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Abstract

More than half a century after the first experiment on the finitely repeated prisoner’s

dilemma, evidence on whether cooperation decreases with experience–as suggested by

backward induction–remains inconclusive. This paper provides a meta-analysis of prior

experimental research and reports the results of a new experiment to elucidate how coop-

eration varies with the environment in this canonical game. We describe forces that affect

initial play (formation of cooperation) and unraveling (breakdown of cooperation). First,

contrary to the backward induction prediction, the parameters of the repeated game have

a significant effect on initial cooperation. We identify how these parameters impact the

value of cooperation–as captured by the size of the basin of attraction of Always Defect–to

account for an important part of this effect. Second, despite these initial differences, the

evolution of behavior is consistent with the unraveling logic of backward induction for all

parameter combinations. Importantly, despite the seemingly contradictory results across

studies, this paper establishes a systematic pattern of behavior: subjects converge to use

threshold strategies that conditionally cooperate until a threshold round; and conditional

on establishing cooperation, the first defection round moves earlier with experience. Sim-

ulation results generated from a learning model estimated at the subject level provide

insights into the long-term dynamics and the forces that slow down the unraveling of

cooperation.
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I. Introduction

The prisoner’s dilemma (henceforth PD) is one of the most extensively studied games

in the social sciences. The reason is that the tension at the center of the game–the conflict

between what is socially efficient and individually optimal–underlies many interesting

interactions, economic and otherwise.1 Played once, standard equilibrium notions predict

the Pareto-dominated, uncooperative outcome. Repeating the game does little to improve

the theoretical outlook whenever there is a commonly-known last round; the demands of

subgame perfection, where threats to punish uncooperative play must be credible to have

bite, result in the unraveling of cooperation via backward induction.

In this paper, we experimentally study the finitely repeated PD to understand the fac-

tors that affect (1) the emergence of cooperative behavior; and (2) its possible unraveling

with experience. Our results indicate that cooperative behavior in this canonical environ-

ment is driven by two behavioral regularities: the role of the value of cooperation and the

emergence of threshold strategies. First, we identify a simple-to-compute statistic that

captures initial cooperativeness in this game. The statistic neatly summarizes how the

parameters of the environment affect the key strategic tension in the game. Importantly,

the statistic highlights the role of strategic uncertainty in determining cooperative behav-

ior, and provides a simple measure to assess its impact in different environments. Second,

we find evidence for a previously unidentified regularity in learning about strategies. Our

results indicate that people learn to use strategies that allow for conditional cooperation

early on (creating dynamic game incentives), but switch to defection later (accounting

for unraveling). With experience, the defection region grows; and the structure of these

strategies provides a backdrop for how backward induction prevails in finitely repeated

games. However, it can take time for the full consequences of these strategies to emerge.

Despite more than half a century of research since the first experiment on the PD

(Flood 1952), it is difficult to answer whether people learn to cooperate or defect in this

game. That is, data from different studies give a seemingly contradictory picture of the

evolution of play with experience.2 Despite the multitude of papers with data on the game,

several of which test alternative theories consistent with cooperative behavior, it is still

difficult to draw clear conclusions on whether or not subjects in this canonical environment

are learning the underlying strategic force identified by the most basic equilibrium concept.

The source of these contradictory results could be the different parameters imple-

mented, in terms of payoffs and horizon, other features of the design, or differences in the

analysis. To address this, we collect all previous studies and analyze the data within a

unified framework. Of the seven previous studies meeting our criteria, we could obtain the

1Examples include Cournot competition, the tragedy of the commons, team production with unob-
servable effort, natural resource extraction, and public good provision, to name a few.

2For example, Selten & Stoecker (1986) interpret their results to be consistent with subjects learning
to do backward induction. They report the endgame effect–the point after which subjects mutually
defect–to move earlier with experience. In contrast, Andreoni & Miller (1993) find that behavior moves
in the opposite direction; namely, they observe that the point of first defection increases with experience.
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data for five of them.3 This analysis confirms the apparent contradictory nature of prior

results with respect to whether behavior moves in the direction suggested by backward

induction. We investigate the topic further with a new experiment.

With respect to the forces that affect initial play (formation of cooperation), and

unraveling (breakdown of cooperation) we document the following. For initial play, the

parameters of the repeated game have a significant impact on initial cooperation levels,

contrary to the prediction of subgame perfection. We confirm that increasing the horizon

increases cooperation, in line with a folk wisdom shared by many researchers on how

the horizon of a supergame affects play. Namely, that as the horizon increases, coopera-

tion rates increase, and this is attributed, in a loose sense, to the difficulty of reasoning

backwards through more rounds.4

Our results indicate that the effect of the horizon on cooperation is brought about

via a different channel. Increasing the horizon, while keeping the stage-game parameters

constant, increases the value of using a conditionally cooperative strategy relative to one

that starts out by defection. The trade-off between cooperation and defection can be

captured by the size of the basin of attraction of always defect (AD), a simple statistic

imported from the literature on infinitely repeated PDs.5 In a regression analysis of

round-one choices in the meta-study, the value of cooperation has significant explanatory

power over and above the length of the horizon. The new experiment addresses this point

directly by comparing two treatments in which the horizon of the repeated game is varied,

but the value of cooperation is kept constant. Round-one cooperation rates remain similar

throughout our experiment between these two treatments.

One key new finding is that in our experiment, and in every prior experiment for which

we have data, subjects always take time to “learn” to use threshold strategies: strategies

that conditionally cooperate until a threshold round before switching to AD. This ob-

servation is a crucial part of understanding why prior experiments suggest contradictory

patterns with respect to backward induction. Once behavior incompatible with threshold

strategies has disappeared, we find consistent evidence in all treatments in our data set

3Although we re-analyze the original raw data, rather than collate the results of previous studies, we
will refer to this part of our analysis as the meta-study for simplicity.

4With folk wisdom, we refer to the common conception that cognitive limitations play an important
role in explaining divergence from equilibrium behavior in games involving unraveling arguments. In the
context of finitely repeated PD, Result 5 of Normann & Wallace (2012) is an example of prior experimental
evidence suggesting a positive correlation between cooperation rates and the horizon. In the context of
speculative asset market bubbles, Moinas & Pouget (2013) show that increasing the number of steps of
iterated reasoning needed to rule out the bubble increases the probability that a bubble will emerge.
We can also point to multiple papers using the level-k model to explain behavior in the centipede game,
which, as we discuss in Section VII and Online Appendix A.1, is closely connected to the finitely repeated
PD (see Kawagoe & Takizawa (2012), Ho & Su (2013), Garcia-Pola et al. (2016)). In a recent paper,
Alaoui & Penta (2016) present a model of endogenous depth of reasoning that can account for how payoff
structure affects the degree to which unraveling is observed in this class of games.

5The finding that cooperation correlates to the size of the basin of attraction in infinitely repeated PDs
can be found in Dal Bó & Fréchette (2011). See, also, Blonski et al. (2011), who provide an axiomatic
basis for the role of risk dominance in this context.
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that the round of first defection moves earlier with experience. However, early behavior

typically involves multiple switches between cooperation and defection, and, thus, learn-

ing to play threshold strategies results in a decrease in the rate of early defections. The

speed at which each of these two opposing forces happen–which varies with the payoffs

and the horizon of the game–make the combined effect look as though subjects either

behave in line with learning backward induction or not.

Although these forces imply unraveling of cooperation in the long run, we find that

this process can be very slow. Hence, to complement our results, we estimate a subject-

level learning model, and use the estimates to generate simulations of long-run behavior.

Our simulations suggest that cooperation rates may remain non-negligible even after

ample experience in the case of parameter constellations conducive to high levels of initial

cooperation.6 The estimation of this learning model also allows us to see the evolution of

the expected value of various strategies. This helps clarify why unraveling is slower in some

treatments than in others. In addition, simulations under counterfactual specifications

reveal that the stage-game parameters, rather than the variation in how subjects “learn”

across treatments, explain variations in the speed of unraveling.

II. Theoretical Considerations and Literature

The PD is a two-person game in which each player simultaneously chooses whether

to cooperate (C) or defect (D), as shown in the left panel of Figure 1(a). If both players

cooperate, they each get a reward payoff R that is larger than a punishment payoff P ,

which they would get if they were both to defect. A tension results between what is

individually rational and socially optimal when the temptation payoff T (defecting when

the other cooperates) is larger than the reward, and the sucker payoff S (cooperating

when the other defects) is smaller than the punishment.7

In this case, defecting is the dominant strategy in the stage-game and, by backward

induction, always-defect is the unique subgame-perfect equilibrium strategy of the finitely-

repeated game.

[Figure I About Here]

One of the earliest discussions of the PD included a small-scale experiment. Dresher

and Flood conducted that experiment in 1950 using two economists as subjects (reported

in Flood (1952)). That experiment, and others that followed, found positive levels of

cooperation despite the theoretical prediction to the contrary. An early paper to offer

an explanation for this phenomenon is due to the gang of four : Kreps et al. (1982)

6Even in these cases, simulation results show a slow but continued decline in cooperation.
7In addition, the payoff parameters can be restricted to R > S+T

2 > P . The first inequality ensures
that the asymmetric outcome is less efficient than mutual cooperation. The second inequality, which has
been overlooked in the literature but recently emphasized by Friedman & Sinervo (2016), implies that
choosing to cooperate always improves efficiency.
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showed that incomplete information about the type of the other player (either what

strategies they can play or their true payoffs) can generate cooperation for a certain

number of periods in equilibrium. Alternatively, Radner (1986) proposed the concept of

epsilon-equilibria–in which agents are content to get close to the maximum equilibrium

payoffs–and showed that cooperation can arise as part of an equilibrium strategy. Other

possibilities that were later explored include learning and limited forward reasoning (see,

for example, Mengel (2014a), Mantovani (2016), and the references therein). Moving

beyond the standard paradigm, social preferences for fairness, altruism or efficiency can

also generate cooperation in this game. Although our meta-analysis and experiment are

not designed to distinguish between these theories, they provide a backdrop for how

cooperation can arise in this environment. Our purpose in this paper is not to test these

theories directly, but, rather, to take a step back and identify the main forces observed in

the data that affect when and how cooperation emerges. We postpone discussion of our

results regarding these theories to the final section.

Much of the early experimental literature on the repeated PD came from psychology.

That literature is too vast to be covered here, but typical examples are Rapoport &

Chammah (1965), Lave (1965), and Morehous (1966). These papers are concerned mainly

with the effect of the horizon, the payoffs, and the strategies of the opponent. Some of the

methods (for payments, for instance), the specific focus (often horizons in the hundreds

of rounds), and the absence of repetition (supergames are usually played only once) limit

what is of interest to economists in these studies.

Studies on the finitely repeated PD also have a long history in economics.8 Online

Appendix A.1 provides an overview of the papers on the topic.9 More specifically, we

cover all seven published papers (that we could find–five of which are included in our

meta-data) with experiments that include a treatment in which subjects play the finitely

repeated PD and in which this is performed more than once.10,11

8Mengel (2014b) presents a meta-study that covers more papers and also supplements the existing
literature with new experiments. The paper focuses mainly on comparing results from treatments where
subjects change opponents after each play of the stage-game (stranger matching) to results from treat-
ments where subjects play a finitely repeated PD with the same opponent (partner matching). Thus,
the paper is not intended to consider whether behavior moves in the direction of backward induction or
to study the impact of experience more generally. Despite these differences, the main conclusion of that
paper emphasizing the importance of the stage game parameters, and specifically highlighting how the
“risk” and “temptation” parameters can be interpreted to capture the strength of different forces that
affect cooperation in environments with strategic uncertainty, is consistent with our results.

9Since our interest lies in the emergence and breakdown of cooperation and the role of experience, we
focus only on implementations that include an horizon for the repeated game of two or more rounds and
have at least one re-matching of partners.

10Online Appendix A.1 also discusses several recent papers (Mao et al. (2017); Schneider & Weber
(2013); Kagel & McGee (2016); Cox et al. (2015); Kamei & Putterman (2015)) that study heterogeneity
in cooperative behavior and the role of reputation building in the finitely repeated PD.

11A related game that has been extensively studied in economic experiments is the linear voluntary
contributions mechanism (VCM), often referred to as the public goods game. A two player linear VCM
where each player has two actions corresponds to a special case of the PD. Using the notation defined
in the next section, a binary two players linear VCM is a PD with g = `. However, few experiments
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Overall, these papers give us a fragmented picture of the factors that influence behavior

in the finitely repeated PD. Most papers are designed to study a specific feature of the

repeated game. However, if we try to understand the main forces that characterize the

evolution of behavior, it is difficult to draw general conclusions. For instance, the evidence

is mixed with respect to whether or not subjects defect earlier with experience. There is

evidence consistent with unraveling (experience leading to increased levels of defection by

the end of a repeated game), as well as evidence pointing in the opposite direction (mean

round to first defection shifting to later rounds with experience).

III. The Meta-Study

The meta-study gathers data from five prior experiments on the finitely repeated PD.

Note that we do not rely simply on the results from these studies, but also use their

raw data.12 The analysis includes 340 subjects from 15 sessions with variation in the

stage-game parameters and the horizon of the supergame.

To facilitate the comparison of data from disparate experimental designs and to reduce

the number of parameters that need to be considered, the payoffs of the stage-game are

normalized so that the reward payoff is one and the punishment payoff is zero. The

resulting stage-game is shown in the right panel of Figure 1(b), where g = (T − P )/(R−
P ) − 1 > 0 is the one-shot gain from defecting, compared to the cooperative outcome,

and ` = −(S − P )/(R− P ) > 0 is the one-shot loss from being defected on, compared to

the non-cooperative outcome.

III.A. The Standard Perspective

Prior studies have focused mostly on cooperation rates, often with particular attention

to average cooperation, cooperation in the first round, cooperation in the final round, and

the round of first defection. Thus, we first revisit these data using a uniform methodology

while keeping the focus on these outcome variables–what we refer to as the standard

perspective. Table I reports these statistics for each treatment. They are sorted from

shortest to longest horizon and from largest to smallest gain from defection.

[Table I About Here]

The first observation that stands out from Table I is that, with both inexperienced

and experienced subjects, the horizon length (H) and gain from defection (g) organize

some of the variation observed in cooperation rates. Cooperation rates increase with the

involve repetitions of finitely repeated linear VCMs (with rematching between each supergame); these
are Andreoni & Petrie (2004, 2008), Muller et al. (2008), and Lugovskyy et al. (2017).

