariates, possibly including an intercept, and \(\varepsilon_i \) an unobserved error. Let \(X, Y, \) and \(\varepsilon \) be the \(N \times K \) matrix with \(i \)th row equal to \(X_i' \), the \(N \)-vector with \(i \)th element equal to \(Y_i \), and the \(N \)-vector with \(i \)th element equal to \(\varepsilon_i \), respectively. Traditionally in this setting researchers assumed homoskedasticity, independence of the errors terms, and Normality of the error terms,

\[\varepsilon | X \sim \mathcal{N}(0, \sigma^2 \cdot I_N), \]

where \(I_N \) is the \(N \times N \) identity matrix. Under those assumptions the exact (conditional) distribution of the least squares estimator for \(\theta \),

\[\hat{\theta}_{\text{ols}} = (X'X)^{-1} (X'Y), \]

is Normal:

\[\hat{\theta}_{\text{ols}} | X \sim \mathcal{N} (\theta, \sigma^2 \cdot (X'X)^{-1}). \]

However, the set of assumptions, linearity of the regression function, independence, homoskedasticity, and Normality of the error terms is often unrealistic. White (1980ab), Eicker (1967), and Huber (1967) considered the properties of the least squares estimator \(\hat{\theta}_{\text{ols}} \) under much weaker assumptions. For the most general case one needs to define the estimand if the regression function is not linear. Suppose the sample \((Y_i, X_i)_{i=1}^N \) is a random sample from a large population satisfying some moment conditions. Let \(\mu(x) = \mathbb{E}[Y_i | X_i = x] \) be the conditional expectation of \(Y_i \) given \(X_i = x \), and let \(\sigma^2(x) \) be the conditional variance. Even if this conditional expectation \(\mu(x) \) is not linear, one might still wish to approximate it by a linear function \(x' \theta \), and be interested in the value of the slope coefficient of this linear approximation, denoted by \(\theta \). Traditionally the optimal approximation is defined as the value of \(\theta \) that minimizes the expectation of the squared difference between the outcomes and the linear approximation to the regression
function. This is generally referred to as the best linear predictor,\(^1\) formally defined as

\[
\theta_{\text{blp}} = \arg \min_{\theta} \mathbb{E} \left[(Y_i - X_i' \theta)^2 \right].
\]

(2.2)

Writing this as

\[
\theta_{\text{blp}} = \arg \min_{\theta} \mathbb{E} \left[(\mu(X_i) - X_i' \theta)^2 \right] = (\mathbb{E} [X_i X_i'])^{-1} (\mathbb{E} [X_i \mu(X_i)])
\]

shows that this can be interpreted as the value of \(\theta\) that minimizes the discrepancy between the true regression function \(\mu(x)\) and the linear approximation, weighted by the population distribution of the covariates.

White (1980ab) shows that, under some regularity conditions,

\[
\sqrt{N} \cdot (\hat{\theta}_{\text{ols}} - \theta_{\text{blp}}) \xrightarrow{d} N(0, \mathbb{V}_{\text{blp}}),
\]

where the normalized large sample variance is

\[
\mathbb{V}_{\text{blp}} = (\mathbb{E} [X_i X_i'])^{-1} (\mathbb{E} [(Y_i - X_i' \hat{\theta}_{\text{ols}})^2 X_i X_i']) (\mathbb{E} [X_i X_i'])^{-1}.
\]

(2.3)

White also proposed a consistent estimator for \(\mathbb{V}_{\text{blp}}\),

\[
\hat{\mathbb{V}}_{\text{blp}} = \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} (Y_i - X_i' \hat{\theta}_{\text{ols}})^2 X_i X_i' \right) \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1}.
\]

(2.4)

Using the White variance estimator \(\hat{\mathbb{V}}_{\text{blp}}\) is currently standard practice in empirical work in economics. The bootstrap (Efron, 1982; Efron and Tibshirani, 1993) can also be used to construct confidence intervals for \(\theta_{\text{blp}}\).

In this note we explore an alternative linear approximation to the possibly nonlinear regression function \(\mu(x)\). Instead of minimizing the marginal expectation of the squared difference between the outcomes and the regression function, we minimize this expectation conditional on the observed covariates. Define the conditional best linear predictor \(\theta_{\text{cblp}}(X)\) as

\[
\theta_{\text{cblp}}(X) = \arg \min_{\theta} \sum_{i=1}^{N} \mathbb{E} \left[(Y_i - X_i' \theta)^2 \middle| X \right].
\]

(2.5)

\(^1\)As far as we can tell, this term originates in the department of economics at Wisconsin, perhaps due to Art Goldberger (e.g., Goldberger 1991). The term is also used in Manski (1988). Earlier, Chamberlain (1982) used the terms “minimum mean square error linear predictor,” and in the vector case, “multivariate linear predictor,” for the same concept.
To be explicit about the dependence of the conditional best linear predictor on the sample values of the covariates we write $\theta_{cblp}(X)$ as a function of the matrix of covariate values X. Denoting the N-vector with i-th element equal to $\mu(X_i)$ by $\mu(X)$, we can write $\theta_{cblp}(X)$ as

$$
\theta_{cblp}(X) = \arg \min_{\theta} \sum_{i=1}^{N} (\mu(X_i) - X'_i \theta)^2 = (X'X)^{-1} (X'\mu(X)),
$$

to stress the interpretation of $\theta_{cblp}(X)$ as the best approximation to the true regression function, now with the weights based on the empirical distribution of the covariates. Both θ_{blp} and $\theta_{cblp}(X)$ base the linear approximation to $\mu(x)$ on a minimizing of the squared difference between the true regression function $\mu(x)$ and the linear approximation $x'\theta$.

The difference between the two approximations is how they weight, as a function of the covariates, the squared difference between the regression function and the linear approximation for each x. The first approximation, leading to θ_{blp}, uses the population distribution of the covariates. The second approximation, leading to $\theta_{cblp}(X)$, uses the empirical distribution of the covariates. The second approximation, leading to $\theta_{cblp}(X)$, uses the empirical distribution of the covariates.

We defer to Section 3 the important question whether, and why, in a specific application θ_{blp} or $\theta_{cblp}(X)$ might be the object of interest. In some applications we argue that θ_{blp} is the estimand of interest. However, as discussed in detail in Section 3, we also think that in some applications $\theta_{cblp}(X)$ is of more interest than θ_{blp}. Therefore, given that the econometric literature has focused exclusively on inference estimands like θ_{blp}, we view the question of inference for $\theta_{cblp}(X)$ as of general interest.

