Mishkin ch.16: Monetary Policy Strategy

- **General Goals:** Price Stability. Maximum employment
- **Strategy:** Discretion vs. Inflation Targeting vs. Monetarism.

- **Tactics:** Methods of linking operating instruments to goals.
 - **Taylor rule:** formula for adjusting the Fed funds rate. Interpretations:
 1. Tactics of implementing inflation target (Mishkin’s view).
 2. Strategy that combines employment and inflation targets, and avoids discretion.

- **Monetarism:** idea that stable money growth will produce stable prices.
 Hierarchy of goals (P), indicators (M1 or M2), and operating targets (NBR).

- **Challenge:** use limited information effectively to stay close to goals.
 - **Daily information:** Reserve demand, Fed funds rate, other interest rates.
 Term structure provides signals about market expectations.
 Reserve demand provides signals about nominal GDP, money multiplier, and velocity.
 - **Macro data with delay:** employment report, CPI, GDP, M1/M2.
 - **Agenda:** Find flaws in strategy & tactics, using historical experience & macro theory
Monetary Policy Goals

- **Macro theory** holds central banks responsible for one “Primary Goal”: **Price stability**.

 Classical notion of **Nominal Anchor**: Nominal variable that ties down the price level.

- **Federal Reserve Act** specifies a “Dual Mandate”: **Maximum employment & stable prices**.

 Also requires **moderate long-term interest rates**.

- Fed’s interpretation of its mandate:

 - Maximum employment means unemployment close to the natural rate.

 - Price stability interpreted as low and stable inflation.

- Other Goals sometimes in the discussion:

 - **Stability of financial markets and/or of interest rates**. Motivates central bank practice of “smoothing” interest rates / reluctance to change operating targets quickly.

 - **Economic growth**: not a monetary goal (Claim as benefit of price & financial stability?)

 - **Stability in foreign exchange markets**. Extreme: **Fixed exchange rate** as nominal anchor.

 => Historically common in less developed countries. Monetary unions.

 - **Credibility**: Ability to influence expectations by making statements about future policy

[Notes on Ch.16]
Strategies: Discretion, Inflation Targeting, Monetarism

- **Discretion**: Set all available policy instruments as need to pursue policy goals. Explain policy changes through statements & speeches. No commitments about future policy.

- **Inflation Targeting**: Similar to discretion, but with an announced inflation target as specific numerical goal. Advantages:
 1. **Accountability** to the public: central bank performance is measurable.
 2. **Anchor for expectations**: hypothesis that with a credible inflation target, expected inflation will respond less to fluctuations in actual inflation \Rightarrow stabilizing.

- **Current U.S. policy**: Goal of keeping inflation at or slightly below 2%; no firm target.

- **Monetary Targeting**: Monetarist approach – influential, simple and transparent recipe:
 1. Set a target growth rate for M2 (or M1 if more closely correlated with nominal GDP).
 2. Tactics: use open market operations to stabilize the monetary base; rely on the money multiplier to control M2. Deviations are discovered quickly and can be corrected.
 - Exemplifies non-activist, non-discretionary policy. Problems: fluctuations if velocity shifts; incompatible with political pressure to “do something.”

[Notes on Ch.16]
Central Bank Tactics #1: The Taylor Rule

- Rule: **Fed Funds rate = Equilibrium real rate + Inflation rate + 0.5 * Inflation Gap + 0.5 * Output Gap**

- Common specification:
 - Equilibrium real rate = 2%.
 - Inflation Gap = Inflation rate – Target, with Target = 2%
 - Output Gap = 2 * (Unemployment rate – Natural rate), with Natural Rate = 5.5%

- Rule satisfies the Taylor principle:
 1% higher inflation => 1.5% higher Fed Funds rate => 0.5% higher real interest rate.
Central Bank Tactics #2: Practical Perspective

- **Q:** How should the Open Market Desk respond to reserve market disturbances?
- **Scenario:** Reserve demand is strong (weak). Banks bid up the Fed-Funds rate.

 Assume no identifiable causes for the strong (weak) reserve demand.
 Assume traditional setting ($i_{ff} \gg i_{or}$ and $R \sim NBR$).

- **Option #1: Do nothing**

 \Rightarrow Unchanged NBR.

 $R^d \uparrow \Rightarrow i_{FF} \uparrow \Rightarrow i \uparrow$

 Result: Higher Fed funds rate

- **Effects via term structure:**

 Higher interest rates in throughout the economy.
• **Option #2: Do open market operations** to keep the Fed funds rate unchanged
 \[R^d \uparrow \Rightarrow NBR \uparrow \] so \(i_{ff} \) constant.

• Effects via money multiplier:
 \[R \uparrow \Rightarrow MB \uparrow \Rightarrow M1, M2 \uparrow \]
 Result: Higher money supply

• Q: Which option should the Fed choose? And why?
 FOMC meets every six weeks.
 Must leave instruction with the Open Market desk how to respond on a day-to-day basis.

• To show: Consequences depend on the shocks to reserve demand.
Sources of Shocks to Reserve Demand

1. Fluctuations in the financial system: shifts in money demand function, or in the demand for deposits subject to reserve requirements, or in desired excess reserves.
 - Critical feature: No change in IS and AS curves
 => Stabilizing the Fed funds rate keeps MP curve unchanged. Prevents financial sector instability from causing economic fluctuations. Good.

2. Fluctuations in the real economy:
 - Shocks to IS curve: Higher demand => Y↑, π↑ => M↑. (Rational to expect π↑)
 Because π↑, positively sloped MP curve calls for higher real interest rate; but unchanged Fed funds rate implies r = i - π unchanged (or down if π↑)
 [Similar for AS shock: π↑ but i constant => r constant or down.]
 => Stabilizing the Fed funds rate implies MP curve with flat or negative slope
 => AD curve with vertical (or steep positive) slope
 => Monetary response to demand shocks is destabilizing; explosive in the longer run unless FOMC intervenes to change the Fed funds target.

• Conclude: constant Fed funds rate is intrinsically unstable. Violates the Taylor principle; requires frequent changes to prevent explosive outcomes.
Choices in the Aftermath of Quantitative Easing

(Setting with $i_{ff} \sim i_{or}$ and $R \gg NBR$)

- Problem: Fluctuations in reserve demand are unobserved when $R \gg r^*D$. Must use other signals to infer shocks. When shift $R^d \uparrow$ is suspected:

- Do nothing \Rightarrow Unchanged $i_{or} \Rightarrow$ Unchanged i_{ff}. ⇔ Traditional Option #2
 \Rightarrow Inherently unstable if the real economy has changed. Prevents financial sector instability from causing economic fluctuations.
- Increase the interest rate on reserves \Rightarrow Increased i_{ff}. ⇔ Traditional Option #1
 \Rightarrow Essential in response to real economic changes. Unnecessary shift in the MP curve in case of financial sector instability.
Assessment of U.S. Monetary Policy

• Principles:
 - FOMC discretion, guided loosely by inflation targets and the Taylor rule.
 - Fed funds rate as operating target held constant between FOMC meetings.

• Findings:
 - Fed funds rate as operating target is intrinsically unstable.
 - Stability requires aggressive FOMC responses to macro shocks:
 Responses must be strong enough that interest rates satisfy the Taylor principle.

• Cause for concern: Historically, Fed has been reluctant to change interest rates aggressively – tendency to “smoothe” rates.
 [Why? Financial stability. Interest costs to government/mortgage borrowers (voters!)]

• Explains importance of a clear strategy: inflation target and/or Taylor rule:
 Signals commitment to vary the Fed funds rate. Stabilizes expectations.