The Term Structure of Interest Rates
Mishkin ch.6

- Concept of the Yield Curve: plot bond yields against maturity
- Three theories with different assumptions about risk and return
 1. Expectations hypothesis
 2. Segmented markets theory
 3. Liquidity premium theory; also called Preferred Habitat theory.
- Question for theory: How do investors trade-off risk against expected return?
 Answer: Focus on liquidity premium theory (others for illustration)
- Question for application: What do investors expect about future interest rates?
 Remember:
 - Bond market = efficient market: Investors form rational expectations
 - Returns on long-term bonds depend on future interest rates
- Key application: Interpreting the yield curve = Extracting information about future interest rates from observed current rates at different maturities.
The Main Term-Structure Equation

\[i_{nt} = \frac{1}{n} \left(i_t + i_{t+1}^e + \ldots + i_{t+n-1}^e\right) + l_{nt} \]

- \(i_{nt} \) = yield on n-period bonds; \(i_t \) = yield on 1-period bonds
- \(i_{t+x}^e \) = expected yield on 1-period bonds in year \(t+x \)
- \(l_{nt} \) = liquidity premium on n-period bonds. Common period = year.

Example: \(n=3 \) year investment horizon. Formula: \(i_{3t} = \frac{1}{3} \left(i_t + i_{t+1}^e + i_{t+2}^e\right) + l_{3t} \)

- Strategy 1: Buy a three-year bond with yield \(i_{3t} \)
 Cash flow: \(i_{3t}, i_{3t}, i_{3t} \). Average return = \(i_{3t} \)

- Strategy 2: Buy series of 1-year bonds.
 Cash flow: \(i_t, i_{t+1}, i_{t+2} \). Expect average return = \(\frac{1}{3} \left(i_t + i_{t+1}^e + i_{t+2}^e\right) \)

- Strategy 3: Buy a six-year bond with yield \(i_{6t} \) and sell after three years.
 Current yield \(i_{6t} \). Capital gain/loss depends on PV with discount rate \(i_{3,t+3} \).

RISK considerations:

1. Reinvestment Risk: low yield if a bond matures too early (low \(i_{t+1}, i_{t+2} \))
2. Price Risk: low price if a bond is sold before maturity (high \(i_{3,t+3} \))

• Empirical finding: premiums \(l_{nt} \geq 0 \) are paid for taking price risk.
Evidence: Yields move together
(LT yields follow ST yields, but smoothed = consistent with taking averages)
Evidence: Yield curves are typically upward sloping

Theory: Average of \(i_{nt} \) over time = Average of \(i_t \) + Average Premium

\[\implies \text{Estimate: Average Premium} = \text{Average slope} (i_{nt} - i_t) \]

Liquidity Premium (Preferred Habitat) Theory

Expectations Theory

Liquidity Premium, \(l_{nt} \)

[Notes on Mishkin Ch.6 - Term Structure - P.4]
Interpreting Unusual Shapes of the Yield Curve

- Long rates i_{nt} will be far above the short rate i_t, if investors expect rising interest rates $=>$ Steep yield curve signals rising yields ($i_{t+x} > i_t$)

- Long rates i_{nt} will be near or below the short rate i_t, if investors expect falling rates $=>$ Flat or downward sloping yield curve signals declining yields ($i_{t+x} < i_t$)

Examples – Calculations for n=2 and n=3

- For n=2:
 $$i_{2t} = \frac{1}{2} \left(i_t + i_{t+1}^e \right) + l_{2t}$$

- For n=3:
 $$i_{3t} = \frac{1}{3} \left(i_t + i_{t+1}^e + i_{t+2}^e \right) + l_{3t}$$

- Note: Formulas apply for any base period (day, month, year, decade).
(a) Future short-term interest rates expected to rise
(b) Future short-term interest rates expected to stay the same
(c) Future short-term interest rates expected to fall moderately
(d) Future short-term interest rates expected to fall sharply
Application: Monetary Policy and the Yield Curve

\[i_{nt} = \frac{1}{n} \left(i_t + i_{t+1}^{e} + \ldots + i_{t+n-1}^{e} \right) + l_{nt} \]

• Short-term rates are set by the central bank = policy choices.
 - Current value \(i_t \) is observed.
 - Future values \(i_{t+1}^{e}, i_{t+2}^{e}, \ldots, i_{t+n-1}^{e} \) reflect expectations about future policy.

• Application of rational expectations:
 1. Apply MP function: \(i_{t+x}^{e} = r_{t+x}^{e} + \pi_{t+x}^{e} = \bar{r} + (1 + \lambda)\pi_{t+x}^{e} \)
 - Central banks tend to raise interest rates when inflation threatens.
 => Steep yield curve signals high inflation (high \(\pi^{e} \))
 2. Apply classical theory: \(i_{t+x}^{e} = r + \pi_{t+x}^{e} \). Real economy determines natural \(r \).
 - Money growth determines \(\pi \). Recall that low \(\bar{r} \) => high \%\(\Delta M \) => high \(\pi \).
 => Steep yield curve signals market assessment that current policy (\(\bar{r} \)) will result in high money growth and inflation.

• Yield curve signals help central banks: policy is inflationary if the central bank overestimates \(Y^{P} \) – steep yield curve provides a warning signal.
• Analogous reasoning for inverted yield curve: signal of declining inflation, of tight monetary policy, of a central bank underestimating \(Y^{P} \).
Unexpected Changes in Monetary Policy and the Yield Curve

- Apply general logic to specific scenarios:
 1. Suppose the central bank shifts MP down temporarily: no impact on long run inflation => Reduces i_t more than i_{nt} => Yield curve becomes steeper.
 2. Suppose the central bank shifts MP down permanently => Higher inflation in the long-run => Higher interest rates in the far future.
 => Yield curve shifts down for short maturities, but UP at very long maturities.

- General result: Lower i_t and increased slope $i_{nt} - i_t$ whenever MP shifts down

- Distinctive implications of a permanent downshift in MP: i_{nt} for jumps up at long maturities if the policy change is viewed as permanent (inflationary).
 - New insight about bond prices: Easy money tends to raise most bond prices, but very long term bond prices may FALL if the policy change is permanent.

- Similar results for MP shifts up: Always higher i_t and reduced slope $i_{nt} - i_t$; at long maturities, decline in i_{nt} signals that the shift is viewed as permanent, i.e., likely to succeed in reducing inflation.
 - Famous historical example: U.S. monetary contraction in 1979-82