12Online Appendix A.2 provides more details on the included studies: henceforth, Andreoni & Miller
(1993) will be identified as AM1993, Cooper, DeJong, Fosythe & Ross (1996) as CDFR1996, Dal Bó
(2005) as DB2005, Bereby-Meyer & Roth (2006) as BMR2006, and Friedman & Oprea (2012) as FO2012.
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length of the horizon, and decrease with the gain.13 In this sense, there seems to be some

consistency across studies.

Focusing on factors that interact with experience to affect play, the horizon of the

repeated game appears to play an important role. Note that the average cooperation rate

always increases with experience when the horizon is long (H > 8) and always decreases

with experience when it is short (H < 8). Similarly, the mean round to first defection

statistic decreases with experience only if the horizon is very short (H ≤ 4).

Other aspects of behavior that previous studies have focused on are round-one and last-

round cooperation rates. The horizon of the repeated game and the gain from defection

appear to play a role in how these measures evolve with experience. Figure II traces the

evolution of these cooperation rates over supergames separated by horizon and payoffs.

In most treatments, last-round cooperation rates are close to zero or reach low levels

quickly.14 The evolution of round-one cooperation rates depends on the horizon. With

H = 2, cooperation rates in round one are close to zero, and when H = 4, they are

low and decreasing, though at a negligible rate when the gain from defection is small.

The round-one cooperation rate moves in the opposite direction as soon as the horizon

increases further. With both H = 8 and H = 10, round-one cooperation increases with

experience.

[Figure II About Here]

III.B. The Value of Cooperation and Round-One Choices

One consistent result to emerge from the standard perspective is that average co-

operation and round to first defection increase with the horizon. Both observations

are consistent with subjects having difficulty–or believing that their partners are having

difficulty–making more than a small number of steps of backward induction. However,

if the stage-game is kept constant, increasing the horizon also increases the difference in

the value of joint cooperation versus joint defection. Cooperation becomes more valuable

since more rounds generate the higher payoffs from joint cooperation. On the other hand,

the risk associated with being defected on does not change: when using a conditionally

13Statistical significance of the patterns reported here are documented in Online Appendix A.2. Tests
reported in the text are based on probits (for binary variables) or linear (for continuous variables) random
effects (subject level) regressions clustered at the paper level for the meta-analysis and the session level
for the new experiment. Exceptions are cases in which tests are performed on specific supergames, where
there are no random effects. Clustering is used as a precaution against paper or session specific factors
that could introduce un-modelled correlations (see Fréchette 2012, for a discussion of session-effects).
Two alternative specifications are explored to gauge the robustness of the results in Appendix A.4. The
different specifications do not change the main findings.

14The decline in cooperation in the last round could be due to multiple factors. If cooperation is
driven by reciprocity, the decline could be associated with more pessimistic expectations about others’
cooperativeness in the last round. Alternatively, if cooperation is strategic, the decline could be associated
with the absence of any future interaction with the same partner. Reuben & Seutens (2012) and Cabral
et al. (2014) use experimental designs to disentangle these two forces and find cooperation to be driven
mainly by strategic motives.
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cooperative strategy, there is, at most, one round in which a player can suffer the sucker

payoff, irrespective of the length of the horizon. Hence, the value increases but the risk

does not.

Experiments on the infinitely repeated PD suggest that subjects react to changes in

the stage-game payoffs and the discount factor according to how they affect the value

of cooperation. However, it is not the case that the value of cooperation, as captured

by cooperation being subgame perfect, predicts on its own whether or not cooperation

emerges. The decision to cooperate seems to be better predicted by the size of the basin

of attraction of always defecting–henceforth sizeBAD–against the grim trigger strategy

(Dal Bó & Fréchette (2011)).15 Hence, the strategic tension is simplified by focusing

on only two extreme strategies: grim trigger and AD. Assuming that these are the only

strategies considered, sizeBAD is the probability that a player must assign to the other

player playing grim so that he is indifferent between playing grim and AD.

This measure can be adapted for the finitely repeated PD and used to capture the

value-risk trade-off of cooperation. In this case, it can be calculated directly as:16

sizeBAD =
`

(H − 1) + `− g
.

Values close to one suggest that the environment is not conducive to supporting (non-

equilibrium) cooperation since a very high belief in one’s partner being conditionally

cooperative is required. The opposite is true if the value is close to zero. As can be seen,

sizeBAD is increasing in g and `, but decreasing in H.

[Table II About Here]

Table II reports the results of a correlated random effects probit investigating the

correlation between round-one choices and design parameters such as the sizeBAD, stage-

game payoffs, and the horizon.17 The first specification controls for the normalized stage-

game parameters, g and `, and H.18 As can be seen, both g and H have a significant effect

on round-one choices, and in the predicted direction: when there is more to be gained

from defecting if the other cooperates and when the horizon is short, it is less likely that

15The grim trigger strategy first cooperates and cooperates as long as both players have always coop-
erated; and defects otherwise.

16In the finitely repeated PD, AD (Grim) results in a payoff of 0 (−`) against a player following AD or a
payoff of 1 + g (H) against a player following Grim. sizeBAD corresponds to the probability, p, assigned
to the other player playing Grim that equalizes the expected payoff associated with either strategy, given
by pH − (1− p)` = p(1 + g). Unlike in infinitely repeated games, this calculation is not the best-response
to such a population: defecting in the last round would always achieve a higher payoff.

17Note that although there is variation in sizeBAD, it is highly correlated with the horizon in these
treatments (see Online Appendix A.2).

18We report this specification, as it makes the effect of the regressors of interest easy to read. However,
a more complete specification would interact supergames with dummies, not only for each H, but also
for all g, `, and H. Those results are presented in Online Appendix A.2, but interpreting the effect of a
change in the regressors of interest is complicated by the complex interactions with supergames.
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a subject will make a cooperative round-one choice. The second specification includes

the sizeBAD statistic. The new variable–which is a non-linear combination of g, `, and

H–has a significant negative impact on cooperation, as would be expected if the value

of cooperation considerations outlined above were important. Furthermore, the effect of

the design parameters seems to be accounted for, in large part, by the sizeBAD variable,

with ` and g having a smaller magnitude.19

In summary, by combining data sets from prior studies, we are able to investigate the

impact of stage-game and horizon parameters on cooperation, as well as the interaction

of these with experience. However, a clear understanding of behavior is still not possible

using the meta-analysis alone. First, since the majority of experiments do not vary pa-

rameters within their designs, much of the variation comes from comparing across studies,

where many other implementation details vary. Second, the payoff parameters are, for

the most part, constrained to a small region, resulting in a high correlation between the

size of the basin of attraction of AD and the length of the supergame. Finally, very few

of the studies give substantial experience to subjects.

IV. The Experiment

To address the issues identified in the meta-study, we designed and implemented an

experiment that separates the horizon from other confounding factors, systematically

varying the underlying parameters within a unified implementation. In addition, the new

sessions include many more repetitions of the supergame than are commonly found in

prior studies. The experiment is a between-subjects design with two sets of stage-game

payoffs and two horizons for the repeated game: a 2× 2 factorial design.

The first treatment variables are the stage-game payoffs. In the experiment, partic-

ipants play one of two possible stage-games that differ in their temptation and sucker

payoffs, as shown in Figure III.20 The payoffs when both players cooperate or both play-

ers defect are the same in both stage-games. As a consequence, the efficiency gain from

cooperating is the same in both sets of parameters: 31%.

[Figure III About Here]

The first stage-game is referred to as the difficult PD, since the temptation payoff is

relatively high and the sucker payoff low, while the second stage-game is referred to as

the easy PD, for the opposite reason. In terms of the normalized payoffs described in

Section III, the (g, `) combination is (2.5, 2.83) for the difficult PD and (1, 1.42) for the

easy PD. As shown in Online Appendix A.2, the easy parameter combination is close to

19Another way to assess to what extent sizeBAD captures the relevant variation is to compare a
measure of fit between specification (1), which does not include sizeBAD, and an alternative specification
that does include sizeBAD, but excludes g, `, and Horizon. To give a sense of this, we estimate these
two specifications using random effects regressions and report the R2. It is 0.34 without sizeBAD and
0.35 with sizeBAD but without g, `, and Horizon.

20Payoffs are in experimental currency units (ECU) converted to Dollars at the end of the experiment.
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the normalized parameter combinations of a cluster of prior experiments from the meta-

analysis. The difficult parameter combination has larger values of both g and ` than has

been typically implemented.

The second treatment variable is the horizon of the repeated game. To systematically

vary the number of steps of reasoning required for the subgame perfect Nash equilibrium

prediction, we implement short-horizon and long-horizon repeated games for each stage-

game. In the shorter horizon, the stage-game is repeated four times and in the longer

horizon, eigth times. Combining the two treatment variables gives the four treatments:

D4, D8, E4 and E8, where D/E refer to the stage-game, and 4/8 to the horizon.21

Following the intuition that cooperation is less likely in the difficult stage-game, and

that the unraveling of cooperation is less likely with a longer horizon, cooperation is

expected to be higher as one moves to an easier stage-game and/or to a longer horizon.

However, the comparison between D8 and E4 is crucial, as it mixes the difficult stage-

game parameters with the longer horizon and vice-versa. Indeed, the parameters have

been designed such that this mix gives precisely the same sizeBAD in both treatments.

Hence, if a longer horizon increases cooperation beyond its impact through the changes

in the value of cooperation captured by sizeBAD–possibly because there are more steps

of iterated reasoning to be performed–treatment D8 should generate more round-one

cooperation than treatment E4.22.

IV.A. Procedures

The experiments were conducted at NYU’s Center for Experimental Social Science

using undergraduate students from all majors, recruited via e-mail.23 The procedures for

each session were as follows: after the instruction period, subjects were randomly matched

into pairs for the length of a repeated game (supergame). In each round of a supergame,

subjects played the same stage-game. The length of a supergame was finite and given

in the instructions so that it was known to all subjects. After each round, subjects had

access to their complete history of play up to that point in the session. Pairs were then

randomly rematched between supergames.

A session consisted of 20 or 30 supergames and lasted, on average, an hour and a

half.24 At the end of a session, participants were paid according to the total amount of

21The parameters were selected such that, based on the meta-study, we could expect that in the short
run, the aggregate statistics would move in the direction of backward induction, at least for D4, and in
the opposite direction, at least for E8. Other considerations were that the two values of H did not result
in sessions that would be dramatically different in terms of time spent in the laboratory.

22Other indexes to correlate with cooperation in the finitely repeated PD have been considered, but
they only depend on stage-game payoffs (Murnighan & Roth (1983), Mengel (2014b))

23Instructions were read aloud (see Online Appendix A.6). The computer interface was implemented
using zTree (Fischbacher (2007)).

24The first session for each treatment consisted of 20 supergames. After running these, it was deter-
mined that the long-horizon sessions were conducted quickly enough to increase the number of supergames
for all treatments. Consequently, the second and third sessions had 30 supergames. The exchange rate
was also adjusted: 0.0045 $/ECU in the first session and 0.003 $/ECU in the second and third sessions.
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ECUs they earned during the session. Subjects earned between $12.29 and $34.70. Three

sessions were conducted for each treatment.25 Throughout, a subject experienced just

one set of treatment parameters: the stage-game payoffs and the supergame horizon.

IV.B. The Standard Perspective in the Experiment
Table III provides a summary of the aggregate cooperation rates across treatments. For

each treatment, the data are split into two subsamples: supergames 1-15 and supergames

16-30. Four measures of cooperation are listed: the cooperation rate over all rounds, in

the first round and in the last round, as well as the mean round to first defection. The

first observation is that our treatments generate many of the key features observed across

the different studies of the meta-analysis. This can be seen most clearly with respect

to first-round cooperation and mean round to first defection. First-round cooperation

in the long-horizon treatments is significantly higher in later than in earlier supergames.

Although none of the differences are significant, the mean round to first defection shows

the same pattern as initial cooperation.

[Table III About Here]

For the average over all rounds, cooperation is lower during the later supergames and

significantly so for the easy stage-game. This observation is in contrast to some of the

studies in our meta-data that find that the average cooperation rate increases with expe-

rience. However, subjects played 30 supergames in our experiment, which is substantially

more than in any of the studies in our meta-data. To provide a more complete compari-

son with the studies from the meta-analysis, Table IV reports the cooperation rate at the

supergames corresponding to the length of the various studies in our meta-data, as well as

in our first and last supergame. For E8, there is a clear increase in cooperation rates early

on, followed by a decline. Indeed, the parameters used in this treatment are the closest

to the studies in which aggregate cooperation is found to be increasing with experience–

namely, those with a longer horizon. The non-monotonicity observed in this treatment,

with respect to the evolution of aggregate cooperation rates with experience, suggests

that experimental design choices, such as the number of repetitions of the supergame in

a session, can significantly alter the type of conclusions drawn from the data.

[Table IV About Here]

Figure IV provides some insight into the underlying forces generating the differences

in the aggregate results documented above. The figure shows the rate of cooperation in

each round, averaged over the first five supergames, supergames 13 to 17 and the last

five supergames. In the long-horizon treatments, especially in E8, cooperation in early

rounds increases with experience. The line associated with the first five supergames lies

below the one associated with the last five for early rounds. This pattern contrasts with

25More details about each session are provided in Online Appendix A.3.
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the short-horizon sessions in which the first-five average is at least as large as the last-five

average. For later rounds, in all treatments, cooperation in the last five supergames is

lower than in the first five. With a short horizon, cooperation rates fall quickly after the

first round. When the horizon is long, this decline does not happen until later, coming

after six rounds in early supergames and after four or five rounds in later supergames.26

[Figure IV About Here]

IV.C. Determinants of Initial Cooperation

Figure V shows, for each treatment, the round-one cooperation rate by supergame.

The treatments generate very different dynamics with respect to how initial cooperation

evolves with experience, again emphasizing how critical the parameters of the stage-

game and the horizon can be in determining the evolution of play. The D4 treatment

shows decreasing initial cooperation rates, whereas the E8 treatment shows a notable

increase over supergames. The cooperation rates for D8 and E4 look very similar. Neither

treatment suggests a trend over supergames, and cooperation rates stay within the 40-

60% range for the most part. In fact, round-one cooperation rates are not statistically

different across the two treatments. Moreover, cooperation rates in supergames one and

30 are statistically indistinguishable between the two treatments.27

Remember that in our experiment, the horizon and the stage-game payoffs were chosen

so that the sizeBAD for E4 and D8 are identical. The equivalence of initial cooperation

rates between the two treatments suggests that, from the perspective of the first round,

the horizon of the repeated game has an effect on cooperation mainly through its impact

on the value of cooperation. An important implication of this is that our findings run

counter to the folk wisdom described earlier, which attributes higher cooperation rates

in longer horizons to the difficulty of having to think through more steps of backward

induction.