Next we point out the implications of the difference between θ_{blp} and $\theta_{cblp}(X)$. The first issue to note is that for point estimation it is irrelevant whether we are interested in θ_{blp} or $\theta_{cblp}(X)$. In both cases $\hat{\theta}_{ols}$ is the natural estimator. However, for inference it does matter whether we are interested in estimating θ_{blp} or $\theta_{cblp}(X)$, unless $\mathbb{E}[\varepsilon|X] = 0$ and the conditional expectation is linear. Consider the variance of the least squares estimator $\hat{\theta}_{ols}$, viewed as an estimator of $\theta_{cblp}(X)$. The exact (conditional) variance of $\hat{\theta}_{ols}$ is

$$
\text{Var}_{cblp}(X) = \mathbb{V} \left(\hat{\theta}_{ols} \mid X \right) = \mathbb{E} \left[\left(\hat{\theta}_{ols} - \theta_{cblp}(X) \right) \left(\hat{\theta}_{ols} - \theta_{cblp}(X) \right)' \mid X \right]
$$

$$
= \frac{1}{N} (X'X/N)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \sigma^2(X_i)X_iX'_i \right) (X'X/N)^{-1}.
$$

(2.6)
Directly comparing the normalized variance \(N \cdot V_{\text{cond}}^{\text{cblp}}(X) \) to the White variance \(V_{\text{blp}} \) is complicated by the fact that there are two differences. First, the variance \(N \cdot V_{\text{cond}}^{\text{cblp}}(X) \) is a conditional variance, rather than a limiting variance like \(V_{\text{blp}} \). Second, \(N \cdot V_{\text{cond}}^{\text{cblp}}(X) \) is centered at a different estimand. The first difference is a finite sample issue that is not the focus of the current paper. To facilitate the comparison with the White variance \(V_{\text{blp}} \) we therefore look at the unconditional variance of the \(\hat{\theta}_{\text{ols}} \) as an estimator of \(\theta_{\text{cblp}}(X) \). Because \(\hat{\theta}_{\text{ols}} \) is unbiased for \(\theta_{\text{cblp}}(X) \), it follows that the marginal variance is the expected value of the conditional variance. Under random sampling this variance, normalized by the sample size, converges to

\[
V_{\text{cblp}} = \text{plim} \left(N \cdot V_{\text{cond}}^{\text{cblp}}(X) \right) = (\mathbb{E}[X_iX_i'])^{-1} \left(\mathbb{E}\left[\sigma^2(X_i)X_iX_i' \right] \right) (\mathbb{E}[X_iX_i'])^{-1}, \quad (2.7)
\]

and we have a large sample approximation to the distribution of \(\sqrt{N} \cdot (\hat{\theta}_{\text{ols}} - \theta_{\text{cblp}}(X)) \):

\[
\sqrt{N} \cdot (\hat{\theta}_{\text{ols}} - \theta_{\text{cblp}}(X)) \xrightarrow{d} N(0, V_{\text{cblp}}).
\]

The key difference between the robust variance \(V_{\text{blp}} \) proposed by White and the robust variance \(V_{\text{cblp}} \) is the difference between the conditional variance \(\sigma^2(X_i) \) in (2.7) and the expectation of the squared residual \(\mathbb{E}[(Y_i - X_i'\hat{\theta}_{\text{blp}})^2|X_i] \) in (2.3). For the overall variances we have in large samples

\[
V_{\text{blp}} = V_{\text{cblp}} + V_{\theta_{\text{cblp}}(X)},
\]

where \(V_{\theta_{\text{cblp}}(X)} \) is the probability limit of

\[
N \cdot \mathbb{E} \left[(\hat{\theta}_{\text{cblp}}(X) - \theta_{\text{blp}}) (\hat{\theta}_{\text{cblp}}(X) - \theta_{\text{blp}})' \right],
\]

where the last expectation is over the distribution of \(\theta_{\text{cblp}}(X) \) as a function of \(X \). Note that in general \(V_{\text{blp}} \) exceeds \(V_{\text{cblp}} \). The difference arises from the misspecification in the regression function, that is, the difference between the conditional expectation and the best linear predictor, \(\mu(x) - x'\theta_{\text{blp}} \). As a result of the difference between \(V_{\text{blp}} \) and \(V_{\text{cblp}} \), it follows that the White variance estimator in general over-estimates the conditional variance \(V_{\text{cblp}} \), even in large samples.

The final question we address in this section is how to estimate \(V_{\text{cblp}} \). The challenge is that the conditional variance function \(\sigma^2(x) \) is generally unknown. Estimating this
is straightforward in the case with discrete covariates. One can simply calculate the sample variance of \(Y_i \) at each distinct value of the covariates. Often that is not feasible, however, because some of the covariates are (close to) continuous. In such cases estimating \(\sigma^2(x) \) consistently for all \(x \) would require nonparametric estimation involving bandwidth choices. Such an estimator would be more complicated than the White robust variance estimator which simply uses squared residuals to estimate the expectation of the squared errors. Here we build on work by Yatchew (1997, 1999) and Abadie and Imbens (2006) to develop a general estimator for \(V_{cblp} \) that does not require consistent estimation of \(\sigma^2(x) \), much like the White variance estimator does not consistently estimate \(E[(Y_i - X_i' \hat{\theta}_{blp})^2 | X_i = x] \) for all \(x \). First define for the \(M \times N \) matrix \(A \) with \((i,j)\)th element equal to \(a_{ij} \) the norm \(\| A \| = \max_{i,j} |a_{ij}| \). Next, define \(\ell_X(i) \) to be the index of the unit closest to \(i \) in terms of \(X \):

\[
\ell_X(i) = \arg \min_{j \in \{1,...,N\}, j \neq i} \| X_i - X_j \|,
\]

Then our proposed variance estimator is

\[
\hat{V}_{cblp} = \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1}
\cdot \left(\frac{1}{2N} \sum_{i=1}^{N} \left(\hat{\varepsilon}_i X_i - \hat{\varepsilon}_{\ell_X(i)} X_{\ell_X(i)} \right) \left(\hat{\varepsilon}_i X_i - \hat{\varepsilon}_{\ell_X(i)} X_{\ell_X(i)} \right)' \right) \cdot \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1}.
\]

In Section 4 we show in a more general setting that this variance estimator is consistent for \(V_{cblp} \). An alternative estimator for \(V_{cblp} \) exploits the fact that the conditional variance of \(\varepsilon_i X_i \) conditional on \(X_i \) is the same as \(X_i \) times the conditional variance of \(\varepsilon_i \) given \(X_i \),

\[
\tilde{V}_{cblp} = \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1} \cdot \left(\frac{1}{2N} \sum_{i=1}^{N} \left(\hat{\varepsilon}_i - \hat{\varepsilon}_{\ell_X(i)} \right)^2 X_i X_i' \right) \cdot \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1}.
\]

Although in this linear regression case with the conditioning on all covariates both \(\hat{V}_{cblp} \) and \(\tilde{V}_{cblp} \) are consistent for \(V_{cblp} \), for nonlinear settings, or with conditioning on a subset of the covariates, only the first estimator \(\hat{V}_{cblp} \) generalizes. To be specific, suppose that the covariate vector \(X_i \) can be partitioned as \(X_i = (X_{i1}, X_{i2})' \) and correspondingly \(X = (X_1, X_2) \), and suppose we wish to estimate the variance conditional on \(X_1 \) only. In
this case the probability limit of the normalized variance for the least squares estimator is

\[\mathbb{V}_{cblp} = (\mathbb{E} [X_i X_i'])^{-1} (\mathbb{E} (\varepsilon_i X_i | X_{1i})) (\mathbb{E} [X_i X_i'])^{-1}. \tag{2.9} \]

Our proposed estimator for this conditional variance is

\[\hat{\mathbb{V}}_{cblp} = \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1} \cdot \left(\frac{1}{2N} \sum_{i=1}^{N} (\hat{\varepsilon}_i X_i - \hat{\varepsilon}_{\ell X_1(i)} X_{\ell X_1(i)}) (\hat{\varepsilon}_i X_i - \hat{\varepsilon}_{\ell X_1(i)} X_{\ell X_1(i)})' \right) \cdot \left(\frac{1}{N} \sum_{i=1}^{N} X_i X_i' \right)^{-1}. \tag{2.10} \]

This estimator is consistent for the conditional variance \(\mathbb{V}_{cblp} \). In contrast, replacing \(\hat{\varepsilon}_{\ell X(i)} \) by \(\hat{\varepsilon}_{\ell X_1(i)} \) in the expression for \(\hat{\mathbb{V}}_{cblp} \) would not lead to a consistent estimator for the variance.

