Principles of Macroeconomics

- Focus on three key variables (for clarity, other variables implied):

1. **Gross Domestic Product** (Y) = aggregate real output (GDP).
 - Link to employment: production creates jobs. Rate of change = Economic Growth.

2. **The real interest rate** (r) = Measure of borrowing cost & return to saving.
 - Safe benchmark: Treasury rates (TIPS). Obtain interest rates on risky fixed income assets (bonds, bank deposits, loans, etc) by adding “spreads.” Obtain nominal interest rates by adding expected inflation.

3. **Inflation** (π) = Growth rate of consumer prices (cost of living)
 - Related: Consumer price index (P). Expected inflation (π^e). Nominal interest rates.

- **Equilibrium analysis**: study markets for goods, for financial assets, for money.
 - Demand & supply curves imply equilibrium values.
 - Disturbances (“shocks”) trigger shifts to new equilibrium values.

- Start with **Classical model**: Real economy (Y, r) separate from monetary issues.
 - Later: Keynesian analysis of how money influences real variables.
Goods Market: Supply Side

- **Labor market**: Demand & supply implies equilibrium real wage

 [Here omit details – assume known from Econ 101]

- **Production function**: Capital stock & equilibrium labor => Real output: \(Y = Y^s \).

 - Monetary economics usually omits long-term productivity growth to focus on short and medium term fluctuations [Assume Solow model is known – set aside.]

 - Sources of fluctuations: tax incentives, shocks to productivity (relative to trend), changes in other inputs, e.g. cost of energy, demographics. All: Shocks to \(Y^s \).

- Preview of Keynesian objections: Supply may differ from \(Y^s \) when firms are reluctant to change posted prices and workers negotiate over nominal wages.

 => Firms satisfy demand. Short-run analysis more is complicated.

- For now take Classical perspective: Keep it simple, assume \(Y = Y^s \).
Goods Market: Demand Side

- **Components of GDP:** \(Y = C + I + G + NX \)
 - Consumption: assume households maximize utility for given real return on saving \(r \) and given disposable income \(Y-T \). Implies \(C = C(r, Y-T,...) \) and \(S^h = (Y-T) - C = S^h(r, Y-T,...). \)
 - Investment decisions by firms implies \(I = I(r,...) \) with negative slope.
 - Government sets spending \(G \) and taxes \(T \) exogenously; defines fiscal policy.
 - Net exports \(NX \) taken as exogenous. Total demand = sum of components.

- **Graphical analysis:** Demand curve \(Y = Y^d(r) \) links \(Y \) and \(r \).
 - Draw with negative slope: high \(r \) => incentives to save, more costly to borrow.
 - **Sources of fluctuations:** changes in household/firm expectations about future income/sales; shifts in \(G \); shifts in \(T \); shifts in \(NX \). All: shift in \(Y^d(r) \) curve.

- **Combine with supply:** draw \(Y = Y^s \) as vertical. [Argument for positive slope: high \(r \) may encourage labor supply; but effect is small enough to disregard.]
Alternative Perspective

• Why does is make sense that the good market determines the real interest rates?

• Idea: **Saving** = Income in excess of current spending = Demand for securities.

 Investment = Spending in excess of current income = Supply of securities.

 => The real interest rate that balances demand & supply for goods also balances
 the total demand & supply for securities, summed over all financial markets.

• Algebraic argument:

 \[I = Y - C - G - NX = (Y-T-C) - (G-T) + (-NX) = S^h + S^g + S^f = S \]

 where \(S \) = total savings: consists of household savings, government (dis-)savings
 (budget deficit \(G-T \)), \(-NX \) = foreign savings in the U.S.

• Implication: \(Y = Y^d(r) \) is satisfied whenever \(I(r) = S(r,Y) \).

 - Goods market equilibrium and saving-investment equilibrium are equivalent
 ways to describe the equilibrium interest rate.

 - Motivates label “IS curve” for the \(Y^d(r) \) line.
Classical Analysis of the “Real” Macroeconomy

- **Graphs:** (Caution: slope of S(r) is uncertain. Usually use good market diagram.)

 ![Graphs](image)

 - **Real interest rate & real output**

 - **Saving & investment**

- **Examples of disturbances:**
 - Government spending G up: \(Y^d \) shifts right; S shifts left \(\Rightarrow r \) up.
 - Temporary drop in productivity: \(Y^s \) shifts left; S shifts left \(\Rightarrow r \) up; \(Y \) down.
 - Permanent rise in productivity: \(Y^s \) shifts right, I shifts right, \(\Delta S \) small \(\Rightarrow r \) up; \(Y \) up.

- **Balanced growth (Solow):** productivity trend \(\Rightarrow Y^s \) & \(Y^d \) shift right, \(r \sim \text{const.} \) [usually omit]
The Demand for Money

- Economic Determinants:
 - Volume of real transactions – measured by real output Y.
 - Prices at which these transactions take place – measured by the price level P.
 - Opportunity cost of holding money – measured by the interest rate on non-monetary assets i. (High i => incentive to hold less money.)
 - Efficiency of the payment system: number of times a unit money can be used to purchase goods (at a given opportunity cost; more frequent use if opportunity costs are high).

