Exogeneity

Lecture for Economics 240A

Douglas G. Steigerwald

UC Santa Barbara

September 2011
Initial Question

Does additional education lead to higher wages?

- Stochastic Model - i indexes workers
 - W_i - (log) wage
 - S_i - years of schooling (education)
 - J_i - years at current job (tenure)
 - E_i - years of workforce experience
 - U_i - other factors that determine the wage

$$W_i = \beta_0 + \beta_1 S_i + \beta_2 J_i + \beta_3 E_i + U_i$$

- How would you determine if additional education increases a worker’s wage?
Stochastic Model Interpretation

\[W_i = \beta_0 + \beta_1 S_i + \beta_2 J_i + \beta_3 E_i + U_i \]

- \[\beta_1 = \frac{\partial W_i}{\partial S_i} = \frac{\partial \ln \text{wage}_i}{\partial S} \]

\[\beta_1 = \frac{1}{\text{wage}_i} \cdot \frac{\partial \text{wage}_i}{\partial S_i} \]

- *percentage* change in wage from an additional year of education, holding tenure and experience constant

- \[\beta_2 \] - percentage change in wage from an additional year of tenure, holding education and experience constant

- \[\beta_3 \] - percentage change in wage from an additional year of experience, holding education and tenure constant

- Education increases wages if \(\beta_1 > 0 \)
A latent variable is a variable that cannot be measured

- W_i, S_i, J_i, E_i
 - all are measured, not latent
- U_i - other factors that determine the wage
 - one factor, *latent* ability
 - higher ability workers receive higher wages
- U_i contains latent factors that determine the wage
Coefficient Interpretation

- β_1 - percentage change in the wage from an additional year of schooling, *holding all else constant*
- tenure and experience
 - included, held constant by construction
- ability
 - not included, held constant by assumption
 - identification assumption: $\mathbb{E}(S_i U_i) = 0$

1. if ability moves in a systematic way with education, then ability cannot be held constant
2. if ability cannot be held constant, then:
 1. the identification assumption is violated
 2. β_1 captures the impact on the wage that results from both a change in schooling and ability
 3. hence, β_1 no longer measures the wage change from an additional year of schooling
Framework: Endogenous and Exogenous Variables

- An endogenous variable is impacted by the (latent) factors in the error
- An exogenous variable is not impacted by the (latent) factors in the error
- W_i - endogenous by construction
- $X_i^T = (1 \ S_i \ J_i \ E_i)$ - must determine if exogenous
- $\mathbb{E} (S_i U_i) = 0$
 - ability (and all other factors in U_i) can be held constant as education varies
 - S_i is exogenous
- $\mathbb{E} (S_i U_i) \neq 0$
 - ability (and all other factors in U_i) cannot be held constant as education varies
 - S_i is endogenous
Identification Assumption Implication
Mean of Error is Zero

\[X_i^T = (1 \ S_i \ J_i \ E_i) \]

- Identification Assumption: \(\mathbb{E} (X_i U_i) = 0 \)

\[
\mathbb{E} \begin{pmatrix}
U_i \\
S_i U_i \\
J_i U_i \\
E_i U_i
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\]

implies \(\mathbb{E} (U_i) = 0 \)
For each regressor (take S_i for example)

- $\mathbb{E}(S_i U_i) = 0$
- $\mathbb{E}(U_i) = 0$

Covariance

$$\text{Cov} (S_i, U_i) \equiv \mathbb{E} [(S_i - \mathbb{E}S_i) (U_i - \mathbb{E}U_i)]$$

$$= \mathbb{E} (S_i U_i) - \mathbb{E} (\mathbb{E} (S_i) \cdot U_i)$$

$$= \mathbb{E} (S_i U_i) - \mathbb{E} (S_i) \cdot \mathbb{E} (U_i)$$

$$= \mathbb{E} (S_i U_i)$$

- $\mathbb{E} (S_i U_i) = 0$ implies $\text{Cov} (S_i, U_i) = 0$
Covariance: Interpretation

\[\text{Cov} (S_i, U_i) \equiv \mathbb{E} \left[(S_i - \mathbb{E}S_i)(U_i - \mathbb{E}U_i) \right] \]

- **Interpret positive covariance**
 - when \(S_i \) is above \(\mathbb{E}S_i \), \(U_i \) tends to be above \(\mathbb{E}U_i \)

- **Interpret negative covariance**
 - when \(S_i \) is above \(\mathbb{E}S_i \), \(U_i \) tends to be below \(\mathbb{E}U_i \)

- **Interpret zero covariance**
 - when \(S_i \) is above \(\mathbb{E}S_i \), we have no information about \(U_i \) relative to \(\mathbb{E}U_i \)
Covariance Interpretation: Wage Regression

- \(W_i = \beta_0 + \beta_1 S_i + \beta_2 J_i + \beta_3 E_i + U_i \)
 - \(W_i \) - (log) wage
 - \(S_i \) - years of schooling (education)
 - \(J_i \) - years at current job (tenure)
 - \(E_i \) - years of workforce experience
 - \(U_i \) - other factors that determine the wage

- \(U_i \) includes latent ability, \(A_i \)
 - high ability workers \(U_i > \mathbb{E} U_i \)
 - high ability workers likely have more schooling \(S_i > \mathbb{E} S_i \)

- implies \(\text{Cov} (S_i, U_i) > 0 \)
 - identification assumption fails - schooling is endogenous
 - we cannot measure the effect of schooling on wages, holding all else constant, because ability varies with schooling
 - estimates of \(\beta_1 \) will tend to be too large (confounding the effects of schooling and ability)
Framework: Correlation

- **Covariance**
 - sign is easy to interpret
 - magnitude is difficult to interpret

- example: $\text{Cov} (S_i, U_i)$ units are years * "ability units"

- **Correlation** - sign and units easy to interpret

\[
\text{Corr} (S_i, U_i) = \frac{\text{Cov} (S_i, U_i)}{\sqrt{\text{Var} (S_i) \cdot \text{Var} (U_i)}}
\]

- $-1 \leq \text{Corr} (S_i, U_i) \leq 1$

- $\text{Cov} (S_i, U_i) = 0 \Rightarrow \text{Corr} (S_i, U_i) = 0$

- Identification assumption: regressors and error are uncorrelated
samples of workers in many studies

\[b_1 = 0.08 \]

Interpretation - consider 2 workers
- identical characteristics
 - tenure & experience (by construction)
 - other factors - ability (by assumption)
- different characteristic
 - worker 2 has 1 more year of schooling

you predict the wage of worker 2 to be 8 percent higher than that of worker 1

Difficulty - cannot logically establish that schooling and ability are uncorrelated

combined effect of ability and schooling increases wages by 8 percent - we do not know the precise effect of schooling on wage
How should firms pay workers to elicit maximum effort?

- Model in vector form

\[E_i = X_i^T \beta + U_i \quad X_i = \begin{pmatrix} 1 \\ W_i \\ C_i \end{pmatrix} \]

- What is the identification assumption?
 - \(\mathbb{E} (X_i U_i) = 0 \)
 - wage and co-worker wage are uncorrelated with other factors that determine effort

- In a firm, wage and effort are likely jointly determined
 - to estimate this effect, we'll need experimental evidence, where wages are set exogenously