3 Motivation for Conditional Estimands

In this section we address the question whether, when, and why the estimand conditional on the covariates may be of interest. We emphatically do not wish to argue that in all cases it is the conditional estimand is the appropriate object of interest. Rather, we wish to make the case, through four examples, that it depends on the context what the appropriate object is, and that in some settings the conditional best linear predictor is more appropriate than the standard unconditional estimand.

One way to frame the question is in terms of different repeated sampling perspectives one can take. We can consider the distribution of the least squares estimator over repeated samples where we redraw the pairs \(X_i \) and \(Y_i \) (the random regressor case), or we can
consider the distribution over repeated samples where we keep the values of X_i fixed and only redraw the Y_i (the fixed regressor case). Under general misspecification both the mean and variance of these two distributions will differ. The population estimand θ_{pop} is the approximate (in a large sample sense) average over the repeated samples when we redraw both X_i and Y_i, and $\theta_{\text{cond}}(X)$ is the approximate average over the repeated samples where X_i is held fixed. Many introductory treatments of regression analyses briefly introduce the fixed and random regressor concepts, with a variety of opinions on what the most relevant perspective is. Wooldridge writes that “reliance on fixed regressors ... can have unintended consequences. ... Because our focus is on asymptotic analysis, we have the luxury of allowing for random explanatory variables throughout the book” (Wooldridge, 2002, p10-11). Cameron and Trivedi write “The fixed regressors assumption is rarely appropriate for microeconometrics data” (Cameron and Trivedi, 2005, p. 77). Stock and Watson (2003) focus on the random regressor case, arguing that “the i.i.d. assumption is a reasonable one for many data collection schemes” but acknowledging that “Not all sampling schemes produce i.i.d. observations on (X_i, Y_i)” (Stock and Watson, 2003, p. 105). Goldberger (1991) takes a different position, assuming “X nonstochastic, which says that the elements of X are constants, that is, degenerate random variables. Their values are fixed in repeated samples ...” (Goldberger, p. 164).

These discussions are in the context of correctly specified regression models, however, where the averages of the distributions under the two repeated sampling perspectives coincide, and their variances agree in large samples. A point that has not received attention in the literature is that under general misspecification, the random versus fixed regressor distinction has implications for inference that do not vanish with the sample size.

Another point is that the sole difference between the population and conditional estimands is the weight function used to measure the difference between the model and the true data generating process. For the population estimand the weight function depends on the population distribution of the potential conditioning variables, and for the conditional estimand it is the sample distribution of these variables. Because the population distribution of these variables, unlike the sample distribution, is unknown, in general there is more uncertainty about the population estimand. Thus, focusing on the conditional estimand θ_{cond} generally leads to smaller standard errors than focusing on the
population estimand θ_{pop}.

Example I (Finite versus Infinite Population)

In the first example we want to argue that if the sample is a random sample from a large population θ_{pop} is of more interest than θ_{cond}, whereas in the case where the sample is equal to the population, the conditional estimand θ_{cond} is of more interest.

Consider estimation of the average effect of a binary treatment. Each unit in the population is characterized by two potential outcomes $Y_i(c)$ and $Y_i(t)$, and a binary covariate $X_i \in \{f, m\}$. Let $W_i \in \{c, t\}$ denote the treatment received and $Y_i = Y_i(W_i)$ the realized outcome. Assume assignment to treatment is random given X_i. Define, for $w = c, t$ and $x = f, m$,

$$
\mu(x, w) = \mathbb{E}[Y_i(w)|X_i = x], \quad \text{and} \quad \tau(x) = \mu(x, t) - \mu(x, c).
$$

Let N_{xw} be the number of units in the sample with $X_i = x$ and $W_i = w$, let q be the population share of the $X_i = f$ types and \hat{q} the sample share:

$$
q = \mathbb{E}[X_i], \quad \text{and} \quad \hat{q} = \frac{1}{N} \sum_{i=1}^{N} X_i = \frac{N_{fc} + N_{ft}}{N_{fc} + N_{ft} + N_{mc} + N_{mt}}.
$$

Consider two estimands, first the population average treatment effect,

$$
\theta_{\text{pop}} = \mathbb{E} [Y_i(t) - Y_i(c)] = q \cdot \tau(f) + (1 - q) \cdot \tau(m),
$$

where q is the population fraction of $X_i = f$ types, and second, the conditional average effect,

$$
\theta_{\text{cond}}(X) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} [Y_i(t) - Y_i(c)|X_i] = \hat{q} \cdot \tau(f) + (1 - \hat{q}) \cdot \tau(m).
$$

What is the rationale for focusing on θ_{pop} versus $\theta_{\text{cond}}(X)$? If the sample is a random sample from a large population, it seems natural to focus on the population average treatment effect θ_{pop} as the object of interest. On the other hand, suppose the sample is the entire population. For example, the population could be the 50 states of the United States in which case we might have observations on all 50 states. The covariate could be an indicator for a state being on the coast versus inland. In that case it would appear reasonable to keep fixed the number of coastal versus inland states, rather than view the
share of coastal states as random. That perspective suggests focusing on \(\theta_{\text{cond}}(X) \) rather than \(\theta_{\text{pop}} \) in cases where the sample is the entire population. To do inference in this setting, we still use large sample approximations, but the target is estimation of \(\theta_{\text{cond}}(X) \) rather than \(\theta_{\text{pop}} \).

Note that if we observe the entire population in this case, we cannot interpret the uncertainty in the estimator as due to sampling variation in the units. Instead we can interpret the uncertainty in the estimator as due to random variation in the treatment assignment \(W_i \) (see, for example, Neyman, 1923, 1990). To justify large sample approximation, however, we will resort to a random sampling argument. See also the discussion in the context of bootstrap methods in Wu (1986) and Tibshirani (1986).

Example II (Convenience Sample)

In the second example we want to make the case that sometimes there is intrinsically no more interest in \(\theta_{\text{pop}} \) than \(\theta_{\text{cond}} \) because neither the weighting scheme corresponding to the population distribution, nor the weighting scheme corresponding to the empirical distribution function, is obviously of primary interest.

Consider the study of lottery winners by Imbens, Rubin and Sacerdote (2001). We use data from this study in Section 5. Imbens, Rubin and Sacerdote surveyed individuals who won large prizes in the lottery. Using a standard life-cycle model of labor supply they focus on linear regressions of subsequent labor earnings on the annual prize and some additional covariates including prior earnings. The coefficient on the prize in this linear regression can be interpreted as the marginal propensity to consume out of unearned income, an economically meaningful parameter (e.g., Pencavel, 1986). Even if the conditional expectation as a function of the prize is nonlinear, it may still be interesting to focus on the coefficient in the linear regression, partly because it facilitates comparison across studies. The question is whether the linear approximation should be based on weighting the squared difference between the true regression function and the linear predictor by the population or empirical distribution of lottery prizes. There does not appear to be a strong substantive argument for preferring one weighting function (and thus the corresponding estimand) over the other.

Example III (Experimental Design)

Karlan and List (2007) carried out an experimental evaluation of incentives for chari-
table giving. Among the results Karlan and List report are probit regression estimates where the object of interest is the regression coefficient on the indicator for being offered a matching incentive for charitable giving. The specification of the probit regression function also includes characteristics of the matching incentives.

In this case the difference between V_{pop} and V_{cond} is that V_{pop} takes into account sampling variation in $\hat{\theta}$ due to variation in the sample values of the matching incentives over the repeated samples, whereas V_{cond} conditions on these values. Given that the distribution of these incentives in this experiment is fixed by the researchers there appears to be no reason to take this uncertainty into account, and we submit that the appropriate measure of uncertainty is V_{cond} rather than V_{pop}.