[Figure V About Here]

V. The Breakdown of Cooperation

Since the E8 treatment provides the starkest contrast to the backward induction pre-

diction, we first provide a more detailed description of behavior in this treatment. We

then apply the key findings from this section to the other treatments and to the other

studies in our meta-analysis in the following section.

26Online Appendix A.3 includes pairwise comparisons of the cooperation measures by treatment.
27In addition to being true for all supergames pooled together, this is true for most supergames taken

individually, except for a few outliers. E4 is higher in supergames 12 and 14 (at the 10% and 5% level,
respectively) and D8 is higher in supergames 18, 19, and 21 (at the 10%, 5%, and 5% level, respectively).
Pooling across supergames from the first and second half of a session separately, cooperation rates are
not significantly different between E4 and D8 (see Online Appendices A.3 and A.4 for details).

12



V.A. Behavior in the E8 treatment

Figure VI tracks cooperation rates across supergames, with each line corresponding

to a specific round of the supergame. The selected rounds include the first round and the

final three rounds.28 Looking at the last round, the trend toward defection is clear. The

round before that shows a short-lived increase in cooperation followed by a systematic

decline. Two rounds before the end, the cooperation rate increases more dramatically

and for a longer time, but this is eventually followed by a gradual decline. Cooperation

rates in round one increase for most of the experiment but then stabilize towards the end,

at a high level close to 90%. Hence, confirming the results from prior studies with longer

horizons, cooperation early in a supergame increases with experience, but cooperation

at the end of a supergame decreases with experience. In addition, non-monotonicity in

cooperation rates for intermediate rounds suggests that the decline in cooperation slowly

makes its way back from the last round. On the whole, there is a compelling picture of

the unraveling of cooperation. However, the process is slow, and, even by the thirtieth

supergame, cooperation is not decreasing in the first round.

[Figure VI About Here]

Thus, we have conflicting observations: behavior at the end of a supergame moves

slowly in the direction suggested by backward induction, while cooperation in early rounds

increases with experience. To reconcile the conflict, consider the aggregate measure, mean

round to first defection. This measure is a meaningful statistic to represent the unraveling

of cooperation, primarily because we think of subjects using threshold strategies. That

is, we expect defection by either player to initiate defection from then on. Hence, the

typical description of backward induction in a finitely repeated PD implicitly involves

the use of threshold strategies: (conditionally) cooperative behavior in the beginning of

a supergame that is potentially followed by noncooperative behavior at the end of the

supergame. Indeed, reasoning through the set of such strategies provides a basis for

conceptualizing the process of backward induction.

A threshold m strategy is formally defined as a strategy that defects first in round m,

conditional on sustained cooperation until then; defection by either player in any round

triggers defection from then on. Consequently, this family of strategies can be thought

of as a mixture of Grim Trigger (Grim) and AD. They start out as Grim and switch to

AD at some predetermined round m. The family of threshold strategies includes AD, by

setting m = 1. It also includes strategies that always (conditionally) cooperate, as we

allow for the round of first defection, m, to be higher than the horizon of the supergame.

Thus, it is possible to observe joint cooperation in all rounds of a supergame if a subject

following a threshold strategy with m > horizon faces another subject who follows a

similar strategy. However, any cooperative play in a round after the first defection in the

28Online Appendix A.3 replicates Figure VI, including all rounds.
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supergame, regardless of who was the defector, is inconsistent with a threshold strategy.

Threshold strategies also have the property that a best response to a threshold strategy

is also a threshold strategy.29

If subjects use threshold strategies, then it would be equivalent to measure cooperation

using the mean round to first defection or the mean round to last cooperation, as threshold

strategies never cooperate after a defection.30 These different statistics are presented in

the same graph in the left panel of Figure VII. Two key observations are immediately

apparent. First, the two lines are very different to start with but slowly converge. Second,

mean round to last cooperation is decreasing with experience while mean round to first

defection is increasing (at least in the early parts of a session).

[Figure VII About Here]

If, instead of mean round to first defection, one considers mean round to last coopera-

tion, then it appears as if subjects move in the direction suggested by backward induction

in all treatments, including E8. The gap between the two lines suggests that the use of

threshold strategies becomes dominant over the course of the experiment. This suggestion

is confirmed in the right panel of Figure VII, which shows the fraction of choice sequences

perfectly consistent with the use of a threshold strategy.

Hence, aggregate measures such as the average cooperation rate and mean round to

first defection confound multiple forces. Subjects learning to play threshold strategies

can increase their cooperation at the beginning of a supergame, even if the strategy they

are learning is not more cooperative. To illustrate this effect, consider a subject who,

on average, over the course of a session, plays a threshold strategy that (conditionally)

cooperates for the first four rounds and defects from round five onwards (m = 5). However,

the probability that the subject implements the strategy correctly is only 0.6 in early

supergames, whereas it is 1 in later supergames. If we assume that the distribution of

strategies used by the other subjects remains constant, and a sufficient share of them play

cooperative strategies, mean round to first defection will increase with experience for the

subject learning to use this threshold strategy. This is because the subject will sometimes

defect before round five in early supergames, even in the absence of any defection by her

partner, but never in later supergames. This type of learning behavior would also lead

to increasing cooperation rates in round one. In addition, it would generate a decreasing

round to last cooperation over supergames.31

29Threshold strategies are potentially different from conditionally cooperative strategies which other
studies of repeated social dilemmas have focussed on. Threshold strategies are by definition conditionally
cooperative only up to the threshold round (except if m > horizon). Always defect is not a conditionally
cooperative strategy, but is a special case of the threshold strategies (where m = 1).

30More precisely, for a subject using a threshold strategy, the last round of cooperation is the round
before the first defection, regardless of the opponent’s strategy. Hence, when we directly compare the
mean round to first defection and the mean round to last cooperation, we add one to the latter.

31Burton-Chellew et al. (2016) make a related observation in the context of a public goods game. By
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For subjects who have settled on threshold strategies, it is possible to identify two

additional forces, each pulling in the opposite direction. If a subject believes that his

partner is likely to defect starting in round five, then he would want to start defecting at

round four. This is captured by the fact that a best response to a threshold m strategy

is a threshold m − 1 strategy. This reasoning is exactly the building block for the logic

of backward induction and leads to lower cooperation rates, a decrease in the round to

first defection among subjects using threshold strategies, and a decrease in the last round

of cooperation. However, even if every subject uses threshold strategies, if there is het-

erogeneity in thresholds to start with, some subjects may realize over time that enough

of their partners use higher thresholds than they do and, thus, may want to defect later.

Such adjustments would lead to increases in some of the cooperation measures. Conse-

quently, the overall effect on cooperation is ambiguous. These considerations highlight the

problems arising from restricting attention to these aggregate measures. They confound

the learning taking place on different levels: learning to use threshold strategies, updating

beliefs about the strategies of others, and best responding to the population.

Figure VIII provides further evidence for this interpretation. The graph on the left

compares the evolution of mean round to first defection for the whole sample to that of

the subset of pairs that jointly cooperate in Round 1. As expected, the line conditional

on Round 1 cooperation is higher, but the gap between the two lines shrinks as round

1 cooperation rates increase over time. Most importantly, conditional on achieving co-

operation in the first round, mean round to first defection actually decreases over time.

The graph on the right demonstrates this in another way, by plotting the distribution

of the first defection round for the first, the second and the last ten supergames. If the

breakdown of cooperation is defined as the first defection for a pair, then cooperation is

most likely to break down at the beginning or towards the end of the supergame. With

experience, the probability of breakdown at the beginning of a supergame decreases, but

conditional on surviving the first round, cooperation starts to break down earlier. The

shift is slow but clearly visible. The modal defection point (conditional on being higher

than 1) shifts earlier by one round for every ten supergames.

[Figure VIII About Here]

V.B. Breakdown of Cooperation in Other Treatments

Figure IX illustrates, for the three other treatments, the evolution of cooperation for

the first and last three rounds. D8 has a similar increase in initial cooperation with

experience, as noted for E8, but it is less pronounced. Initial rates of cooperation are

below 60% for nearly all supergames and are mostly comparable to those observed in E4.

The lowest rates of initial cooperation are, as expected, in the D4 treatment. The rate

comparing how subjects play against other subjects vs. computers, they show that cooperative behavior
often attributed to social preferences in such contexts are better explained as misunderstandings in how
to maximize income.
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drops quickly from a starting point similar to the other treatments to a rate of about

20%, where it remains for the majority of the supergames.

For all treatments (including E8), cooperation in the last round is infrequent, espe-

cially after the first ten supergames. We observe a similar pattern for cooperation in the

penultimate round, although for the easy stage-games, cooperation either starts much

higher or takes more supergames to start decreasing. The treatments display more im-

portant differences in behavior for the third from last round. Here, cooperation rates drop

consistently below the 20% mark in the difficult stage-game treatments and take longer to

start decreasing in the long-horizon treatments. Cooperation in this round drops quickly

to very low levels in D4, hovers around the 20% mark in E4, and starts higher in D8 be-

fore dropping below 20%. Overall, this confirms the tendency of decreasing cooperation

rates to start from the last round and gradually shift to earlier rounds. However, this also

highlights that this process can be slow, as cooperation rates in round one decrease over

the 30 supergames in only one of the four treatments.

[Figure IX About Here]

Figure X confirms the observations that not everyone plays threshold strategies at the

start of the experiment and that the use of threshold strategies grows with experience. In

the D8 treatment, the gap between round to first defection and last round of cooperation

+ 1 is originally comparable in size to what is observed in the E8 treatment. With

experience, the two become closer. However, by the end, they are still not identical. For

the treatments with the short horizon, the gap is small to start with and even smaller

by the end. Note that with a shorter horizon, there are fewer possible deviations from

a threshold strategy. Moreover, with a longer horizon, there is more incentive to restore

cooperation after a defection is observed.32 These suggest that convergence to threshold

strategies would happen faster in shorter horizon games.

[Figure X About Here]

What about experiments in the meta? Are there also indications of unraveling in these

once behavior is considered in a less aggregated form? To investigate this, we replicate

Figures VII and VIII in Online Appendix A.2 for the the two experiments that allowed

subjects to play a substantial number of supergames: AM1993 and BMR2006. Both

experiments show patterns consistent with our experimental results. Cooperation in the

last round quickly decreases, whereas cooperation rates in earlier rounds first increase.

The increase is followed by a decrease once the next round’s cooperation rate is low

enough. In both studies, there is a steady increase in round-one cooperation that does

not reach the point where it starts decreasing.

32Indeed, H is negatively correlated with play consistent with a threshold strategy in the first su-
pergame. This does not reach statistical significance if only considering our experiment (p = 0.11) but it
is significant at the 1% level when considering the entire meta-data.
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Perhaps the most striking regularity to emerge across all the papers in the meta-study

and our own experiment is the universal increase in the use of threshold strategies when we

compare the beginning of an experiment to the end (see Table V). In the first supergame

of all studies with H ≥ 8, less than 50% of play is consistent with a threshold strategy.

However, this number is higher than 75% in all but one treatment by the last supergame

(in many, it is more than 85%). Even in experiments with H = 4, which already begin

with 68% play of threshold strategies, they are more popular at the end. This suggests

a non-negligible amount of experimentation or confusion at the beginning of a session,

followed by a universal convergence to using threshold strategies.33

[Table V About Here]

VI. Long-run Behavior

The results of the last sections are highly suggestive that unraveling is at work in all

treatments. However, for some treatment parameters, the process is slow enough that it

would take too long for cooperation to reach close to zero levels in a reasonable amount

of time (for subjects to be in a laboratory). Hence, we now estimate a learning model

that will allow us to consider what would happen with even more experience. Using

estimates obtained individually for each subject, we can simulate behavior for many more

supergames than can be observed during a typical lab session. This can help us gain

insight into whether the unraveling would eventually move back to round one or whether

it would stop short of going all the way. It can also give us a sense of the speed at

which this might happen, as well as providing structural estimates for a counterfactual

analysis and an exploration of the expected payoffs of different strategies conditional on

the distribution of play.

VI.A. Model

The general structure of the learning model we adopt is motivated by the following

observations documented in the previous sections: (1) cooperation rates in the first round

of a supergame are decreasing in the size of the basin of attraction of AD; (2) choices

respond to experiences with other players in previous supergames; and (3) a majority of

subjects converge to using thresholds strategies. These observations suggest that subjects

are influenced by their beliefs over the type of strategy their partners are following (point 2

above), and by the implied value of cooperation given these beliefs, which is also a function

of the stage-game payoffs and the supergame horizon (point 1 above). We specify a simple

belief-based learning model that can capture these key features.34

33Statistical significance is established in the regressions reported in Online Appendix A.2.
34This is similar to the recent use of learning models to investigate the evolution of behavior in dy-

namic games. Dal Bó and Fréchette (2011) do this in the context of indefinitely repeated games ex-
periments; Bigoni et al. (2015) use a learning model to better understand the evolution of play in their
continuous-time experiments. In both cases, however, the problem is substantially simplified by the
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Each subject is assumed to start the first supergame with a prior over the type of

strategies her partner uses. The set of strategies considered in the learning model consists

of all threshold-type strategies along with TFT and Suspicious Tit-for-Tat (STFT).35

Note that, contrary to the threshold strategies, TFT and STFT allow for cooperation to

re-emerge after a period of defection within a supergame. We have included all strategies

for which there is evidence of systematic use in the data.36

Beliefs evolve over time, given a subject’s experience within a supergame. After every

supergame, a subject updates her beliefs as follows:

βit+1 = θiβit + Lit (1)

where βkit can be interpreted as the weight that subject i puts on strategy k to be adopted

by his opponent in supergame t.37 θi denotes how the subject discounts past beliefs (θi = 0

gives Cournot dynamics; θi = 1 fictitious play), and Lit is the update vector given play

in supergame t. Lkit takes value 1 when there is a unique strategy that is most consistent

with the opponent’s play within a supergame; for all other strategies, the update vector

takes value 0. When there are multiple strategies that are equally consistent with the

observed play, threshold strategies take precedence, but there is uniform updating among

those.38

Given these beliefs, each subject is modeled as a random utility maximizer. Thus, the

expected utility associated with each strategy can be denoted as a vector:

~µit = ~uit + λi~εit (2)

~uit = ~Uβit, where ~U is a square matrix representing the payoff associated with playing

fact that strategies take extreme forms–immediate and sustained defection or conditional cooperation
(sustained or partial). In the first paper, restricting attention to initial behavior is sufficient to identify
strategies; in the second paper, initial and final behavior are sufficient to discriminate among the strate-
gies considered. This will not be possible here, and, hence, estimating a learning model poses a greater
challenge. The approach described here is closest to that of Dal Bó & Fréchette (2011). The model is in
the style of Cheung & Friedman (1997). The reader interested in belief-based learning models is referred
to Fudenberg (1998). There are many other popular learning models: some important ones are found in
Crawford (1995), Roth & Erev (1995), Cooper et al. (1997), and Camerer & Ho (1999).