- Specification with general money demand function:
 - Real money demand: \(L(i, Y) \) [decreasing in i; increasing in Y]
 - Nominal money demand: \(M^d = L(i, Y) \cdot P \)

- Specification with velocity
 - Define \(V = \) number of times money is used to buy a unit of nominal GDP.
 High i => incentive to use money more quickly => \(V = V(i) \) is increasing.
 - Write money demand as \(M^d = \frac{1}{V(i)} \cdot Y \cdot P \) or \(L(i, Y) = \frac{1}{V(i)} \cdot Y \)

=> Real (or nominal) money demand is proportional to real (or nominal) output and inversely proportional to velocity.
Equilibrium in the Market for Money

- Assume the central bank controls the money supply $M=M^s$ [How? See later]

 \Rightarrow Equilibrium requires:

 $$M = L(i,Y) \cdot P \quad \text{or} \quad M = \frac{1}{V(i)} \cdot Y \cdot P$$

- How is the equilibrium obtained? Classical answer: Price level adjusts.
 - If more money is outstanding than demanded \Rightarrow more spending $=$ more demand for goods \Rightarrow sellers can raise prices \Rightarrow P rises until M^d matches M^s.

 \Rightarrow Basic theory of the price level:

 $$P = \frac{M}{L(i,Y)} \quad \text{or} \quad P = M \cdot V(i)/Y$$

 - Price level = Ratio of nominal money supply over real money demand.
 - Treat (i,Y) as given (i determined by r & π^e, Y determined by production).

 \Rightarrow The price level is determined (largely) by the supply of money.

- Graphical illustration: M-P diagram with $M^s = \text{given}$ and M^d proportional to P.

- Next steps:
 1. Explain inflation as percentage change in prices.
 2. Allow for changes in expected inflation.
Determinants of Inflation

- Math Fact: growth rate of a product = sum of growth rates. Apply to:
 \[M \cdot V = Y \cdot P \quad \Rightarrow \quad %\Delta M + %\Delta V = %\Delta Y + %\Delta P \]

 \[\Rightarrow \quad \pi = %\Delta P = %\Delta M - %\Delta Y + %\Delta V \]

- Key result to remember:

 Inflation = Money growth – Output growth + Velocity growth.

- Implications:
 - Money growth is inflationary.
 - Output growth reduces inflation, unless the Fed responds by raising %\Delta M
 - Rising velocity (due to changes in transactions technology or in interest rates) raises inflation, again unless the Fed responds.
Classical Monetary Theory

- Combine/restate:

 1. Inflation = Money growth – Output growth + Velocity growth

 \[\pi = \%\Delta P = \%\Delta M - \%\Delta Y + \%\Delta V \]

 2. Classical macro: Output is determined by production (~Solow model)

 => Output growth ~ productivity growth + population growth

 3. Quantity theory: velocity is approximately constant or at least predictable

 => Inflation is determined (largely) by money growth.

- Foundation for successful central banks’ policy: European Central bank (until ~2006),
 German Bundesbank (pre-1999), Swiss National Bank; also for IMF recommendations.

 - Recipe: Estimate \(\%\Delta Y \), estimate \(\%\Delta V \), set target \(\pi^* \) for inflation

 => Implied target for money growth \(\%\Delta M = \%\Delta Y - \%\Delta V + \pi^* \)

 - Example: \(\%\Delta Y = 3\% \), \(\%\Delta V = 0.5\% \), \(\pi^* = 2\% \) => Set \(\%\Delta M = 4.5\% \)

- Powerful theory: (a) for the long run; (b) for high-inflation economies.
Evidence on Money Growth and Inflation #1

Positive relationship over long time intervals.
Evidence on Money Growth and Inflation #2

Positive relationship across countries, especially at high inflation rates.
Evidence on Money Growth and Inflation #3

Weaker relationship over short periods, especially when there are structural changes in the financial sector (Deregulation => unstable velocity).
Complication: Expected Inflation and Velocity

- Real interest rate is determined by real factors (demand/supply for real output).
- Basic analysis takes expected inflation as given => nominal rate $i = r + \pi_e$.
 - Main exception: persistent changes in money growth cause persistent changes in actual inflation => Sooner or later, expected inflation will change.
 - Question: How quickly? Answer: depends on available information/context.
 => Best examined with examples.

- General logic: higher money growth => higher inflation => higher expected inflation => higher nominal interest rate => higher velocity => higher P
 => Feedback loop: Effects of money growth on inflation tend to be magnified.

- Results for moderate money growth: V stabilizes eventually, then basic formula for inflation applies again => feedback relevant only during the adjustment.
- Possible instability for high money growth: explosive process of rising V feeding into more inflation: explanation for hyperinflation & collapse of currencies.
Examples – Part I

(Examples posted on Gauchospace)

• Review main lessons:
 1. Changes in M have proportional impact on price level P
 2. Changes in the real economy (Y,r) have impact on P; that is, unless the central bank responds with offsetting changes in M.
 3. Changes in velocity have impact on P; again, unless M responds.

• Insights for problem solving:
 - Jumps in exogenous variables cause jumps in P.
 - Growth in exogenous variables causes growth in P = inflation.
 - If exogenous changes are temporary, changes in P are temporary.
 Then no persistent inflation – reasonable to assume zero expected inflation.
Examples – Part II

• Review main lessons:
 - Persistent changes in growth of M, Y, and V cause persistent changes in the inflation rate.
 - Nominal interest rates move with expected inflation: Fisher effect applies.

• Insights for problem solving:
 - For initial π and i: unambiguous numerical results.
 - For long run π and i: unambiguous numerical results.
 - For π^e and i in the short run: Outcomes depend on information. Inflation dynamics complicated by shifts in $V(i)$ when i changes.

• Here focus on stable outcomes and on long-run answers.