Example IV (Average Derivative in Sample versus Population)
In the last example we again want to make the case that there is no compelling reason to prefer one estimand to the other.

Suppose one estimates a parametric binary response model, say a probit model with $\Pr(Y_i = 1|X_i) = \Phi(X_i^\prime \theta)$, where $\Phi(a) = \int_{-\infty}^{a} (1/\sqrt{2\pi}) \exp(-z^2/2)dz$. (The same argument would apply to other nonlinear parametric models.) Parameter estimates are difficult to interpret for such models, and often researchers report derivatives of the conditional expectation of Y_i given X_i with respect to X_i to facilitate comparisons with other models. For the probit model the derivative of the conditional expectation is $\phi(x^\prime \theta) \cdot \theta$, where $\phi(a) = \partial \Phi(a)/\partial a = \exp(-a^2/2)/\sqrt{2\pi}$. In nonlinear models the value of the derivative depends on the value of the covariates, so often researchers report the average derivative evaluated at the estimated parameters:

$$\hat{\gamma} = \frac{1}{N} \sum_{i=1}^{N} \phi(X_i^\prime \hat{\theta}) \cdot \hat{\theta}.$$

The variance of this estimator $\hat{\gamma}$ for the average derivative differs depending on whether we condition on the covariates or not. The two estimands are

$$\gamma_{\text{cond}}(X) = \frac{1}{N} \sum_{i=1}^{N} \phi(X_i^\prime \theta) \cdot \theta, \quad \text{and} \quad \gamma_{\text{pop}} = E[\phi(X_i^\prime \theta) \cdot \theta].$$

Because the average derivative is presented primarily as a more interpretable parameter than θ itself, taking into account the uncertainty in the distribution of the covariates that
is averaged over may not serve any useful purpose, suggesting that \(\gamma_{\text{cond}} \) may be just as relevant as \(\gamma_{\text{pop}} \).

4 Inference for Conditional Estimands

In this section we present the main formal results of the paper, covering linear regression, maximum likelihood, and method of moments estimators. We cover settings where we condition on the full set of regressors as well as cases where we condition on a subset of the regressors. We focus on the just-identified case, although the results can be extended to over-identified generalized method of moments settings, for example using empirical likelihood approaches (e.g., Qin and Lawless, 1994; Imbens, Johnson and Spady, 1998, and Newey and Smith, 2004).

Suppose we have a random sample of size \(N \) of a pair of random vectors, \((X_i, Y_i)\), \(i = 1, \ldots, N\). Let \(K_X \) and \(K_Y \) be the dimensions of \(X_i \) and \(Y_i \), and let \(\mathbf{X} \) and \(\mathbf{Y} \) be the \(N \times K_X \) and \(N \times K_Y \) matrices with \(i \)-th rows equal to \(X_i' \) and \(Y_i' \) respectively. We are interested in a finite dimensional parameter \(\theta \), defined as some function of the joint distribution of \((X_i,Y_i)\). Under some economic model it follows that

\[
\mathbb{E} [\psi(Y_i, X_i, \theta)] = 0. \tag{4.1}
\]

The model may have additional implications beyond this moment condition, but these are not used for estimation. For example, it may be the case that the conditional moment has expectation zero,

\[
\mathbb{E} [\psi(Y_i, X_i, \theta)|X_i] = 0.
\]

Alternatively, we may have specified the joint distribution of \(Y_i \) and \(X_i \), in which case \(\psi(y, x, \theta) \) could equal to the score function. In that case the model has the additional implication that the expected value of the derivatives of \(\psi(y, x, \theta) \) with respect to \(\theta \) is equal to the expected value of the second moments of \(\psi(y, x, \theta) \). Based only on (4.1), and not on any other implications of the motivating model, we may wish to estimate \(\theta \) by solving

\[
\sum_{i=1}^{N} \psi(Y_i, X_i, \hat{\theta}) = 0.
\]
We are interested in the properties of the estimator $\hat{\theta}$ under general misspecification of the model that motivated the moment condition.

The standard approach (Hansen, 1984; Newey and McFadden, 1994; Wooldridge, 2002) focuses on the value θ_{pop} that solves

$$E [\psi(Y_i, X_i, \theta_{\text{pop}})] = 0.$$

If the pairs (X_i, Y_i), for $i = 1, \ldots, N$ are independent and identically distributed, then under regularity conditions,

$$\sqrt{N} (\hat{\theta} - \theta_{\text{pop}}) \xrightarrow{d} N(0, \nabla_{\text{gmm, pop}}) ; \quad \text{where } \nabla_{\text{gmm, pop}} = (\Gamma' \Delta^{-1} \Gamma)^{-1},$$

with

$$\Gamma = E \left[\frac{\partial}{\partial \theta} \psi(Y_i, X_i, \theta_{\text{pop}}) \right], \quad \text{and } \Delta = E [\psi(Y_i, X_i, \theta_{\text{pop}}) \psi(Y_i, X_i, \theta_{\text{pop}})'] .$$

Now we focus on the conditional estimand. Define $\theta_{\text{cond}}(X)$ as the solution to

$$E \left[\sum_{i=1}^{N} \psi(Y_i, X_i, \theta) \bigg| X \right] = 0. \tag{4.2}$$

Note that implicitly θ_{cond} is a function of X. If the original model implied that the conditional expectation of $\psi(Y_i, X_i, \theta)$ given X_i is equal to zero, then $\theta_{\text{cond}} = \theta_{\text{pop}}$, but this need not hold in general. The motivation for the estimand is the same as in the best-linear-predictor case. In cases where the model implies a conditional moment condition, but we are concerned about misspecification, we may wish to focus on the value for θ that minimizes the discrepancy between $E[\psi(Y_i, X_i, \theta)|X_i]$ and zero. We can weight the discrepancy by the population distribution of the X_i’s, or by the empirical distribution. The conditional estimand corresponds to the case where the weights are based on the empirical distribution function.

We make the following assumptions. These are closely related to standard assumptions used for establishing asymptotic properties for moment-based estimators. See for example Newey and McFadden (1994).

Assumption 1 (X_i, Y_i), for $i = 1, \ldots, N$, are independent and identically distributed. The support of X_i is a compact subset of \mathbb{R}^L.

14
Assumption 2 (i) The K-component vector of moment conditions $\psi(y, x, \theta)$ is continuously differentiable in θ for $\theta \in \Theta$ with Θ a compact subset of \mathbb{R}^K, with both $\psi(y, x, \theta)$ and its derivative with respect to θ, $\frac{\partial}{\partial \theta} \psi(y, x, \theta)$, continuous in x and y for all $\theta \in \Theta$, (ii) there is a unique value $\theta_{\text{pop}} \in \text{int}(\Theta)$ such that $E[\psi(Y_i, X_i, \theta_{\text{pop}})] = 0$, (iii) Δ and Γ are finite and full rank, and (iv) $E\left[\sup_{\theta \in \Theta} \| \frac{\partial}{\partial \theta} \psi(Y_i, X_i, \theta) \|^{2+\delta}\right]$, and for some positive δ, $E\left[\sup_{\theta \in \Theta} \psi(Y_i, X_i, \theta) \right]$ are finite.