35The set of threshold strategies includes a threshold strategy that cooperates in every round if the
other subject cooperates (threshold is set to horizon +1), as well as AD (threshold is set to 1). TFT
and STFT replicate the other player’s choice in the previous round; TFT starts by cooperating, whereas
STFT starts by defecting.

36Cooperating all the time, irrespective of the other’s choice, is not included in the strategy set because
there is no indication in the data that subjects follow such a strategy. More specifically, even the most
cooperative subject in our dataset defected at least 34 times throughout the session, and at least 15 times
in the last ten supergames.

37Note that the sum of the components of βit need not sum to 1. This sum can be interpreted as the
strength of the priors: with θi it captures the importance of new experiences.

38The tie-breaking rule, which favors threshold strategies in the belief updating, eliminates the possi-
bility of emergence of cooperation via TFT-type strategies in an environment in which all subjects have
settled on threshold strategies, as observed towards the end of the sessions in our data.

18



each strategy against every other strategy. Note that ~U is a function of the horizon of

the repeated game, as well as of the stage-game payoffs. The parameter λi is a scaling

parameter that measures how well each subject best-responds to her beliefs, and εit is

a vector of idiosyncratic error terms. Given standard distributional assumptions on the

error terms, this gives rise to the usual logistic form. In other words, the probability of

choosing a strategy k can be written as:

pkit =
exp(

ukit
λi

)∑
k exp(

ukit
λi

)
(3)

The structure of the learning model that we adopt is typical. What is unusual in

our case is that, on this level, it describes choices over strategies rather than actions. It

captures the dynamics of updating beliefs across supergames about the strategies adopted

by others in the population and, consequently, describes learning about the optimality of

different strategies.

Not all behavior within a supergame is perfectly consistent with subjects following one

of the strategies that we consider. Allowing for other behavior is important to describing

the evolution, but it comes at the cost of more parameters to estimate. Given that our data

suggest that threshold strategies become dominant over time, we follow a parsimonious

approach, and instead of expanding the set of strategies considered, we augment the

standard model by introducing an implementation error.

The implementation error introduces noise into how strategies are translated into ac-

tions within a supergame. In every round, there is some probability that the choice

recommended by a strategy is incorrectly implemented. As the results have shown, in

some treatments, all choices quickly become consistent with threshold strategies, while in

others, the choices inconsistent with threshold strategies disappear more slowly. To ac-

count for this, the implementation error is specified as σit = σt
κi

i , where t is the supergame

number and 0 ≤ σit ≤ 0.5. Such a specification allows for extremely rapid decreases in

implementation error (high κ) as well as constant implementation error (κ = 0). Specifi-

cally, given her strategy choice and the history of play within a supergame, σit represents

the probability that subject i will choose the action that is inconsistent with her strategy

in a given round.39

In summary, for each subject, we estimate βi0, λi, σi, which describe initial beliefs,

noise in strategy and action choice implementation, and θi, κi, which describe how beliefs

are updated with experience and how execution noise changes over time.40 The estimates

39The implementation noise affects play within a supergame in two possible ways. The first is the
direct effect; in every round, it creates a potential discrepancy between intended choice and actual choice.
The second is the indirect effect; it changes the history of play for future rounds.

40When H = 4, this represents 11 parameters for 120 observations (30 supergames of four rounds),
and when H = 8, it is 15 parameters for 240 observations (30 supergames of 8 rounds). Except in the
two sessions of 20 supergames, where there are 80 and 160 choices per subject for the short and long
horizons, respectively.
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are obtained via maximum likelihood estimation for each subject separately.41 We provide

summary statistics of the estimates in Online Appendix A.5.

It is important to clarify that the model allows for a great range of behavior. Neither

convergence to threshold strategies, nor unraveling of cooperation is structurally imposed,

although both are potential outcomes under certain sets of parameters.

VI.B. Simulations

We first use individual-level estimates in conducting simulations to determine if the

learning model captures the main qualitative features of the data. Then, we use the

simulations with more repeated games to understand how cooperation would evolve in

the long run.42 These simulations consist of 100,000 sessions by treatment.43

The learning model fits the data well in terms of capturing the differences between

the treatments with respect to aggregate cooperation rates, mean round to first defection,

and evolution of behavior within a session in all treatments. This is illustrated for the

E8 treatment in Figure XI, which compares the average simulated cooperation rate for

each round of the repeated game with the experimental results.44 The simulation results

capture the key qualitative features of behavior observed in the data remarkably well. In

particular, cooperation rates are clearly increasing in the early rounds of a supergame,

while decreasing in later rounds, as observed in the data. For rounds in the middle, such

as rounds 5 and 6, there is non-monotonicity in cooperation rates, as they first increase

and later decrease. Note that these features are recovered in a model in which there are no

round- or supergame-specific variables, and updating occurs over beliefs about strategies

only between supergames.

[Figure XI About Here]

Figure XI also provides insights into the way cooperation would evolve in the long run.

The supergame (number of repeated games) axis is displayed in log scale to facilitate the

comparison between evolution of behavior in the short term versus the long term. We

observe that in this treatment, which is most conducive to cooperation, there is still

cooperation after 1000 supergames. However, this is clearly limited to early rounds.

41An alternative would be to pool the data. However, for the purpose of this paper and given the number
of observations per subject, obtaining subject-specific estimates is useful and reasonable. Fréchette (2009)
discusses issues and solutions related to pooling data across subjects in estimating learning models.

42For the simulations, subjects who show limited variation in choice within a session are selected out,
and their actions are simulated directly. Specifically, any subject who cooperates for at most two rounds
throughout the whole session is labeled an AD-type, and is assumed to continue to play the same action,
irrespective of the choices of the subjects she is paired with in future supergames. None of the subjects
identified as AD types cooperates in any round of the last ten supergames. This identification gives us
3/5/11/17 subjects to be AD types in treatments E8/D8/E4/D4, respectively.

43The composition of each session is obtained by randomly drawing (with replacement) 14 subjects (and
their estimated parameters) from the pool of subjects who participated in the corresponding treatment.

44Online Appendix A.5 replicates this analysis for other treatments and also includes detailed figures
focusing only on the first 30 supergames.
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More importantly, cooperation rates, if they are still positive, continue declining in all

rounds, even after 1000 supergames.45 The evolution suggests that there is unraveling of

cooperation in all rounds, but that it is so slow that cooperation rates for the first round

of a supergame can remain above 80% even after significant experience.46 In contrast,

we show in Online Appendix A.5 that cooperation rates in all other treatments quickly

decline to levels below 10% with little experience.

VI.C. Counterfactuals

In the remainder of this section, we investigate which factors contribute to the sus-

tained cooperation predicted by the learning model for long run behavior in E8. To do

so, we take advantage of the structure of the learning model and study how cooperation

evolves in the long-run under different counterfactual specifications.

The Kreps et al. (1982) model shows that sustained cooperation until almost the

last round can be a best response to a small fraction of cooperative subjects from a

rational agent who understands backward induction. Since our estimations for the learning

model are at the subject level, we can directly investigate if there is, indeed, significant

heterogeneity in cooperative behavior in the population and whether or not this affects

the unraveling of cooperation. In Online Appendix A.5, we compare cooperation rates in

simulations where all subjects are included to those where the most cooperative subjects

are removed from the sample. The comparative statics suggest that the existence of

cooperative types can slow down unraveling, but the effect seems to be limited.

[Figure XII About Here]

Next, to explore the extent to which stage-game payoffs–through their effect on strat-

egy choice and, consequently, evolution of beliefs–can explain why unraveling is faster

in the D8 treatment relative to the E8 treatment, we conduct the following counterfac-

tual simulations: We take the individual-level estimates for the learning model from the

E8 treatment and simulate how these subjects would play the D8 stage-game. This ex-

ercise enables us to keep the learning dynamics (priors, updating rule, strategy choice,

and implementation error) constant while varying only the stage-game parameters. In

Figure XII, this is plotted as CF1. The comparison of E8 and CF1 provides a striking

depiction of the importance of the stage-game parameters in the evolution of behavior.

The gap between the two lines for the first supergame demonstrates the impact of the

stage-game parameters on strategy choice when beliefs are kept constant. The gap widens

45Regressing cooperation on supergame using the last 50 supergames of the simulations by round reveals
a negative coefficient for all rounds. The negative coefficient is significant in all rounds except round 4,
5, and 8 where cooperation levels are 20%, 9% and 1% by the 1000th supergame.

46While there is evidence of a slow but continued decline in cooperation within the span of our simu-
lations, it does not rule out the possibility that unraveling eventually stagnates at non-zero cooperation
levels with further experience.
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with experience as subjects interact with each other and update their beliefs about oth-

ers, such that cooperation quickly reaches levels below 10% in less than 50 supergames in

CF1.47

Estimates from the learning model can also be used to investigate the optimality of

strategy choice among subjects. In Online Appendix A.5, we plot the expected payoff

associated with each strategy and the frequency with which this strategy is chosen for

each treatment. This exercise reveals that expected payoffs are relatively flat in E8. For

example, we see that in the first supergame, the optimal strategy is using Threshold 7 or

8, while in the last supergame of the session, it is Threshold 5 or 6. For the frequency of

choice, TFT is the most popular strategy early on in the session, but it is replaced by late

threshold strategies by the end of the session. In both cases, some of the most popular

strategies are suboptimal, but the expected loss associated with using them is small. In

comparison, expected payoffs and frequency of choice associated with the strategies are

quite different in D8. AD (Threshold 1) is the optimal strategy at both the beginning and

the end of the session. While TFT and STFT are common choices in the first supergame,

AD is the most frequent by the last. This provides further evidence for why unraveling is

slow in this treatment.

Overall, we see that the speed of unraveling is closely connected to how conducive

stage-game parameters are to cooperation, closely mirroring our results on the size of the

basin of attraction of AD as a determinant of initial cooperation.

VII. Discussion

Despite the wealth of experimental research on the finitely repeated PD, prior evi-

dence provides a limited understanding of the factors that contribute to the emergence of

cooperation and its possible unraveling with experience.

In this paper, to understand how cooperative behavior and its evolution with experi-

ence vary with the environment in this canonical game, we re-analyze the data from prior

experimental studies and supplement these results with a new experiment. In doing so,

we are able to reconcile many of the contradictory results in the prior literature, which,

we argue, are driven by two behavioral regularities: the role of the value of cooperation

and the emergence of threshold strategies.

Our paper makes several further contributions to the literature. First, we show that

the parameters of the supergame–the horizon in particular–have a significant impact on

initial cooperation. Our analysis reveals that a longer horizon increases initial cooperation

because it increases the value of using conditionally cooperative strategies, which can be

captured by a simple statistic: the size of the basin of attraction of the Always Defect

strategy. This value-of-cooperation result relates to recent studies on continuous-time

47We can also study the opposite counterfactual (as plotted in Online Appendix A.5). That is, we can
keep the E8 stage-game parameters constant, but use learning estimates for the subjects who participated
in the D8 treatment. Limited unraveling of cooperation with this counterfactual further highlight that
this behavior is driven by stage-game parameters rather than treatment specific learning dynamics.
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PD games (Friedman & Oprea (2012); Bigoni et al. (2015); Calford & Oprea (2017)).

Friedman & Oprea (2012) conclude that the unraveling argument of backward induction

loses its force when players can react quickly. Treatment differences in our experiment

are driven by similar forces. The decision to cooperate depends on how the temptation

to become the first defector compares to the potential loss from defecting too early. The

size of the basin of attraction captures this trade-off precisely and, in doing so, highlights

the role of strategic uncertainty in determining cooperative behavior. The predictive

power of the size of the basin of attraction can also be understood from an evolution-

ary game theory perspective. The size of the basin of attraction can be interpreted to

capture the robustness of Always Defect as an evolutionary stable strategy in a finitely

repeated prisoners dilemma.48 It has been argued that, while defection should dominate

in short-horizon finitely repeated PD games, as the horizon increases, the emergence of

conditionally cooperative strategies should become more likely (for instance, see Fuden-

berg & Imhof (2008); Imhof et al. (2005)). This is highly intuitive. The presence of a small

share of conditionally cooperative players can make it worthwhile to initiate cooperative

play, especially in long-horizon games conducive to cooperation. This also fits nicely with

our results on long-term dynamics using the learning model. Noise in strategy choice

or implementation of actions can be interpreted as stochastic invasions by alternative

strategies that consequently slow down, or even could possibly prevent, the unraveling of

cooperation (as we observe in the E8 treatment).

Second, the paper identifies a crucial regularity–namely, that threshold strategies al-

ways emerge over time. That is, in every study of the finitely repeated PD in which the

game is played more than once, threshold strategies are substantially more common by

the end of the experiment. While the role of threshold strategies has been noted in the

previous literature (for instance theoretically in Radner (1986) and recently empirically

investigated in Friedman & Oprea (2012)), we find convergence to using threshold strate-

gies to be a critical and systematic feature of the evolution of behavior in this game.

Hence, we identify the interaction of two opposing forces–learning to cooperate in early

rounds by convergence to using threshold strategies and learning to defect in later rounds

due to the unraveling argument of backward induction–to be fundamental in explain-

ing the variation across papers and treatments in the evolution of behavior. This result

also highlights an essential difference between the finitely repeated PD and the centipede

game, which, by construction, constrains players to conditionally cooperative threshold

strategies. While both games have been extensively used to study backward induction,

our results suggest that, (at least) short-term dynamics in these games are governed by

potentially different forces.

Finally, although our study is not explicitly designed to test alternative theories that

predict cooperation in the finitely repeated PD, we can relate our results to these theo-

48It is linked to the size of the invasion (share of the population following the alternative strategy)
needed to take over Always Defect.
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ries. Analysis using the learning model indicates that there is some heterogeneity across

subjects in terms of responsiveness to past experiences and willingness to follow coopera-

tive strategies. This observation suggests that the reputation-building forces identified in

the model of Kreps et al. (1982) may play a role in generating cooperation and slowing

down the unraveling of cooperation in the finitely repeated PD. Although, in contrast to

the static nature of the Kreps et al. (1982) model, the behavior we observe suggests that

beliefs change significantly across supergames in response to past experiences.49 On the

other hand, as discussed earlier, the value-of-cooperation result supports the approximate

best-responses approach of the epsilon-equilibrium model in Radner (1986), as suggested

by Friedman & Oprea (2012). Differences in cooperative behavior across our treatments

appear to be driven primarily by the corresponding differences in the trade-off between

initiating cooperation versus defection when there is uncertainty about the strategy fol-

lowed by one’s opponent. While our analysis suggests that the unraveling of cooperation

is still happening towards the end in all of our treatments, especially in environments

with potentially high returns to cooperation, we cannot rule out that cooperation would

stabilize at positive levels with further experience. In such treatments where unraveling

is particularly slow, we estimate that a portion of the population follows more coopera-

tive strategies than the optimal best-response to the population, but the relative cost of

adopting these strategies is quite small.

