Mishkin ch.7: Rational Expectations and Efficient markets
(with emphasis on the stock market)

1. Pricing Common Stocks
 - Discounted dividend model. Price = Present value.
 - Monetary policy and stock prices.

2. Rational Expectations
 - Distinguish from adaptive expectations; from perfect foresight

3. Efficient Markets
 - Stock market evidence and practical implications
 - Questions about bubbles

- Other applications:
 - Bond market: Risk and Term Structure
 - Exchange rates
 - Inflationary expectations
Key Concept: Rational Expectations

• **Rational Expectation** = Optimal forecast using all available information

• Remember:
 - Practical version: *Whenever expectations matter, ask how a smart person would interpret the available information.*
 - Rational expectations can be dead wrong – namely if not much information is available. NOT perfect foresight.
 - Application to financial markets:

• **Efficient Markets** = Markets where prices reflect rational expectations.
 - Implies a quick response of equilibrium prices to all relevant news.
 - Implies that existing information is reflected in the price.

• Explains how markets respond to economic reports & policy announcements:
 1. Markets don’t respond when news confirms expectations.
 2. Direction of market responses depends on the difference between the new facts and prior expectations

Fundamentals of Stock Prices

- **One-period valuation**: Price equals discounted price next period + dividend
 - Idea: stocks are priced so expected returns are consistent with market equilibrium.
 - My notation: $P_{S,t}$ denotes stock price at time t. Required return k_e

\[
RET = \frac{Div_{t+1}}{P_{S,t}} + \frac{P_{S,t+1} - P_{S,t}}{P_{S,t}} = k_e \quad \Rightarrow \quad P_{S,t} = \frac{1}{1 + k_e} (Div_{t+1} + P_{S,t+1})
\]

- Inputs needed: expected price next period; dividend; discount rate.
- Discount rate \sim real interest rate + risk premium.

- **Dividend-discount model**: Apply valuation formula repeatedly.
 - General formula:

\[
P_{S,t} = \sum_{x=1}^{\infty} \frac{Div_{t+x}}{(1+k_e)^x}
\]

 [Assumes far-ahead prices are discounted enough to be disregarded in the limit]

 - Gordon growth model:

\[
P_{S,t} = Div_t \cdot \sum_{x=1}^{\infty} \frac{(1+g)^x}{(1+k_e)^x} = \frac{Div_{t+1}}{k_e - g}
\]

- Find: Stock prices depend negatively on the discount rate and positively on expected dividend growth

[Notes on Mishkin Ch.7 - P.3]
Macroeconomics and Financial Markets

• How do financial markets typically respond to macroeconomic news?
 - Bond prices: sensitive to rates interest rates (negative) & expected inflation (negative).
 - Stock prices: sensitive to earnings (~output, positive) & interest rates (negative).

• Graphical Analysis: output - interest rate diagram
 - Divide into sectors with higher/lower bond & stock prices

- Apply efficient market logic: Initial prices reflect rational expectations about (r,Y).
- Interpret macro news as news about IS, MP, or AS curves. Market impact depends on shifts in macroeconomic relationships (curves) relative to expectations.
- Analysis: Combine IS with AD-AS; identify the disturbance => shift relevant curve.
Analysis of Macroeconomic News

1. Change in monetary policy (\bar{r}) = unexpected shift in the MP curve
 Example: $\bar{r}\downarrow \Rightarrow AD$ right $\Rightarrow Y\uparrow, \pi\uparrow$. Along fixed IS curve: $r\downarrow \Rightarrow P_S\uparrow, P_B\uparrow$

2. Supply shock (ρ) or change in expected inflation (π^e) = unexpected shift in the AS curve.
 Example: $\rho\uparrow \Rightarrow AS$ left/up $\Rightarrow Y\downarrow, \pi\uparrow$. Along fixed IS curve: $r\uparrow \Rightarrow P_S\downarrow, P_B\downarrow$

3. Demand shock = unexpected shift in the IS curve.
 Example: $G\uparrow \Rightarrow IS$ right, AD right $\Rightarrow Y\uparrow, \pi\uparrow$. Along fixed MP: $r\uparrow \Rightarrow P_B\downarrow, P_S=?$
 a) if MP flat (small λ) $\Rightarrow AD$ steep: $Y\uparrow\uparrow, \Delta r$ small. Then $Y\uparrow \Rightarrow P_S\uparrow$.
 b) if MP steep (high λ) $\Rightarrow AD$ flat: ΔY small, $r\uparrow\uparrow$. \Rightarrow Then $r\uparrow \Rightarrow P_S\downarrow$.

• Conclude: Fed has direct impact and it influences the effects of other shocks.
What explains stock price volatility?

- Mishkin ch.7 comments on crashes, bubbles, and behavioral finance.
 - Controversial. Not only about stocks: many asset markets are volatile – exchange rates, long-term bonds, real estate.

- Broader question: Why are asset prices so volatile?
 1. Volatile fundamentals: rational explanation for volatility.
 - News alters expectations about future dividends & about risk (discount rate).
 - No conflict with equilibrium analysis or market efficiency.

 2. Theory of speculative bubbles:
 - Claim that market prices can rise above fundamentals and then “crash”.
 - Objection: reasonable fears of political risks or market disruption or are too easy to dismiss with hindsight. Bubble = label for ignorance?

 3. Liquidity crises: plausible source of crashes but not bubbles.
 - Crash = sudden declines to prices below normal fundamentals.
 - Theory: game situations with multiple equilibria.
 - Consider examples …
What goes wrong when markets crash?

• “Black Monday” - Oct. 19, 1987
 10/14-10/16: 10% down: 2500 to ~2250
 10/19: 25% down: from 2250 to ~1740
 10/20: AM: market shuts down. PM: recovery.

• “Flash Crash” – May 6, 2010
 Dow opens at 10868, declines by ~300 to 2pm.
 2:45PM: Dow drops >600pts within minutes
 Low at 9869.62 – down 998pts (9.2%).
 3:07PM: recovery ~600pts within minutes.
 Close at 10520. Many trades canceled.

• Question about causes: Were there changes in expected return, risk, liquidity?
 - Debatable for Black Monday: pending conflicts about exchange rate policy.
 - Most plausible: trading strategies that rely on others providing liquidity.

• Lessons: Downward-sloping demand matters—trouble if not! Can’t take liquidity for granted.

[Notes on Mishkin Ch.7 - P.7]