Theorem 1 Suppose Assumptions 1 and 2 hold. Then (i), $\hat{\theta} - \theta_{\text{cond}}(X) = o_p(1)$, and (ii)

$$\sqrt{N} \cdot (\hat{\theta} - \theta_{\text{cond}}(X)) \xrightarrow{d} \mathcal{N}(0, \mathcal{V}_{\text{gmm,cond}}),$$

where

$$\mathcal{V}_{\text{gmm,cond}} = (\Gamma' \Delta_{\text{cond}}^{-1} \Gamma)^{-1}, \quad \text{and} \quad \Delta_{\text{cond}} = E[\mathcal{V}(\psi(Y_i, X_i, \theta_{\text{pop}})|X_i)].$$

If also $E[\psi(Y_i, X_i, \theta_{\text{pop}})|X_i = x] = 0$ for all x, then (iii),

$$\theta_{\text{cond}}(X) = \theta_{\text{pop}}, \quad \text{and} \quad \sqrt{N} \left(\hat{\theta} - \theta_{\text{pop}}\right) \xrightarrow{d} \mathcal{N}(0, \mathcal{V}_{\text{gmm,cond}}).$$

PROOF: See Appendix.

Let us consider an additional example to illustrate the differences between the two variances. This example is related to the discussion in Chow (1984).

Example V (Maximum Likelihood Estimation)

Suppose we specify the conditional distribution of Y_i given X_i as $f(y|x; \theta)$. We estimate the model by maximum likelihood:

$$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{N} \ln f(Y_i|X_i; \theta).$$

The normalized asymptotic variance under correct specification, and under some regularity conditions, is equal to the inverse of the information matrix I_{θ}^{-1}, where

$$I_{\theta} = -E \left[\frac{\partial^2}{\partial \theta \partial \theta'} \ln f(Y_i|X_i; \theta) \right] = E \left[\frac{\partial}{\partial \theta} \ln f(Y_i|X_i; \theta) \cdot \frac{\partial}{\partial \theta} \ln f(Y_i|X_i; \theta)' \right].$$
White (1982) analyzed the properties of the estimator under general misspecification of the conditional density. Let
\[
\theta_{\text{pop}} = \arg \max_{\theta} \mathbb{E} \left[\ln f(Y_i|X_i; \theta) \right].
\]
Then White (1982) showed that under general misspecification,
\[
\hat{\theta} \xrightarrow{p} \theta_{\text{pop}}, \quad \text{and} \quad \sqrt{N} \cdot \left(\hat{\theta} - \theta_{\text{pop}} \right) \xrightarrow{d} \mathcal{N} \left(0, \left(\Gamma' \Delta^{-1} \Gamma \right)^{-1} \right),
\]
with
\[
\Gamma = -\mathbb{E} \left[\frac{\partial^2}{\partial \theta \partial \theta'} \ln f(Y_i|X_i; \theta_{\text{pop}}) \right], \quad \text{and} \quad \Delta = \mathbb{E} \left[\frac{\partial}{\partial \theta} \ln f(Y_i|X_i; \theta_{\text{pop}}) \cdot \frac{\partial}{\partial \theta} \ln f(Y_i|X_i; \theta_{\text{pop}})' \right].
\]

The conditional version of the estimand under general misspecification is
\[
\theta_{\text{cond}} = \arg \max_{\theta} \sum_{i=1}^{N} \mathbb{E} \left[\ln f(Y_i|X_i; \theta) | X_i \right],
\]
where the expectation is taken only over \(Y_i \). Theorem 1 implies that
\[
\sqrt{N} \cdot \left(\hat{\theta} - \theta_{\text{cond}} \right) \xrightarrow{d} \mathcal{N} \left(0, \left(\Gamma' \Delta_{\text{cond}}^{-1} \Gamma \right)^{-1} \right),
\]
where
\[
\Delta_{\text{cond}} = \mathbb{E} \left[\mathbb{V} \left(\frac{\partial}{\partial \theta} \ln f(Y_i|X_i, \theta_{\text{pop}}) \right) | X_i \right].
\]
If the model is correctly specified, then \(\Delta = \Delta_{\text{cond}} \), but if the model is misspecified then
\[
\mathbb{E} \left[\frac{\partial}{\partial \theta} \ln f(Y_i|X_i, \theta_{\text{pop}}) \right] = 0,
\]
but it is not true that for all \(x \)
\[
\mathbb{E} \left[\frac{\partial}{\partial \theta} \ln f(Y_i|X_i, \theta_{\text{pop}}) \bigg| X_i = x \right] = 0,
\]
implying that in general \(\Delta - \Delta_{\text{cond}} \) is positive semi-definite. □

Next, we consider estimation of the variance in the general case. Estimation of \(\Gamma \) is the same as for the population estimand:
\[
\hat{\Gamma} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial \theta'} \psi(Y_i, X_i, \hat{\theta}).
\]
The key question concerns estimation of Δ_{cond}. Our proposed estimator matches each unit to the closest unit in terms of X_i, and then differences the values of the moment function:

$$\hat{\Delta}_{\text{cond}} = \frac{1}{2N} \sum_{i=1}^{N} \left(\psi(Y_i, X_i, \hat{\theta}) - \psi(Y_{\ell X(i)}, X_{\ell X(i)}, \hat{\theta}) \right) \left(\psi(Y_i, X_i, \hat{\theta}) - \psi(Y_{\ell X(i)}, X_{\ell X(i)}, \hat{\theta}) \right)' .$$

We then combine these estimates to get an estimator for the variance for the conditional estimand:

$$\hat{\nabla}_{\text{gmm,cond}} = \left(\hat{\Gamma}' \hat{\Delta}_{\text{cond}}^{-1} \hat{\Gamma} \right)^{-1} .$$

Theorem 2 (Conditional Variance for Method of Moments Estimators)

*Suppose Assumptions 1 and 2 hold. Then

$$\hat{\nabla}_{\text{gmm,cond}} \xrightarrow{p} \nabla_{\text{gmm,cond}} .$$

Proof: See Appendix.

5 **An Application to the Imbens-Rubin-Sacerdote Lottery Data**

To illustrate the issues raised in this note we look at some data previously analyzed by Imbens, Rubin and Sacerdote (2001). Imbens, Rubin and Sacerdote collected data on individuals who played the lottery in the mid-eighties. Here we focus on a subset of their data for 194 individuals who won large prizes. We use three variables, the yearly prize won by each individual, the average of yearly earnings over six years prior to winning the lottery and the average of yearly earnings over the six years after winning the lottery. Table 1 reports some summary statistics.

Using a standard life-cycle model for consumption and savings Imbens, Rubin and Sacerdote estimate a linear model relating subsequent labor earnings to prior earnings and the yearly prize. The coefficient on the yearly prize can be interpreted as the propensity to earn out of unearned income, an economically meaningful parameter (e.g., Pencavel, 1986). Following the Imbens-Rubin-Sacerdote specification we focus on the regression function

$$Y_i = \theta_0 + \theta_1 \cdot P_i + \theta_2 \cdot X_i + \varepsilon_i ,$$
where Y_i is the average of post-lottery earnings, X_i is the average of pre-lottery earnings, and P_i is the yearly prize. As we discussed in Example II in Section 3, we may wish to estimate a linear regression function even if one does not believe the conditional expectation is exactly linear. The question then arises how to approximate the conditional expectation by a linear function: averaging the squared difference between the conditional expectation and the linear approximation over the population or over the sample distribution of the covariates. Arguably one is interested in estimating a representative value for the marginal propensity to earn out of unearned income, acknowledging that this parameter may vary between individuals, and, for a given individual, may vary by income levels. There is in our view no compelling argument that the population distribution in the lottery sample, or the sample distribution is closer to being representative of the population of interest.

In Table 2 we report estimates for this regression function, with both the conventional robust standard errors and the standard error for the conditional estimand.