Matthew Embrey, University of Sussex

Guillaume R. Fréchette, New York University

Sevgi Yuksel, University of California Santa Barbara

49Note that we do not see any evidence of subjects following unconditionally cooperative strategies.
This confines the space of behavioral types that can be meaningfully considered in this setting.
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Tables

Table I
Cooperation Rates and Mean Round to First Defection

Cooperation Rate (%) Mean Round to
Average Round 1 Last Round First Defection

Experiment H g ` 1 L 1 L 1 L 1 L

DB2005 2 1.17 0.83 14 13 18 14 10 11 1.21 1.20
within 2 0.83 1.17 25 9 32 13 17 5 1.42 1.14
subject 4 1.17 0.83 33 20 44 32 25 8 1.99 1.58

4 0.83 1.17 31 22 37 34 20 12 1.76 1.61
FO2012 8 4.00 4.00 33 33 43 67 23 3 2.27 3.53

within 8 2.00 4.00 38 34 43 63 30 3 2.77 3.67
subject 8 1.33 0.67 40 48 43 73 37 3 2.83 4.43

8 0.67 0.67 44 69 50 87 30 23 3.10 6.07
BMR2006 10 2.33 2.33 38 66 61 93 22 7 3.19 7.39

AM1993 10 1.67 1.33 17 47 36 86 14 0 1.50 5.50
CDFR1996 10 0.44 0.78 52 57 60 67 20 27 4.63 5.53

Notes: First defection is set to Horizon + 1 if there is no defection. 1: First Supergame; L: Last Supergame.
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Table II
Marginal Effects of Correlated Random Effects Probit Regression of the Probability of

Cooperating in Round One

(1) (2)

g −0.04∗∗∗ (0.009) −0.03∗∗∗ (0.006)
` −0.02∗∗∗ (0.005) 0.00 (0.005)
Horizon 0.03∗∗∗ (0.004) 0.01 (0.005)
sizeBAD −0.24∗∗∗ (0.025)

Observations 5398 5398

Notes: Standard errors clustered (at the study level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
Additional controls include experience variables (supergame interacted with Horizon dummies) and choice history variables
(whether the player cooperated in the first supergame and whether the player they were matched with cooperated in round
one of the last supergame).
Complete results reported in Online Appendix A.2.
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Table III
Cooperation Rates: Early Supergames (1–15) vs Late Supergames (16–30)

All rounds Round 1 Last Round First defect
Treatment 1–15 16–30 1–15 16–30 1–15 16–30 1–15 16–30

D4 15.4 >∗∗ 9.0 29.1 > 19.5 4.1 >∗∗ 3.2 1.5 > 1.3
D8 34.6 > 33.2 49.3 <∗∗∗ 57.1 7.9 >∗∗∗ 4.0 2.8 < 3.1
E4 28.0 >∗∗∗ 21.2 49.0 > 45.2 10.4 >∗∗∗ 3.8 1.9 >∗∗ 1.7
E8 60.1 >∗∗∗ 55.2 79.7 <∗∗∗ 88.2 9.0 >∗∗∗ 3.0 5.3 ∼ 5.3

All 37.8 >∗∗∗ 33.5 51.1 < 51.6 8.0 >∗∗∗ 3.6 2.8 > 2.7

Notes: Significance reported using subject random effects and clustered (session level) standard errors. ∗∗∗1%, ∗∗5%, ∗10%.
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Table IV
Cooperation Rate for All Rounds in Supergames 1, 2, 8, 20 and 30

Supergame
Treatment 1 2 8 20 30

D4 31.5 21.0∗∗∗ 12.5∗∗∗ 11.5∗∗∗ 6.6∗∗∗

D8 36.3 36.3 36.8 35.6 32.6∗∗

E4 28.2 29.8 30.2 19.4 20.0∗

E8 47.6 53.8∗∗ 61.4∗∗∗ 51.4 51.6

Notes: Statistical test is for difference from Supergame 1.
Notes: For E8, decline from Supergame 8 to 30 is significant at the 1% level.
Notes: Significance reported using subject random effects and clustered (session level) standard errors. ∗∗∗1%, ∗∗5%, ∗10%.
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Table V
Consistency of Play with Threshold Strategies

Play Consistent With
Threshold Strategy

Experiment Horizon g ` First Supergame Last Supergame

DB2005 2 1.17 0.83 – –
2 0.83 1.17 – –
4 1.17 0.83 0.68 0.80
4 0.83 1.17 0.68 0.78

FO2012 8 4.00 4.00 0.43 0.90
8 2.00 4.00 0.43 0.90
8 1.33 0.67 0.37 0.77
8 0.67 0.67 0.47 0.87

BMR2006 10 2.33 2.33 0.42 0.81
AM1993 10 1.67 1.33 0.29 0.79
CDFR1996 10 0.44 0.78 0.30 0.50

Meta All . . . 0.52 0.79

EFY (D4) 4 3.00 2.83 0.66 0.94
EFY (D8) 8 3.00 2.83 0.50 0.65
EFY (E4) 4 1.00 1.42 0.66 0.94
EFY (E8) 8 1.00 1.42 0.57 0.89

EFY All . . . 0.60 0.85

Notes: Supergame refers to supergame within a set of payoff and horizon parameters.
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Figures
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Figure I
The Prisoner’s Dilemma
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A.1. Literature Review

Selten & Stoecker (1986) study behavior in a finitely repeated PD with a horizon

of 10 rounds. Subjects play 25 supergames where they are rematched between every

supergame. They observe that behavior converges to a specific pattern with experience:

joint cooperation in early rounds followed by joint defection in subsequent rounds once

defection is initiated by either player.50 Importantly, they state that the point at which

subjects intend to first deviate moves earlier with experience.51 Roth (1988) summarizes

these observations as follows: “in the initial [supergames] players learned to cooperate

[...]. In the later [supergames], players learned about the dangers of not defecting first,

and cooperation began to unravel.”52 The impression at the time is that unraveling comes

about with experience. We should point out that Selten and Stoecker in their paper do

not take a position on whether, with more experience, unraveling would lead to complete

defection in this game. They acknowledge that unraveling might slow down such that

cooperation could stabilize at some level. Furthermore, their analysis is based on results

from a single set of parameters, a point noted by Selten and Stoecker, as well as Roth.

Hence, to what extent these results would be robust to variations is not clear. In addition,

the observation about the evolution of intended deviation round is not directly linked to

the pattern of play observed in the game, as it is in part based on inferences about how

players expected to play.53

Andreoni & Miller (1993) and Kahn & Murnighan (1993) directly investigate whether

cooperation in the finitely repeated PD is consistent with the incomplete information

model of Kreps et al. (1982). Both papers involve varying the probability that subjects

interact with a pre-programmed opponent to affect the subjects’ beliefs over the value of

building a reputation. Because we use their data in our meta-study, we focus on Andreoni

& Miller (1993).

Andreoni & Miller (1993) conducted four treatments all involving 200 choices in total.

In the Partners treatment, these were 20 finitely repeated PDs with a horizon of 10 rounds.

In the Strangers treatment, these were 200 one-shot PDs. The two additional treatments

are variations on the Partners treatment, where subjects are probabilistically matched

50In the last five supergames, 95.6% of the supergames are consistent with that pattern, although only
17.8% of the data fits that requirement in the first five supergames.

51It is on average round 9.2 in supergame 13, and steadily moves down to 7.4 in supergame 25. The
intended deviation period is computed for a subset of the data which changes by supergame, but includes
almost all of the data by the end of the experiment. If there was no prior defection by either player, it
is taken to be the first period at which a player defects; otherwise it is either obtained from the written
comments of the subject, or inferred from reported expectations about the opponents combined in an
unspecified way with past behavior and past written comments. If no defection happens, the deviation
period is recorded as 11.

52p.1000. Roth, as Selten and Stoecker, uses the word round, to which we substituted supergame for
clarity.

53Moreover, it is calculated on a subsample of the subject population that changes in every supergame.
Consequently, it is not clear if the diminishing average is a result of subjects defecting in earlier rounds
as required for unraveling, or a by-product of the changing subsample.
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to play against a computer that follows the Tit-For-Tat (TFT) strategy.54 Cooperation

rates are highest in the treatment where subjects are most likely to be playing against

the computer, and lowest in the Strangers treatment.55 By the end of the session, in

all treatments except Strangers, cooperation rates are above 60% in round one, stay

above 50% for at least 6 rounds, then fall under 10% in the last round. In the Strangers

treatment, cooperation rates fall below 30% in the last 10 rounds. These facts, which are

consistent with the findings of Kahn & Murnighan (1993), imply that subjects’ choices

depend on their beliefs about the type of opponent they are faced with. This is interpreted

by both papers as evidence consistent with the reputation building hypothesis of Kreps

et al. (1982). Andreoni & Miller (1993) go on to note that in two of the treatments

where subjects play the 10-round finitely repeated PD,56 the mean round at which the

first defection is observed in a pair increases over the course of the experiment, starting

below two in the first supergame and ending above 5 in the last.57 This observation is

inconsistent with unraveling, and in contrast to the result of Selten & Stoecker (1986).

Again, both papers considered a single set of payoffs and a single horizon. Hence, the

contrasting results could be due to the payoffs or the different ways in which each research

group constructed the relevant statistic.

Cooper et al. (1996) design an experiment to separate the reputation building and

altruism hypotheses. They compare a treatment with 20 one-shot PDs to a treatment

where subjects play two finitely repeated PDs with an horizon of 10 rounds.58 They ob-

serve higher cooperation rates in the finitely repeated PD than in the one-shot treatment.

Cooperation rates start above 50% in the finitely repeated game and end below, but are

always lower for the one-shot game. However cooperation is significantly above zero in

both treatments. Due to the limited number of repetitions, they cannot analyze the evo-

lution of behavior. They conclude that there is evidence of both reputation building and

altruism; and that neither model can explain all the features of the data on its own. As

with previous studies, a single set of payoffs and horizon was considered.

Hauk & Nagel (2001) study the effect of entry-choice on cooperation levels in the

finitely repeated PD with an horizon of 10 rounds.59 A control lock-in treatment (with

54In the Computer50 treatment this probability is 50%; in Computer0 it is 0.1%. The TFT strategy
starts by cooperating and from then on matches the opponent’s previous choice.

55In almost all rounds cooperation rates averaged over all supergames are ordered as Computer50 >
Partners > Computer0 > Strangers. The exception are the final two rounds where it is more or less
equal in most treatments and round one where Computer50 and Partners are inverted. Cooperation
rates are not statistically different between the Computer0 and Partners treatments, but in both cases
they are significantly higher than for Strangers and significantly less than for Computer50.

56The Partners and Computer50 treatments.
57The first defection round is set to 11 for a subject that never defects, otherwise it is simply the first

round in which a subject defects.
58They use a turnpike protocol to avoid potential contagion effects (McKelvey & Palfrey 1992).
59Certain design choices for this paper differ significantly from the other papers discussed. Each

session had seven subjects; and each subject played 10 supergames simultaneously against the remaining
6 players. ID numbers for partners were used to separate the different partners, and were randomly
reassigned in the following supergame.
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no ability to choose partners) is compared to two choice treatments where subjects are

unilaterally and multilaterally given an exit opportunity with a sure payoff instead of

playing the PD game. The exit option yields higher payoffs than mutual defection. Hence,

an entry decision reveals intentions on how to play the game, and beliefs about how

other subjects might play. Results show that entry-choice can have ambiguous effects

on welfare: Conditional on entering, cooperation levels are much higher in the choice

treatments. However, when the entry-choice is taken into account, overall cooperation

levels are indistinguishable (unilateral choice), or significantly lower (mutual choice). The

treatment differences in this paper suggest that a subject’s decision to cooperate changes

with beliefs about what type of opponent he is facing.

Bereby-Meyer & Roth (2006) compare play in the one-shot PD to play in the finitely

repeated PD with either deterministic or stochastic payoffs.60 The one-shot condition

involves 200 rounds with random rematching whereas the finitely repeated PD has 20

supergames with an horizon of 10 rounds. They report more cooperation in round one

of the repeated games than in the one-shot games. They also find that in the repeated

games, with experience, subjects learn to cooperate more in the early rounds and less

towards the end of the supergame. This effect is dampened with stochastic payoffs. They

interpret these observations to be consistent with models of reinforcement learning: adding

randomness to the link between an action and its consequences, while holding expected

payoffs constant, slows learning.

Dal Bó (2005) and Friedman & Oprea (2012) both conduct finitely repeated PD ex-

periments as controls for their respective studies, the first on infinitely repeated games

and the second on continuous time games. Dal Bó (2005) looks at two stage-game payoffs

with horizon of one, two or four rounds. The main focus of the paper is to compare

behavior in finitely repeated games to behavior in randomly terminated repeated games

of the same expected length. The results establish that cooperations rates in the first

round are much higher when the game is indefinitely repeated. In the finitely repeated

games, aggregate cooperation rates decline with experience. Within a supergame, there

is a sharp decline in cooperation in the final rounds. However, consistent with previous

findings, first round cooperation rates are higher in games with a longer horizon, and the

cooperation rates in the four-horizon game is at 20% even after 10 supergames.

Friedman & Oprea (2012) study four stage-game payoffs with an horizon of 8 rounds.

They find cooperation rates to increase with experience when payoffs of the stage-game

are conducive to cooperation (low temptation to defect, and high efficiency gains from

cooperation), but to decrease otherwise. They conclude that “even with ample opportu-

nity to learn, the unraveling process seems at best incomplete in the laboratory data”.

When behavior in these treatments is compared to the continuous time version with flow

payoffs, they find cooperation rates to dramatically increase. They conclude that the

unraveling argument of backward induction loses its force when players can react quickly.

60In addition, Bereby-Meyer & Roth (2006) also vary the feedback in the stochastic condition.
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They formalize this idea in terms of ε-equilibrium (Radner 1986). Agents determine their

optimal first defection point in a supergame by balancing two opposing forces: incentives

to become the first defector, and potential losses from preempting one’s opponent to start

defecting early. The capacity to respond rapidly weakens the first incentive and stabilizes

cooperation. Both Friedman & Oprea (2012) and Dal Bó (2005) use a within subjects

design, making it difficult to isolate the effect of experience.