6 A Small Simulation Study

In this section we assess the small sample properties of the variance estimators. We center our simulation study around the lottery data set. We focus on estimating a linear regression function

$$Y_i = \theta_0 + \theta_1 \cdot P_i + \theta_2 \cdot X_i + \varepsilon_i.$$

The joint distribution of the two covariates in the population is

$$\begin{pmatrix} P_i \\ X_i \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 32.0 \\ 12.1 \end{pmatrix} , \begin{pmatrix} 443.1 & 54.8 \\ 54.8 & 124.9 \end{pmatrix} \right).$$

The means and variances of this joint distribution were estimated on the lottery data. The conditional distribution of Y_i given P_i and X_i is normal:

$$Y_i|X_i, P_i \sim \mathcal{N} \left(\mu_i, \sigma_i^2 \right),$$

where

$$\mu_i = 6.46 - 0.13 \times P_i + 0.75 \times X_i + \frac{\delta}{1000} \times \left(P_i^2 + 1420 - 87 \times P_i - 5 \times X_i \right),$$

$$\sigma_i^2 = \frac{P_i^2 + 443.1 - 5 \times P_i}{124.9}.$$
and
\[
\ln \sigma_i^2 = 2.611 - 0.012 \cdot P_i + 0.070 \cdot X_i.
\]

Again the parameter values are motivated by the lottery data. A non-zero value for \(\delta \) makes the model nonlinear. We use two values for \(\delta \). In the first design we fix \(\delta = 1.43 \) corresponding most closely to the lottery data. In the second design we use a larger value, \(\delta = 14.3 \).

Table 3 presents the results. We focus on the coefficient on the prize, \(\theta_1 \). For both designs we report the the average of the population and conditional standard error for \(\hat{\theta}_1 \), and four coverage rates. First the coverage frequency of the conventional (White standard error based) 95% confidence interval for \(\theta_{\text{pop},1} \). This coverage frequency is calculated as the frequency with which \((\hat{\theta}_1 - \theta_{\text{pop},1})/\sqrt{\hat{V}_{\text{blp}}} \) is less than 1.96 in absolute value. This coverage should be 0.95. Next, the frequency with which the same confidence interval covers \(\theta_{\text{cond}} \), that is, the frequency with which \((\hat{\theta}_1 - \theta_{\text{clblp},1}(X))/\sqrt{\hat{V}_{\text{blp}}} \) is less than 1.96 in absolute value. This should be more than 0.95 in large samples according to our formal results. In the next row we report the coverage rates for confidence intervals based on the conditional standard errors. Now the coverage for \(\theta_{\text{pop},1} \) could be less than 0.95, but the coverage for \(\theta_{\text{cond},1}(X) \) should be 0.95. In the first design the model is too close to being linear to detect these effects, and all coverage rates are close to 0.95. In the second design the average conditional standard error is about 10% less than the average unconditional (White) standard error, and this shows up in the coverage rates of the confidence intervals. The confidence interval based on White standard errors covers \(\theta_{\text{pop},1} \) with probability 0.95, and \(\theta_{\text{cond},1}(X) \) with probability 0.97, and the confidence interval based on the conditional standard error covers \(\theta_{\text{cond},1}(X) \) with probability 0.94, and \(\theta_{\text{pop},1} \) with probability 0.91.

7 Conclusion

In this note we discuss inference for conditional estimands in misspecified models. Following the work by White (1980ab, 1982) it is common in empirical work to report robust standard errors. These robust standard errors are valid for the population value of the estimator given random sampling. We show that if one is interested in the conditional
estimand, conditional on all or a subset of the variables, robust standard errors are generally smaller than the White robust standard errors. We derive a general characterization of the variance for the conditional estimand and propose a consistent estimator for this variance. We argue that in some settings the conditional estimand may be of more interest than the unconditional one.
Appendix: Proofs of Theorems

Proof of Theorem 1: Assumptions 1 and 2 imply the assumptions in Theorems 2.6 and 3.4 in Newey and McFadden (1994). Their results imply that \(\hat{\theta} \) is consistent for \(\theta_{pop} \), and that \(\sqrt{N}(\hat{\theta} - \theta_{pop}) \xrightarrow{d} \mathcal{N}(0, (\Gamma'\Delta^{-1}\Gamma)^{-1}) \). To prove part (i), that \(\hat{\theta} - \theta_{cond} = o_p(1) \), we first prove that \(\theta_{cond} - \theta_{pop} = o_p(1) \). Then, by the triangle inequality, because \(\hat{\theta} - \theta_{pop} = o_p(1) \) by Theorem 2.6 in Newey McFadden (1994), it follows that \(\hat{\theta} - \theta_{cond} = o_p(1) \). Define \(\rho(x, \theta) = \mathbb{E}[\psi(Y_i, X_i, \theta) | X_i = x] \), so that

\[
\mathbb{E}[\rho(X_i, \theta_{pop})] = 0,
\]

Hence \(\theta_{cond} \) can be thought of as a method of moments estimator for \(\theta_{pop} \) with moment condition \(\rho(X_i, \theta) \). Because of Assumption 2 it follows that \(\rho(x, \theta) \) satisfies the conditions for consistency of the method of moments estimator in Theorem 2.6 in Newey and McFadden (1994), and thus \(\theta_{cond} - \theta_{pop} = o_p(1) \).

Next we prove part (ii) of the theorem. Theorem 3.4 in Newey and McFadden also implies that \(\theta_{cond} - \theta_{pop} = O_p(N^{-1/2}) \). Because \(\hat{\theta} - \theta_{pop} = o_p(N^{-1/2}) \) it follows by the triangle inequality that \(\theta_{cond} - \theta_{pop} = O_p(N^{-1/2}) \). By a mean value theorem it follows that

\[
0 = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \rho(Y_i, X_i, \theta) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi(Y_i, X_i, \theta_{cond}) + \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial \theta} \psi(Y_i, X_i, \theta) \sqrt{N}(\hat{\theta} - \theta_{cond}),
\]

for some intermediate value \(\bar{\theta} \). Because \(\theta_{cond} - \theta_{pop} = o_p(1) \) and \(\hat{\theta} - \theta_{pop} = o_p(1) \), it follows that the intermediate value \(\bar{\theta} \) satisfies \(\bar{\theta} - \theta_{pop} = o_p(1) \), and thus \(\frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial \theta} \psi(Y_i, X_i, \bar{\theta}) = \Gamma + o_p(1) \). Thus

\[
0 = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi(Y_i, X_i, \theta_{cond}) + \Gamma \sqrt{N}(\hat{\theta} - \theta_{cond}) + o_p(1),
\]

and therefore

\[
\sqrt{N}(\hat{\theta} - \theta_{cond}) = \Gamma^{-1} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi(Y_i, X_i, \theta_{cond}) + o_p(1). \tag{A.1}
\]

Next we show that

\[
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi(Y_i, X_i, \theta_{cond}) \sim N(0, \Delta_{cond}). \tag{A.2}
\]

Because \(\theta_{cond} \) is the solution to

\[
\mathbb{E} \left[\sum_{i=1}^{N} \psi(Y_i, X_i, \theta) | X \right] = 0,
\]
θ_{cond} is a function of X, i.e. $\theta_{\text{cond}} = \theta_{\text{cond}}(X)$. Therefore conditional on X the $\psi(Y_i, X_i, \theta_{\text{cond}})$ are independent, but not identically distributed. For ease of exposition we focus on the case where $K = 1$. We first apply the Lyapunov Central Limit Theorem to show that

$$\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \left\{ \psi(Y_i, X_i, \theta_{\text{cond}}) - \mathbb{E} \left[\psi(Y_i, X_i, \theta_{\text{cond}}) \big| X \right] \right\} \xrightarrow{d} \mathcal{N}(0, 1). \quad (A.3)$$

The Lyapounov condition $\mathbb{E} \left[\psi(Y_i, X_i, \theta_{\text{cond}}) - \mathbb{E} \left[\psi(Y_i, X_i, \theta_{\text{cond}}) \big| X \right] \right]^2 + \delta < \infty$ for some positive δ follows from Assumption 2(iv).

Because $\sum_{i=1}^{N} \mathbb{E} \left[\psi(Y_i, X_i, \theta_{\text{cond}}) \big| X \right] = 0$ by the definition of θ_{cond}, it follows that the numerator in (A.3) simplifies to

$$\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi(Y_i, X_i, \theta_{\text{cond}}) - \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \mathbb{E} \left[\psi(Y_i, X_i, \theta_{\text{cond}}) \big| X \right] = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi(Y_i, X_i, \theta_{\text{cond}}).$$

The denominator in (A.3) converges in probability

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{V} \left[\psi(Y_i, X_i, \theta_{\text{cond}}) \big| X \right] \xrightarrow{p} \mathbb{V} \left\{ \mathbb{V} \left[\psi(Y_i, X_i, \theta_{\text{cond}}) \big| X \right] \right\} = \mathbb{V}_{\text{cond}}.$$

In combination with (A.3) this implies

$$\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \psi(Y_i, X_i, \theta_{\text{cond}}) \xrightarrow{d} \mathcal{N}(0, 1),$$

and thus (A.2) follows.

Combining (A.1) and (A.2) implies

$$\sqrt{N} \left(\hat{\theta} - \theta_{\text{cond}} \right) \sim N \left(0, \left(\Gamma' \Delta_{\text{cond}}^{-1} \Gamma \right)^{-1} \right).$$

finishing the proof of part (ii).

If also $\mathbb{E} \left[\psi(Y_i, X_i, \theta) \big| X_i \right] = 0$, θ_{cond} is the solution to

$$\mathbb{E} \left[\psi(Y_i, X_i, \theta) \right] = \mathbb{E} \left[\sum_{i=1}^{N} \psi(Y_i, X_i, \theta) \bigg| X \right] = 0.$$

Then $\theta_{\text{cond}} = \theta_{\text{pop}}$, and part (iii) of the theorem follows. \square

Next we state a useful lemma from Abadie and Imbens (2010).

Lemma A.1 (Lemma 1, Abadie and Imbens (2010, page 180)) Suppose that W_1, W_2, \ldots is a sequence with $W_i \in \mathbb{W}$ where \mathbb{W} a compact subset of \mathbb{R}^K. Then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \left\| W_i - W_{\ell_{\psi}(i)} \right\|^2 = 0.$$
Lemma A.2 (Average Conditional Moments) Let \((V_i, W_i), i = 1, \ldots, N,\) be a sequence of independent, identically distributed random vectors, with dimension \(K_V\) and \(K_W\) respectively, and compact support for \(W_i\). For some positive integer \(n\), and for \(j = 1, 2, \ldots, n,\) let \(\mu_j(w) = \mathbb{E}[V_j^2|W_i = w]\) be Lipschitz in \(w\) with constant \(C_j\), and suppose all moments of \(V_i\) up to the \(2n\)-th moment exist. Then for all nonnegative \(k, m\) such that \(\text{min}(k, m) \leq n,\)

\[
\frac{1}{N} \sum_{i=1}^{N} V_i^k \cdot V_{\ell_w(i)}^m \xrightarrow{p} \mathbb{E} \left[\mathbb{E}\left(V_i^k\right)\cdot \mathbb{E}\left(V_i^m\right) \right].
\]

Proof of Lemma A.2: We focus on the scalar case. The vector case can be shown by the same argument. First we show

\[
\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} V_i^k \cdot V_{\ell_w(i)}^m \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\left(V_i^k \cdot V_{\ell_w(i)}^m \right) \right].
\]

Because \(V_i\) and \(V_{\ell_w(i)}\) are independent conditional on \(W = (W_1, \ldots, W_N)',\)

\[
\mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} V_i^k \cdot V_{\ell_w(i)}^m \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\mathbb{E}\left(V_i^k\right)\cdot \mathbb{E}\left(V_{\ell_w(i)}^m\right) \right]
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\mathbb{E}\left(V_i^k\right)\cdot \mathbb{E}\left(V_{\ell_w(i)}^m\right) \right]
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\mathbb{E}\left(V_i^k\right)\cdot \mathbb{E}\left(V_{\ell_w(i)}^m\right) \right]
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\mu_k(W_i) \cdot \mu_m(W_{\ell_w(i)}) \right]
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\mu_k(W_i) \cdot \mu_m(W_{\ell_w(i)})\right]
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\mu_k(W_i) \cdot \mu_m(W_{\ell_w(i)}) \right] + \mathbb{E} \left\{ \frac{1}{N} \sum_{i=1}^{N} \mu_m(W_i) \left[\mu_m(W_{\ell_w(i)}) - \mu_m(W_i) \right] \right\}
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\mu_k(W_i) \cdot \mu_m(W_{\ell_w(i)}) \right] + \mathbb{E} \left\{ \frac{1}{N} \sum_{i=1}^{N} \mu_m(W_i) \left[\mu_m(W_{\ell_w(i)}) - \mu_m(W_i) \right] \right\}
\]

Therefore,

\[
\left| \mathbb{E} \left[\frac{1}{N} \sum_{i=1}^{N} V_i^k \cdot V_{\ell_w(i)}^m \right] - \mathbb{E} \left[\mathbb{E}\left(V_i^k\right)\cdot \mathbb{E}\left(V_i^m\right) \right] \right|
\]

\[
= \mathbb{E} \left\{ \frac{1}{N} \sum_{i=1}^{N} \mu_m(W_i) \left[\mu_m(W_{\ell_w(i)}) - \mu_m(W_i) \right] \right\}
\]

23
by Lemma A.1. This finishes the proof of (A.4).

Next, we will show that
\[
\mathbb{E} \left\{ \frac{1}{N} \sum_{i=1}^{N} V_i^{k} \cdot V_{\ell W(i)}^{m} - \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}^2 = o(1),
\]
which, together with (A.4), proves the claim in the Lemma. First we expand the square:

\[
\mathbb{E} \left\{ \frac{1}{N} \sum_{i=1}^{N} V_i^{k} \cdot V_{\ell W(i)}^{m} - \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}^2
= \mathbb{E} \left\{ \left(\frac{1}{N} \sum_{i=1}^{N} V_i^{k} \cdot V_{\ell W(i)}^{m} \right)^2 \right\} + \left\{ \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}^2
- 2\mathbb{E} \left\{ \frac{1}{N} \sum_{i=1}^{N} V_i^{k} \cdot V_{\ell W(i)}^{m} \cdot \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}
\]

By (A.4), this is equal to

\[
\mathbb{E} \left[\left(\frac{1}{N} \sum_{i=1}^{N} V_i^{k} \cdot V_{\ell W(i)}^{m} \right)^2 \right] - \left\{ \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}^2 + o(1)
\]

\[
= \frac{1}{N^2} \sum_{i=1}^{N} \mathbb{E} \left(V_i^{2k} \cdot V_{\ell W(i)}^{2m} \right) + \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j \neq i} \mathbb{E} \left(V_i^{k} V_{\ell W(i)}^{m} V_j^{k} V_{\ell W(j)}^{m} \right) - \left\{ \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}^2 + o(1).
\]

Because the moments of V_i up to at least the $2m$-th and $2k$-th moments exist, it follows that the first term is $o(1)$, and the entire expression is

\[
\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j \neq i} \mathbb{E} \left(V_i^{k} V_{\ell W(i)}^{m} V_j^{k} V_{\ell W(j)}^{m} \right) - \left\{ \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}^2 + o(1).
\]