In addition to repeated PD experiments, backward induction has been extensively

studied in the centipede game.61 In the many experimental studies on the game, subjects

consistently behave in stark contrast to the predictions of backward induction.62 The

pattern of behavior observed in this game share many features to the experimental findings

on the finitely repeated PD. First, round 1 behavior diverges from the predictions of

subgame-perfection. In the seminal paper on the game, McKelvey & Palfrey (1992) find

that even after 10 supergames, less than 10% of subjects choose to stop the game in

the first round. Second, the horizon of the centipede game has a significant impact on

initial behavior: the stopping rate in the first round is significantly lower in the longer

horizon games (less than 2% after 10 supergames.) Third, there is heterogeneity in the

subject pool with respect to how behavior changes in response to past experience. While

most subjects learn to stop earlier with experience, at the individual level, some subjects

never choose to stop despite many opportunities to do so. Motivated by this observation,

McKelvey & Palfrey (1992) show that an incomplete information game that assumes the

existence of a small proportion of altruists in the population can account for many of the

salient features of their data.63

Several recent papers study heterogeneity in cooperative behavior and the role of

reputation building in the finitely repeated PD. Schneider & Weber (2013) allow players

to select the interaction length (horizon of each supergame). They find commitment to

long-term relationships to work as a screening device. Conditionally cooperative types

are more likely to commit to long term relationships relative to uncooperative types.

While longer interactions facilitate more cooperation even when the interaction length

is exogenously imposed, endogenously chosen long-term commitment yields even higher

cooperation rates.

Kagel & McGee (2016) compare individual play and team play in the finitely-repeated

61The standard centipede game consists of two players moving sequentially for a finite number of
rounds, deciding on whether to stop or continue the game. In every round, when it is one’s turn to make
a decision, the payoff from stopping the game is greater than the payoff associated with continuing and
letting the opponent stop in the next round, but lower than the payoff associated with stopping the game
in two rounds if the game continues that far. Applying backward induction gives the unique subgame
perfect Nash equilibrium for the game which dictates the first player to stop in the first round.

62McKelvey & Palfrey (1992), Nagel & Tang (1998); Fey et al. (1996); Zauner (1999); Rapoport, Stein,
Parco & Nicholas (2003); Bornstein et al. (2004).

63Subsequent experimental papers on the centipede game have focused on identifying how beliefs about
one’s opponent affects play to provide evidence for the reputation hypothesis (Palacios-Huerta & Volij
(2009), Levitt, List & Sadoff (2011)).
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PD.64 Although under team play defection occurs earlier and unraveling is faster, coop-

eration persists in all treatments. Subjects attempt to anticipate when their opponents

might defect and try to defect one period earlier, without accounting for the possibility

of their opponents thinking similarly. This is interpreted to be consistent with a strong

status quo bias in when to defect across super-games. The authors interpret these results

as a failure of common knowledge of rationality. Analysis of team dialogues reveal beliefs

regarding the strategies of the others to change significantly across supergames. This

observation is in contrast to standard models of cooperation in the finitely repeated PD,

Finally, Cox et al. (2015) test the reputation building hypothesis in a sequential-

move finitely-repeated PD. Cooperation can be sustained in this setting if the first-mover

has uncertainty about the second mover’s type. To eliminate this channel, they reveal

second-mover histories from an earlier finitely repeated PD experiment to the first-mover.

In contradiction to standard reputation-building explanations of cooperation in finitely

repeated PDs, they find higher cooperation rates when histories are revealed. They pro-

vide a model of semi-rational behavior that is consistent with the pattern of behavior

observed in the experiment. According to the model, players use strategies that follow

TFT until a predetermined round and then switch to AD. Players decide how long to

conditionally cooperate in each supergame based only on naive prior beliefs about what

strategy their opponent is playing. Similar to the Kagel & McGee (2016) findings, the

model does not assume any higher-level reflection about the rationality or best-response

of the opponent.65

Mao et al. (2017) study long-term behavior in the finitely repeated prisoner’s dilemma

by running a virtual lab experiment using Amazon’s Mechanical Turk in which 94 subjects

play up to 400 supergames of a 10-round prisoner’s dilemma (with random matching)

over the course of twenty consecutive weekdays. While the first defection round moves

earlier with experience, partial cooperation mostly stabilizes by the end of the first week.

Cooperation is sustained by about 40% of the population who behave as conditional

cooperators never preempting defection even when following this strategy comes with

significant payoff costs.

64In the team play treatments each role is played by two subjects who choose their common action
together after free form communication.

65Recently, Kamei & Putterman (2015) investigate reputation building in a finitely repeated PD where
there is endogenous partner choice, and the parameters of the game allow for substantial gains from
cooperation. While subjects repeatedly observe end-game effects, under the right information conditions
(how much is revealed about subject’s past history of play), learning to invest in building a cooperative
reputation becomes the dominant force. This leads to higher cooperation rates with experience.
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A.2. Further Analysis of the Meta-Data

Henceforth, Andreoni & Miller (1993) will be identified as AM1993, Cooper, DeJong,

Fosythe & Ross (1996) as CDFR1996, Dal Bó (2005) as DB2005, Bereby-Meyer & Roth

(2006) as BMR2006, and Friedman & Oprea (2012) as FO2012.

Table A1
Summary of Experiments and Sessions Included in the Meta-Study

Within-subject
Experiment Sessions Subjects Supergames Horizon g ` variation

DB2005 4 192 horizon

2 108 8-10 2 0.83 1.17
2 84 5-9 2 1.17 0.83
2 108 8-10 4 0.83 1.17
2 84 5-9 4 1.17 0.83

FO2005 3 30 stage-game

3 30 8 8 0.67 0.67
3 30 8 8 1.33 0.67
3 30 8 8 2.00 4.00
3 30 8 8 4.00 4.00

BMR2006 4 74 20 10 2.33 2.33

AM1993 1 14 20 10 1.67 1.33

CDFR1996 3 30 2 10 0.44 0.78

Total 15 340

Just over a quarter of the sessions come from BMR2006, which implemented a stage-
game with both larger gain and loss parameters. The sessions that implemented a shorter
horizon–just over a quarter of the sessions–come from DB2005, which also varied horizon
within subject. By varying the stage-game within-subjects, the study of FO2012 includes
most of the extreme points of the set of normalized parameter combinations that have
been studied.
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Table A2
Marginal Effects of Correlated Random Effects Regressions for the Standard Perspective.

(See last paragraph of page 13.)

Cooperation Rate Mean Round to
Round 1 Last Round Average First Defection

g −0.04∗∗∗ (0.008) −0.03∗∗∗ (0.003) −0.01 (0.013) −0.43∗∗∗ (0.041)
l −0.02∗∗∗ (0.005) −0.01∗∗∗ (0.002) −0.05∗∗∗ (0.004) −0.16∗∗∗ (0.032)
Horizon 0.03∗∗∗ (0.004) 0.01∗∗ (0.002) 0.05∗∗∗ (0.008) 0.37∗∗∗ (0.058)
Supergame ×{H = 2} −0.02∗∗∗ (0.001) −0.02∗∗∗ (0.001) −0.03∗∗∗ (0.003) −0.00 (0.009)
Supergame ×{H = 4} −0.00∗∗∗ (0.001) −0.01∗∗∗ (0.001) −0.01∗∗∗ (0.001) −0.05∗∗∗ (0.009)
Supergame ×{H = 8} 0.03∗∗∗ (0.002) −0.01∗∗∗ (0.001) 0.00 (0.003) 0.25∗∗∗ (0.015)
Supergame ×{H = 10} 0.02∗∗∗ (0.001) −0.01∗∗∗ (0.001) 0.02∗∗∗ (0.004) 0.21∗∗∗ (0.011)
Initial Coop. in Supergame 1 0.23∗∗∗ (0.042) 0.04∗∗∗ (0.004) 0.16∗∗∗ (0.025) 0.63∗∗∗ (0.138)

Notes: For the cooperation rates, the regression model is a probit; for the mean round to first defection, it is linear.
Standard errors clustered (at the study level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
The Supergame × 1 {·} variable takes the value of the supergame number only for those observations with the relevant
horizon.
The total number of supergames varies between 5 to 10 for sessions with H = 2 and H = 4, is 8 for sessions with H = 8,
and is either 2 or 20 when H = 10.
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Figure A1
Normalized Game Parameters

The shaded region indicates the set of parameters for which (1) The mutual cooperation
payoff is larger than the average of the sucker and temptation payoffs, thus ensuring
cooperation is more efficient in the repeated game than any alternating behavior; (2) The
mutual defection payoff is lower than the average of the sucker and temptation payoffs,
thus ensuring that the average payoff always increases with cooperation. The sixth set of
sessions included in the diagram are from our own experiment, labelled EFY.
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Table A3
Marginal Effects of Correlated Random Effects Probit Regression of the Probability of

Cooperating in Round One. (See Table II.)

(1) (2)

g −0.04∗∗∗ (0.009) −0.03∗∗∗ (0.006)
` −0.02∗∗∗ (0.005) 0.00 (0.005)
Horizon 0.03∗∗∗ (0.004) 0.01 (0.005)
sizeBAD −0.24∗∗∗ (0.025)
Supergame ×1 {H = 2} −0.02∗∗∗ (0.001) −0.01∗∗∗ (0.001)
Supergame ×1 {H = 4} −0.00∗∗∗ (0.001) −0.01∗∗∗ (0.000)
Supergame ×1 {H = 8} 0.03∗∗∗ (0.002) 0.03∗∗∗ (0.002)
Supergame ×1 {H = 10} 0.02∗∗∗ (0.001) 0.02∗∗∗ (0.001)
Other Initial Coop. in Supergame - 1 0.04∗∗∗ (0.007) 0.04∗∗∗ (0.007)
Initial Coop. in Supergame 1 0.16∗∗ (0.049) 0.15∗∗ (0.049)

Observations 5398 5398

Notes: Standard errors clustered (at the study level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
The Supergame × 1 {·} variable takes the value of the supergame number only for those observations with the relevant
horizon.
The total number of supergames varies between 5 to 10 for sessions with H = 2 and H = 4, is 8 for sessions with H = 8,
and is either 2 or 20 when H = 10.

0
.4

.8
1.

2
Si

ze
 o

f b
as

in
 o

f a
ttr

ac
tio

n 
fo

r A
D

1 2 3 4 5 6 7 8 9 10
Horizon

 DB2005  AM1993
 CDFR1996  FO2012
 BMR2006  SS1986
 HN2001  EFY

Solid markers indicate between-subject design. 
Parameters used in this paper are added here as a reference and are marked as EYF.
Line shows predicted values given horizon for fit not including EFY values. 

Figure A2
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Table A4
Marginal Effects of Correlated Random Effects Probit Regression of the Probability of

Cooperating in Round One. (Alternative Specification for Table A3.)

(1) (2)

g −0.10∗∗∗ (0.026) −0.05∗∗∗ (0.012)
l 0.02∗ (0.010) 0.04∗∗∗ (0.009)
Horizon 0.03∗∗∗ (0.008) −0.00 (0.009)
sizebad −0.35∗∗∗ (0.039)
Other Initial Coop. in Supergame - 1 0.04∗∗∗ (0.008) 0.04∗∗∗ (0.008)
Initial Coop. in Supergame 1 0.16∗∗∗ (0.049) 0.16∗∗∗ (0.051)
Supergame ×1 {g = 0.83, ` = 1.17, H = 2} −0.02∗∗∗ (0.001) −0.01∗∗∗ (0.001)
Supergame ×1 {g = 1.17, ` = 0.83, H = 2} −0.02∗∗∗ (0.003) −0.00∗∗∗ (0.001)
Supergame ×1 {g = 0.83, ` = 1.17, H = 4} −0.00∗ (0.001) −0.01∗∗∗ (0.001)
Supergame ×1 {g = 1.17, ` = 0.83, H = 4} −0.01∗∗∗ (0.001) −0.02∗∗∗ (0.001)
Supergame ×1 {g = 0.67, ` = 0.67, H = 8} 0.03∗∗∗ (0.008) 0.04∗∗∗ (0.005)
Supergame ×1 {g = 1.33, ` = 0.67, H = 8} 0.03∗∗∗ (0.006) 0.03∗∗∗ (0.004)
Supergame ×1 {g = 2, ` = 4, H = 8} 0.01∗∗∗ (0.002) 0.01∗∗∗ (0.002)
Supergame ×1 {g = 4, ` = 4, H = 8} 0.04∗∗∗ (0.008) 0.03∗∗∗ (0.005)
Supergame ×1 {g = 0.44, ` = 0.78, H = 10} −0.03 (0.041) 0.02 (0.022)
Supergame ×1 {g = 1.67, ` = 1.33, H = 10} 0.02∗∗∗ (0.002) 0.02∗∗∗ (0.001)
Supergame ×1 {g = 2.33, ` = 2.33, H = 10} 0.02∗∗∗ (0.002) 0.03∗∗∗ (0.002)

Observations 5398 5398

Notes: Standard errors clustered (at the study level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.
The Supergame×1 {·} variable takes the value of the supergame number only for those observations with the relevant with
the relevant parameters.
The total number of supergames varies between 5 to 10 for sessions with H = 2 and H = 4, is 8 for sessions with H = 8,
and is either 2 or 20 when H = 10.
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Figure A3
Evolution of Cooperation by Round and First Defection
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Figure A4
(LHS) Mean Round to First Defection: All Pairs Versus Those That Cooperated in
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Table A5
Consistency of Play with Threshold Strategies. (See Table V.)

Play Consistent With
Threshold Strategy

Experiment Horizon g ` First Supergame Last Supergame

DB2005 2 1.17 0.83 – –
2 0.83 1.17 – –
4 1.17 0.83 0.68 <??? 0.80
4 0.83 1.17 0.68 <??? 0.78

FO2012 8 4.00 4.00 0.43 <??? 0.90
8 2.00 4.00 0.43 <??? 0.90
8 1.33 0.67 0.37 <??? 0.77
8 0.67 0.67 0.47 <??? 0.87

BMR2006 10 2.33 2.33 0.42 <??? 0.81
AM1993 10 1.67 1.33 0.29 <??? 0.79
CDFR1996 10 0.44 0.78 0.30 <??? 0.50

Meta All . . . 0.52 <??? 0.79

EFY (D4) 4 3.00 2.83 0.66 <??? 0.94
EFY (E4) 4 1.00 1.42 0.66 <??? 0.94
EFY (D8) 8 3.00 2.83 0.50 <??? 0.65
EFY (E8) 8 1.00 1.42 0.57 <??? 0.89

EFY All . . . 0.60 <??? 0.85

Notes: Supergame refers to supergame within a set of payoff and horizon parameters. Significance reported using subject
random effects with standard errors clustered at the study level. In the meta-study, the total number of supergames varies
between 5 to 10 for sessions with H = 2 and H = 4, is 8 for sessions with H = 8, and is either 2 or 20 when H = 10. For
the EFY experiments, the total number of supergames is either 20 or 30 for all parameter combinations.
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A.3. Further Analysis of the Experiment

Table A6
Session Characteristics

Number of Earnings
Treatment Sessions Subjects Avg ($) Min ($) Max ($)

D4 3 50 14.67 12.29 17.04
D8 3 54 31.10 27.41 34.46
E4 3 62 14.92 13.34 16.28
E8 3 46 32.83 30.40 34.70

Table A7
Cooperation Rates and Mean Round to First Defection

Cooperation Rate (%) Mean Round to
Average Round 1 Last Round First Defection

Treatment Supergames H g ` 1 L 1 L 1 L 1 L

D4 30 4 3 2.83 0.32 0.07 0.48 0.15 0.14 0.00 2.0 1.1
D8 30 8 3 2.83 0.36 0.33 0.44 0.58 0.22 0.03 2.7 3.0
E4 30 4 3 1.42 0.28 0.20 0.45 0.45 0.18 0.00 1.8 1.7
E8 30 8 1 1.42 0.48 0.52 0.57 0.88 0.26 0.09 3.7 5.1

Notes: First defection is set to Horizon + 1 if there is no defection. 1: First Supergame; L: Supergame
30.

Table A8
Pair-Wise Comparison of Measures of Cooperation Across Treatments.

All rounds Round 1 First defect
D4 D8 E4 E8 D4 D8 E4 E8 D4 D8 E4 E8

Supergames 1–15

D4 15.4 <∗∗ <∗ <∗∗∗ 29.1 <∗∗ <∗ <∗∗∗ 1.5 <∗∗∗ <∗∗ <∗∗∗

D8 34.6 > <∗∗∗ 49.3 > <∗∗∗ 2.8 >∗∗∗ <∗∗∗

E4 28.0 <∗∗∗ 49.0 <∗∗∗ 1.9 <∗∗∗

E8 60.1 79.7 5.3

Supergames 16–30

D4 9.0 <∗∗∗ <∗∗ <∗∗∗ 19.5 <∗∗∗ < <∗∗∗ 1.3 <∗∗∗ <∗∗ <∗∗∗

D8 33.2 >∗∗∗ <∗∗∗ 57.1 > <∗∗∗ 3.1 >∗∗∗ <∗∗∗

E4 21.2 <∗∗∗ 45.2 <∗∗∗ 1.7 <∗∗∗

E8 55.2 88.2 5.3

Notes: The symbol indicates how the cooperation rate of the row treatment compares (statistically) to the column treatment.
Notes: Significance reported using subject random effects and clustered (session level) standard errors.
Notes: ∗∗∗1%, ∗∗5%, ∗10%.
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A.4. Robustness Checks: Alternative Specifications to

Evaluate Statistical Significance

The data analysis reported in the main body of the text uses two main specifications:

probit with subject-level random effects and variance-covariance clustered at the level of

the paper for the meta-data, and probit with subject-level random effects and variance-

covariance clustered at the level of the session for analysis of the data from our own

experiment (or for paper specific tests from the meta).66 These specifications are meant

to account for heterogeneity across subjects as well as potential, unmodeled correlations

that emerge due to the interactions of subjects within a session, or to study-specific id-

iosyncrasies (see Fréchette 2012, for a discussion of session-effects). One potential concern

with this approach is that having a low number of clusters can lead to corrected standard-

errors that do not have the correct coverage probability in finite samples–see, for example,

Cameron & Miller (2015) for a recent survey.

Papers that establish the extent of the problem and the effectiveness of various alter-

natives mostly rely on simulation studies (see, for example, Bertrand et al. 2004, Cameron

et al. 2008). These simulations, however, are not geared towards data typically arising

from laboratory experiments. For example, the extent of heterogeneity across clusters in

the number of observations, the realisation of covariates and the error variance-covariance

matrix are all important factors for understanding the potential for over-rejection when

using cluster robust standard errors (see, amongst others, Imbens & Kolesar 2016, MacK-

innon & Webb 2017, Carter et al. 2017). These are all dimensions on which data from

laboratory studies can be expected to differ substantially from the data for which these

simulation studies were designed for–indeed, these dimensions are likely to vary between

laboratory studies given that details such as matching group size and number, re-matching

protocol, and feedback are all experimental design choices.

Nonetheless, this a potential concern, and this appendix explores alternative specifi-

cations for the results reported in the paper. One approach is to model within cluster

dependency more explicitly. We do this by estimating specifications with paper, session,

and subject random effects, or session and subject random effects, as the case may be.

Another approach is to remain agnostic about the form of the dependency between ob-

servations at the highest level (paper or session), while using bootstrap methods that are

designed to provide proper coverage in cases with a small number of clusters. For this, we

use a score-based wild bootstrap procedure (Kline et al. 2012) with a six point random

weight distribution (Webb 2014).67 To our knowledge, this is the only bootstrap-based

procedure developed so far to deal with a small number of clusters that can be used when

66A few specifications involve the equivalent linear version of these two when the dependent variable
is not binary, such as the first round of defection.

67For the specifications that use a linear model, a wild bootstrap t-testing procedure (Cameron et al.
2008) is used, again with a six point random weight distribution (Webb 2014). For both the score and
wild bootstrap-t procedures, the null hypothesis is imposed before applying random weights to residuals
or scores.
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estimating a probit (see also Cameron & Miller 2015).68 However, for these specifications

we have to drop the subject-level random effect, thus ignoring a main feature of the panel

structure of the data. We note that we find a great deal of evidence for the importance

of subject-level random effects in our data, which are typically more important than ses-

sion or paper level effects in the models that we estimate with multiple levels. By not

explicitly taking into account an important source of within cluster error correlation, this

potentially magnifies the small cluster problem. Nonetheless, this agnostic specification

provides a useful benchmark as the non-panel estimator of the coefficients is necessar-

ily less efficient than the panel estimator under the usual exogeneity assumption of the

random effects model.

The tables in this appendix reproduce all of the main statistical tests. All tables

report the p-value for the t-test of the approach in the main text (labeled CR-t for cluster

robust), the p-value for the t-test of the multi-level random effects model (labeled RE-t

for random effect model for the highest cluster level), and the p-value for the score-based

wild bootstrap t-test of the probit specification (labeled Bt-t for bootstrap). In the few

cases where the dependent variable is not dichotomous, the linear version of these is

reported. In cases where estimates of the regression are of interest, we also report the

respective marginal effects, to show how the magnitude of the estimated effects vary with

the specification. Note that the p-values are not of the marginal effects, but of the actual

coefficients from the underlying model estimated.

Although the p-values vary with the estimation method, the main results of the paper

remain. For instance, here are some of the important results: The fact that most of the

impact of the horizon on round one cooperation rates in the meta-data is absorbed by

sizeBAD remains true in all estimations (see Table A10). The finding that round one

cooperation rates are not statistically different when comparing treatments D8 and E4

from our experiment is true in all specifications (see the D8 vs E4 rows for the Round 1

block in Table A14, which shows this separately for early and late supergames; the result

also holds combining all supergames, with p-values for the CR-t, Bt-t and RE-t tests of

0.45, 0.54 and 0.61, respectively). The observation that the play of threshold strategies

increases between the first and last supergame of a session is true in all specifications for

the data of our experiment, as well as the meta-data.

68An alternative bootstrap method that is generally applicable for a wide variety of estimators is the
pairs cluster bootstrap, which resamples with replacement from the sample of clusters. However, with
very few clusters this method can run into a number of implementation problems. See, for example,
Cameron & Miller (2015) for details. Another alternative is to use the linear probability model instead
of the probit, and then use the more commonly applied wild bootstrap t-testing procedure (Cameron
et al. 2008), again with a six point random weight distribution (Webb 2014). Given this approach did
not produce any notable differences in robustness of the main results–as well as the potential problems
for the linear probability model when the regressors are no longer just a complete set of treatment
indicator variables, as is the case with regressions including g, ` and Horizon–we only report the results
of a bootstrap method that keeps the functional form of the limited dependent variable model fixed
throughout.
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A.4.1. Meta-Data

In addition to what is described above, Tables A9 and A10 also report the p-value for

the t-test on the estimated coefficients of the non-panel probit model using the standard

cluster robust variance-covariance estimator (in addition to the bootstrapped version).

This is to give a sense of what drives the changes between the random effects probit

CR-t in the text and the probit Bt-t: part of it is from the bootstrapping, but part of it

is simply the result of dropping the subject random effects. Table A9 shows variations

across specifications. In particular, none of g, `, or Horizon are statistically significant

when using bootstrapped standard errors for any of round one, the last round, all rounds,

or the round of first defection. On the other hand, the multi-level random effects almost

exclusively finds statistically significant effects. Importantly, note that the lack of signif-

icance when bootstrapping does not mean that g, `, and Horizon do not matter as the

next table makes it clear.

Indeed, Table A10 revisits the estimation of the determinants of round one cooper-

ation controlling for experience. The main result is the significance of sizeBAD in all

specifications. This confirms that the effect of g, `, and Horizon can be summarized by

how it affects the value of cooperation. Clearly there could be additional effects of these

parameters that sizeBAD does not fully capture, but it accounts for an important part

of the variation.
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Table A9
Alternative Specifications for Table A2: Marginal Effects of Correlated Random Effects

Regressions for the Standard Perspective

RE Probit Multiple REs Probit
ME CR-t ME RE-t ME CR-t Bt-t

Round 1

g −0.04 0.00 −0.05 0.00 −0.04 0.00 0.31
` −0.02 0.00 −0.02 0.07 −0.01 0.77 0.92
Horizon 0.03 0.00 0.03 0.00 0.02 0.00 0.12

Last Round

g −0.03 0.00 −0.02 0.04 −0.02 0.00 0.17
` −0.01 0.00 −0.01 0.36 −0.01 0.30 0.66
Horizon 0.01 0.01 0.00 0.10 0.00 0.13 0.23

All Rounds

g −0.04 0.00 −0.04 0.00 −0.03 0.00 0.39
` −0.03 0.00 −0.03 0.00 −0.02 0.47 0.83
Horizon 0.04 0.00 −0.02 0.00 0.03 0.00 0.17

First Defect

g −0.43 0.00 −0.46 0.00 −0.32 0.06 0.37
` −0.16 0.00 −0.17 0.01 −0.06 0.80 0.78
Horizon 0.37 0.00 0.29 0.00 0.33 0.02 0.12

Notes: Additional controls include experience variables (supergame interacted with horizon) and an indicator variable for
whether the player cooperated initially in the first supergame. The ME columns give the average marginal effect of each
explanatory variable.

Table A10
Alternative Specifications for Table A4: Marginal Effects of Correlated Random Effects

Probit Regression of the Probability of Cooperating in Round One

RE Probit Multiple REs Probit
ME CR-t ME RE-t ME CR-t Bt-t

Independent Variable Specification (1)

g −0.10 0.00 −0.11 0.00 −0.09 0.00 0.32
` 0.02 0.09 0.02 0.48 0.03 0.17 0.35
Horizon 0.03 0.00 0.04 0.00 0.03 0.00 0.14

Independent Variable Specification (2)

g −0.05 0.00 −0.05 0.16 −0.04 0.13 0.80
` 0.04 0.00 0.05 0.10 0.04 0.01 0.16
Horizon −0.00 0.60 −0.01 0.65 −0.01 0.48 0.48
sizeBAD −0.35 0.00 −0.39 0.00 −0.36 0.00 0.10

Notes: Additional controls include experience variables (supergame interacted with each combination of stage-game and
horizon parameters) and choice history variables (whether the player cooperated in the first supergame and whether the
player they were matched with cooperated in the round one of the last supergame). The ME columns give the average
marginal effect of each explanatory variable.
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Table A11
Alternative Specifications for Table A5: Consistency of Play with Threshold Strategies

Play Consistent With
Threshold Strategy

1 v L
Experiment Horizon g ` Difference CR-t Bt-t RE-t

DB2005 4 1.17 0.83 0.12 0.00 0.86 0.05
DB2005 4 0.83 1.17 0.10 0.00 0.34 0.06
FO2012 8 4.00 4.00 0.47 0.00 0.16 0.00
FO2012 8 2.00 4.00 0.47 0.00 0.33 0.00
FO2012 8 1.33 0.67 0.40 0.00 0.84 0.00
FO2012 8 0.67 0.67 0.40 0.00 0.33 0.00
BMR2006 10 2.33 2.33 0.39 0.00 0.50 0.00
AM1993 10 1.67 1.33 0.50 0.00 0.66 0.00
CDFR1996 10 0.44 0.78 0.20 0.00 0.34 0.08

Meta All . . . 0.27 0.00 0.05 0.00

EFY 4 3.00 2.83 0.28 0.00 0.09 0.00
EFY 4 1.00 1.42 0.27 0.00 0.12 0.00
EFY 8 3.00 2.83 0.15 0.00 0.12 0.11
EFY 8 1.00 1.42 0.33 0.01 0.12 0.00

EFY All . . . 0.25 0.00 0.00 0.00

Notes: The 1 v L Difference column gives the difference between the first and last supergames. Supergame refers to
supergame within a set of payoff and horizon parameters. Where possible, the CR-t and Bt-t columns use standard errors
clustered at the session level (for AM1993 row, standard errors are clustered at subject level since there is only one session;
for the Meta All row, standard errors are clustered at the study level). In the meta-study, the total number of supergames
varies between 5 to 10 for sessions with H = 2 and H = 4, is 8 for sessions with H = 8, and is either 2 or 20 when H = 10.
For the EFY experiments, the total number of supergames is either 20 or 30 for all parameter combinations.
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A.4.2. Experiment Data

Table A12
Alternative Specifications for Table III: Cooperation Rates: Early Supergames (1–15) vs

Late Supergames (16–30)

Round 1 Last Round
Treatment Diff CR-t Bt-t RE-t Diff CR-t Bt-t RE-t

D4 −9.6 0.20 0.33 0.00 −0.9 0.05 0.13 0.25
D8 7.9 0.01 0.09 0.00 −3.9 0.00 0.34 0.00
E4 −3.8 0.26 0.43 0.03 −6.6 0.00 0.13 0.00
E8 8.5 0.00 0.08 0.00 −5.7 0.00 0.09 0.00

4 −6.6 0.09 0.18 0.00 −4.1 0.00 0.02 0.00
8 8.3 0.00 0.10 0.00 −4.8 0.00 0.03 0.00