Because $\text{pr} \{ \ell W(i) = \ell W(j) \} \to 0, i \neq j$, when $N \to \infty$, this is equal to

\[
\mathbb{E} \left\{ \frac{1}{N} \sum_{i=1}^{N} V_i^{k} V_{\ell W(i)}^{m} \right\} \cdot \mathbb{E} \left\{ \frac{1}{N} \sum_{j \neq i} V_j^{k} V_{\ell W(j)}^{m} \right\} - \left\{ \mathbb{E} \left(\mathbb{E} \left(V_i^k \big| W_i \right) \cdot \mathbb{E} \left(V_i^m \big| W_i \right) \right) \right\}^2 + o(1) = o(1),
\]
by (A.4). This finishes the proof of (A.5), and thus the claim in the lemma. \(\square\)
Lemma A.3 (Average Conditional Variances) Let \((V_i, W_i), i = 1, \ldots, N,\) be a random sample from the distribution of \((V, W)\) where \((V, W)\) are a pair of random vectors, with dimension \(K_v\) and \(K_W\) respectively, with compact support for \(W_i\). Suppose that \(\mu_k(w) = \mathbb{E}[V^k_i|W_i = w]\) is Lipschitz in \(w\) with constant \(C_k\) for \(k \leq 2\), and that the fourth moment of \(V_i\) is finite. Define

\[
\hat{v}_{\text{cond}} = \frac{1}{2N} \sum_{i=1}^{N} (V_i - V_{\ell_W(i)}) (V_i - V_{\ell_W(i)})',
\]

Then:

\[
\hat{v}_{\text{cond}} \xrightarrow{p} \mathbb{E}[V(V_i|W_i)].
\] \hspace{1cm} (A.6)

Proof of Lemma A.3: To prove \(\hat{v}_{\text{cond}} \xrightarrow{p} \mathbb{E}[V(V_i|W_i)]\), we show

\[
\mathbb{E} \left\{ \hat{v}_{\text{cond}} - \mathbb{E}[V(V_i|W_i)] \right\}^2 = o(1).
\]

Without loss of generality we focus on the case with \(K_v = 1\):

\[
\hat{v}_{\text{cond}} = \frac{1}{2N} \sum_{i=1}^{N} (V_i - V_{\ell_W(i)})^2 = \frac{1}{2N} \sum_{i=1}^{N} V_i^2 + \frac{1}{2N} \sum_{i=1}^{N} V_{\ell_W(i)}^2 - \frac{1}{N} \sum_{i=1}^{N} V_i V_{\ell_W(i)},
\]

and

\[
\mathbb{E}[V(V_i|W_i)] = \mathbb{E} \left\{ \mathbb{E} \left[V^2_i \mid W_i \right] - \mathbb{E} \left[(V_i|W_i) \right]^2 \right\} = \mathbb{E} \left[V_i^2 \right] - \mathbb{E} \left[\mathbb{E} \left[V_i \mid W_i \right] \right]^2.
\]

Because \(\sum_{i=1}^{N} V_i^2/N \xrightarrow{p} \mathbb{E}[V_i^2]\) by a law of large numbers, it is sufficient to show

\[
\frac{1}{N} \sum_{i=1}^{N} V_{\ell_W(i)}^2 \xrightarrow{p} \mathbb{E}[V_i^2], \quad \text{and} \quad \frac{1}{N} \sum_{i=1}^{N} V_i \cdot V_{\ell_W(i)} \xrightarrow{p} \mathbb{E}\left[\mathbb{E} \left[V_i \mid W_i \right] \right]^2.
\] \hspace{1cm} (A.7)

The first part of (A.7) follows from applying Lemma A.2 with \(k = 0\) and \(m = 2\), and the second part follows from applying Lemma A.2 with \(k = m = 1\). \(\square\)

Proof of Theorem 2: Since \(\hat{\theta} \xrightarrow{p} \theta_{\text{pop}}\) and \(\psi(Y_i, X_i, \theta)\) is differentiable in \(\theta\), \(\hat{\Gamma} \xrightarrow{p} \Gamma\) by the law of large numbers. Then it is sufficient to show \(\hat{\Delta}_{\text{cond}} \xrightarrow{p} \Delta_{\text{cond}}\). Define

\[
\hat{\Delta}_{\text{cond}} = \frac{1}{2N} \sum_{i=1}^{N} \left((\psi(Y_{i, \ell_X(i)}, \theta_{\text{cond}}) - \psi(Y_{i, \ell_X(i)}, \psi(Y_{i, \ell_X(i)}), \theta_{\text{cond}})) \left((\psi(Y_{i, \ell_X(i)}, \theta_{\text{cond}}) - \psi(Y_{i, \ell_X(i)}, \psi(Y_{i, \ell_X(i)}), \theta_{\text{cond}}))' \right) '.
\]

Let \(V_i = \psi(Y_i, X_i, \theta_{\text{cond}})\), and \(W_i = X_i\). By Lemma A.3, \(\hat{\Delta}_{\text{cond}} \xrightarrow{p} \mathbb{V}(\psi(Y_i, X_i, \theta_{\text{pop}}))\). Because \(\hat{\theta} \xrightarrow{p} \theta_{\text{cond}}\) and \(\psi(Y_i, X_i; \theta)\) is differentiable in \(\theta\), it follows that \(\hat{\Delta}_{\text{cond}} \xrightarrow{p} \Delta_{\text{cond}}\). Therefore,

\[
\hat{\nu}_{\text{gmm,cond}} = \hat{\Gamma}^{-1} \Delta_{\text{cond}}(\hat{\Gamma}')^{-1} \xrightarrow{p} \Gamma^{-1} \Delta_{\text{cond}}(\Gamma')^{-1} = \nu_{\text{gmm,cond}}. \hspace{1cm} \square
\]
REFERENCES

Table 1: Summary Statistics for Lottery Data (N=194)

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings Post Lottery</td>
<td>11.6</td>
<td>12.3</td>
</tr>
<tr>
<td>Earnings Pre Lottery</td>
<td>12.1</td>
<td>11.2</td>
</tr>
<tr>
<td>Yearly Prize</td>
<td>32.0</td>
<td>21.1</td>
</tr>
</tbody>
</table>

Table 2: Estimates for Lottery Data

<table>
<thead>
<tr>
<th></th>
<th>est.</th>
<th>$\sqrt{\hat{V}_{blp}}$</th>
<th>$\sqrt{\hat{V}_{cblp}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>6.497</td>
<td>1.429</td>
<td>1.396</td>
</tr>
<tr>
<td>yearly prize</td>
<td>-0.127</td>
<td>0.032</td>
<td>0.028</td>
</tr>
<tr>
<td>average lagged earnings</td>
<td>0.755</td>
<td>0.077</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Table 3: Coverage Rate 95% Confidence Interval

<table>
<thead>
<tr>
<th></th>
<th>average s.e.</th>
<th>θ_{blp}</th>
<th>θ_{cblp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design I: ($\delta = 1.43$)</td>
<td>$\sqrt{\hat{V}_{blp}}$</td>
<td>0.0466</td>
<td>0.951</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{\hat{V}_{cblp}}$</td>
<td>0.0450</td>
<td>0.938</td>
</tr>
<tr>
<td>Design II: ($\delta = 14.3$)</td>
<td>average s.e.</td>
<td>θ_{blp}</td>
<td>θ_{cblp}</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{\hat{V}_{blp}}$</td>
<td>0.0512</td>
<td>0.953</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{\hat{V}_{cblp}}$</td>
<td>0.0451</td>
<td>0.914</td>
</tr>
</tbody>
</table>