All 0.6 0.67 0.86 0.23 −4.4 0.00 0.00 0.00

All Rounds First defect
Diff CR-t Bt-t RE-t Diff CR-t Bt-t RE-t

D4 −6.3 0.03 0.13 0.00 −0.2 0.24 0.36 0.16
D8 −1.4 0.26 0.85 0.00 0.3 0.21 0.36 0.00
E4 −6.8 0.00 0.09 0.00 −0.2 0.02 0.12 0.01
E8 −4.9 0.01 0.31 0.00 −0.0 0.74 0.84 0.56

4 −6.7 0.00 0.02 0.00 −0.2 0.02 0.05 0.01
8 −2.9 0.02 0.45 0.00 0.2 0.40 0.62 0.05

All −4.1 0.00 0.12 0.00 −0.0 0.78 0.97 0.55

Notes: For the cooperation measures, the regression model is a random effects probit on an indicator variable for late
supergames, with standard errors clustered at the session level; for first defect, the regression model is a linear equivalent.
The Diff column gives the difference in the measure between early and late supergames.
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Table A13
Alternative Specifications for Table IV: Cooperation Rate for All Rounds in Supergames

1, 2, 8, 20 and 30

SG 1 vs. SG 2 SG 1 vs. SG 8
Treatment Diff CR-t Bt-t RE-t Diff CR-t Bt-t RE-t

D4 −10.5 0.01 0.12 0.01 −19.0 0.00 0.11 0.00
D8 0.5 0.92 0.89 0.91 −0.7 0.93 0.96 0.77
E4 1.6 0.72 0.64 0.75 2.0 0.79 0.87 0.74
E8 6.2 0.04 0.13 0.06 13.9 0.00 0.08 0.00

4 −3.8 0.25 0.35 0.14 −7.4 0.15 0.21 0.00
8 3.1 0.23 0.28 0.16 6.0 0.35 0.38 0.01

SG 1 vs. SG 20 SG 1 vs. SG 30
Treatment Diff CR-t Bt-t RE-t Diff CR-t Bt-t RE-t

D4 −20.0 0.01 0.07 0.00 −24.9 0.00 0.12 0.00
D8 −1.2 0.86 0.88 0.71 −3.7 0.01 0.62 0.00
E4 −8.9 0.20 0.38 0.01 −8.2 0.07 0.36 0.03
E8 3.8 0.64 0.73 0.26 4.0 0.18 0.64 0.16

4 −13.8 0.01 0.07 0.00 −15.8 0.00 0.04 0.00
8 1.1 0.84 0.85 0.62 0.0 0.59 1.00 0.26

Notes: The regression model is a random effects probit on an indicator variable for the later supergame, with standard
errors clustered at the session level. The Diff column gives the difference in the all-rounds cooperation rate in supergame 1
versus the later supergame.
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Table A14
Alternative Specifications for Table A8: Pair-Wise Comparison of Measures of

Cooperation Across Treatments

Round 1 Last Round
Diff CR-t Bt-t RE-t Diff CR-t Bt-t RE-t

Supergames 1–15

D4 vs D8 −20.2 0.05 0.10 0.01 −3.8 0.08 0.19 0.05
D4 vs E4 −20.0 0.07 0.13 0.01 −6.3 0.00 0.01 0.00
D4 vs E8 −50.6 0.00 0.01 0.00 −4.9 0.01 0.05 0.02
D8 vs E4 0.2 0.91 0.97 0.94 −2.5 0.13 0.36 0.18
D8 vs E8 −30.5 0.00 0.01 0.00 −1.1 0.62 0.68 0.69
E4 vs E8 −30.7 0.00 0.01 0.00 1.4 0.07 0.35 0.38

Supergames 16–30

D4 vs D8 −37.7 0.01 0.02 0.00 −0.7 0.65 0.72 0.60
D4 vs E4 −25.7 0.11 0.02 0.01 −0.6 0.58 0.78 0.56
D4 vs E8 −68.7 0.00 0.01 0.00 −0.1 0.68 0.97 0.73
D8 vs E4 11.9 0.17 0.26 0.12 0.2 0.97 0.94 0.97
D8 vs E8 −31.0 0.00 0.01 0.00 0.7 0.85 0.75 0.87
E4 vs E8 −43.0 0.00 0.01 0.00 0.5 0.76 0.75 0.84

All Rounds First Defect
Diff CR-t Bt-t RE-t Diff CR-t Bt-t RE-t

Supergames 1–15

D4 vs D8 −19.2 0.01 0.03 0.00 −1.3 0.00 0.01 0.00
D4 vs E4 −12.6 0.07 0.09 0.02 −0.5 0.02 0.11 0.06
D4 vs E8 −44.7 0.00 0.01 0.00 −3.9 0.00 0.01 0.00
D8 vs E4 6.6 0.16 0.26 0.26 0.8 0.00 0.01 0.00
D8 vs E8 −25.5 0.00 0.01 0.00 −2.5 0.00 0.01 0.00
E4 vs E8 −32.1 0.00 0.01 0.00 −3.4 0.00 0.01 0.00

Supergames 16–30

D4 vs D8 −24.1 0.00 0.02 0.00 −1.8 0.00 0.01 0.00
D4 vs E4 −12.2 0.02 0.09 0.00 −0.4 0.03 0.16 0.16
D4 vs E8 −46.2 0.00 0.02 0.00 −4.0 0.00 0.01 0.00
D8 vs E4 12.0 0.00 0.06 0.01 1.4 0.00 0.01 0.00
D8 vs E8 −22.0 0.00 0.02 0.00 −2.2 0.00 0.02 0.00
E4 vs E8 −34.0 0.00 0.01 0.00 −3.6 0.00 0.01 0.00

Notes: For all cooperation measures, the regression model is a random effects probit on a complete set of treatment dummies,
with standard errors clustered at the session level; for first defect, the model is the linear equivalent. The Diff column gives
the difference in the measure between the measures for the comparison treatments.
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A.5. Further Details and Analysis of the Learning Model

A.5.1. Estimates

Tables A15 and A16 report summary statistics for the estimates of the learning model

for each treatment. To facilitate comparison, the parameters representing initial beliefs in

supergame 1 are normalized. β̄ denotes
∑

k βk0, as defined in the learning model. Using

this, β̃k = βk0
β̄

so that
∑

k β̃k = 1.

E8

Variable Mean Std. Dev.

λ 0.83 0.86
θ 0.83 0.22
σ 0.16 0.17
κ 4.22 2.76
β̄ 4.45 2.92

β̃1 0.14 0.27

β̃2 0.03 0.07

β̃3 0.03 0.06

β̃4 0.06 0.11

β̃5 0.08 0.19

β̃6 0.04 0.06

β̃7 0.06 0.1

β̃8 0.1 0.12

β̃9 0.07 0.11

β̃10 0.16 0.24

β̃11 0.21 0.17
ll 54.77 28.77

D8

Variable Mean Std. Dev.

λ 2.68 4.9
θ 0.62 0.34
σ 0.22 0.18
κ 33.×1012 233.×1012

β̄ 9.04 5.36

β̃1 0.31 0.39

β̃2 0.07 0.19

β̃3 0.02 0.09

β̃4 0.02 0.05

β̃5 0 0.01

β̃6 0.02 0.04

β̃7 0.03 0.06

β̃8 0.05 0.14

β̃9 0.09 0.18

β̃10 0.12 0.14

β̃11 0.26 0.3
ll 91.12 43.92

Table A15
Summary statistics for long horizon treatments
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D4

Variable Mean Std. Dev.

λ 2.2 4.83
θ 0.71 0.32
σ 0.16 0.18
κ 1.12 7.88
β̄ 4.×1014 3.24

β̃1 0.32 0.35

β̃2 0.07 0.19

β̃3 0.05 0.16

β̃4 0.05 0.09

β̃5 0.05 0.08

β̃6 0.12 0.19

β̃7 0.34 0.32
ll 29.39 19.02

E4

Variable Mean Std. Dev.

λ 8.17 11.9
θ 0.46 0.31
σ 0.22 0.19
κ 31.×1012 17.×1013

β̄ 1.98 1.01

β̃1 0.15 0.32

β̃2 0.18 0.33

β̃3 0.02 0.04

β̃4 0.09 0.19

β̃5 0.11 0.25

β̃6 0.16 0.31

β̃7 0.29 0.37
ll 27.64 18.76

Table A16
Summary statistics for short horizon treatments
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A.5.2. Figures
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Figure A7
Average Cooperation: Simulation Versus Experimental data
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Figure A8
Mean Round to First Defection by Supergame: Simulation versus Experimental Data
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Figure A9
Long Term Evolution of Mean Round to First Defection by Supergame
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Figure A10
Average Cooperation Rate by Supergame: Simulation versus Experimental Data for

Each Round in the Short Horizon Treatments
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Figure A11
Long Term Evolution of Cooperation Rate for Each Round of the Short Horizon

Treatments
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Figure A12
Average Cooperation Rate by Supergame: Simulation versus Experimental Data for

Each Round in D8
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Figure A13
Long Term Evolution of Aggregate cooperation For Each Round In E8
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Figure A14
Long Term Evolution of Aggregate cooperation For Each Round In D8
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Figure A15
Cumulative Distribution of Cooperation Against an AD type In E8 (Supergames

250-300)

Each subject is simulated to play against an AD type–someone who defects in all

rounds of a supergame regardless of past experience–for 300 supergames. The average

cooperation rate for the subject from supergames 250-300 is taken as a measure of that

subject’s cooperativeness. Such a measure of cooperativeness combines the effects of the

parameters estimated in the model in an intuitive way. It effectively captures how well a

subject is able to learn to defect against a defector.69,70

Figure A15 plots the cumulative distribution of simulated cooperation rates after 250

supergames against a player who is following the AD strategy. The distribution has a

mass point around 0 implying that about 40% of the subjects learn to defect perfectly

with sufficient experience in this environment. There is limited but positive levels of

cooperation for the remaining subjects. Note that this corresponds to subjects making

cooperative choices after observing their partners defecting in every single round of 250

supergames; hence, this suggests the existence of cooperative types. The model allows

for multiple kinds of cooperative types: some forces that can drive cooperative actions in

such an extreme environment are strong priors, limited learning from past experiences,

and noise in strategy choice and implementation.

69An horizon of 250-300 is chosen to correspond to the time frame we are analyzing in what follows,
but the exercise can easily be repeated for a different range of supergames. Looking at cooperation rates
in supergames 900-1000 gives very similar results.

70Focusing on cooperation in later supergames also dampens the effect of a strong prior and execution
noise in early supergames. This exercise can be repeated by constructing a measure of cooperativeness by
focusing on behavior in early supergames. As expected, removing subjects based on such a measure has
a bigger impact on cooperation in earlier supergames, but the effect quickly disappears with experience.
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Long term Evolution of Aggregate Cooperation For Each Round In E8 By Subset
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Figure A17
Long term Evolution of Aggregate Cooperation
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Figure A18
Frequency and Expected Payoff of Each Strategy

These values are estimated by simulating behavior in 1000 sessions composed of 14 ran-
domly drawn subjects. The frequency of choice for each strategy is recorded, along with
how well each strategy performs when played against each subject of the session.
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Figure A19
Effects of Constraining the Decline (with Experience) of Implementation Noise

One additional concern may be the robustness of the results to specific parameters.

In particular, one may wonder what happens in the long run, if implementation error

is not allowed to completely disappear with experience. To explore this possibility, we

conduct additional simulations constraining how much the implementation error can de-

cline as as a result of learning (through the κ parameter). Formally, if the constraint

is set to σmin, implementation noise in supergame t for subject i is calculated to be

max{min(σmin, σi), σ
tκi
i }. According to this specification, σmin does not constrain initial

implementation noise σi, but limits how much it can decline over time with experience

through the κ parameter. We recover our original simulation results when the constraint

is never binding (set to 0), and we see what long term cooperation results would be like if

the implementation noise never changed (corresponding to the case where the constraint

is set to 0.5, which is equivalent to setting κi = 0 for all subjects).

The results show this constraint to have little effect on long term cooperation rates in

the E8 treatment. In the case of treatments E4 and D4, looking directly at the experimen-

tal data reveals over 95% of play to be consistent with threshold strategies by supergame

30. Thus, persistent implementation error seems less of a concern in these treatments.

D8 is the treatment where persistent implementation noise has the most effect. In this

treatment, cooperation rates in the 1000th supergame are significantly affected by the

constraint (although still remain below 30%) and our experimental data cannot inform

us of the extent to which implementation errors may persist.
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A.6. Sample Instructions: D8 Treatment

Welcome

You are about to participate in an experiment on decision-making. What you earn

depends partly on your decisions, partly on the decisions of others, and partly on chance.

Please turn off cell phones and similar devices now. Please do not talk or in any way try

to communicate with other participants.

We will start with a brief instruction period in which you will be given a description of

the main features of the experiment. If you have any questions during this period, raise

your hand and your question will be answered so everyone can hear.

General Instructions

1. You will be asked to make decisions in several rounds. You will be randomly paired

with another person in the room for a sequence of rounds. Each sequence of rounds

is referred to as a match.

2. Each match will last for 8 rounds.

3. Once a match ends, you will be randomly paired with someone for a new match.

You will not be able to identify who you’ve interacted with in previous or future

matches.

Description of a Match

4. The choices and the payoffs in each round of a match are as follows:

1 2

1 51, 51 5, 87

2 87, 5 39, 39

The first entry in each cell represents your payoff for that round, while the second

entry represents the payoff of the person you are matched with.

(a) The table shows the payoffs associated with each combination of your choice

and choice of the person you are paired with.

(b) That is, in each round of a match, if:

• (1, 1): You select 1 and the other selects 1, you each make 51.

• (1, 2): You select 1 and the other selects 2, you make 5 while the other

makes 87.

• (2, 1): You select 2 and the other selects 1, you make 87 while the other

makes 5.

• (2, 2): You select 2 and the other selects 2, you each make 39.

39



To make a choice, click on one of the rows on the table. Once a row is selected, it

will change color and a red submit button will appear. Your choice will be finalized

once you click on the submit button.

Once you and the person you are paired with have made your choices, those choices

will be highlighted and your payoff for the round will appear.

End of the Session

5. The experiment will end after 30 matches have been played.

6. Total payoffs for each match will be the sum of payoffs obtained from each round

of that match. Total payoffs for the experiment will be the sum of payoffs for all

matches played. Your total payoffs will be converted to dollars at the rate of 0.003$

for every point earned.

Are there any questions?

Before we start, let me remind you that:

• Each match will last for 8 rounds. Payoffs in each round of a match, as given in the

table above, depend on your choice and the choice of the person youre paired with.

• After a match is finished, you will be randomly paired with someone for a new

match.
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