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Abstract

Are systematic biases in decision making self-corrected in the long run when agents are

accumulating feedback informative of optimal behavior? This paper focuses on a canonical

updating problem where the dominant deviation from optimal behavior is base-rate neglect.

Using a laboratory experiment, we document persistence of suboptimal behavior in the presence

of feedback. Using diagnostic treatments, we study the mechanisms hindering learning from

feedback. We investigate the generalizability of these results to other settings by also studying

long-run behavior in a voting problem where failure to condition on being pivotal generates

suboptimal behavior. Our findings provide insights on what types of mistakes should be expected

to be persistent in the presence of feedback. Our results suggest mistakes are more likely

to be persistent when they are driven by incorrect mental models that miss or misrepresent

important aspects of the environment. Such models induce confidence in initial answers, limiting

engagement with and learning from feedback. These results have implications for how policies

should be designed to counteract behavioral biases.
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1 Introduction

Behavioral economics has accumulated a wealth of evidence documenting systematic biases in

decision making. An important question is whether such biases are self-corrected in the presence of

feedback. On the one hand, biases might vanish with experience if agents are accumulating evidence

informative of optimal behavior. On the other hand, this type of learning presumes agents are

attentive to the feedback they are experiencing, willing and able to adjust their behavior in response

to it. A growing empirical and theoretical literature challenges this position by emphasizing how

initial misconceptions can have long-lasting effects on how people learn from their experiences.1

In this paper, we present results from a laboratory experiment designed to study optimality

of long-run behavior in the presence of feedback and bring to light the different mechanisms that

hinder learning from feedback. The experiment has two crucial features. First, we consider a

baseline treatment where subjects face a decision problem in which useful information about the

problem generates biased behavior. We then study the evolution of this bias when subjects face

multiple rounds and receive transparent feedback. Second, we compare behavior in this treatment to

a control treatment in which information inducing biased behavior is withheld from the subjects.

In the absence of such information, subjects can only rely on feedback to learn about optimal

behavior. This design allows us to study the extent to which initial misconceptions induced by

payoff-relevant information about the problem can inhibit learning from feedback.

In our baseline treatment, information we provide to the subjects induces one of the most well-

documented biases in the literature, base-rate neglect. As a motivating example (adapted from

Kahneman & Tversky 1972), consider a person who is tested for a disease. The disease has a

prevalence of 15 percent in the general population and the test has an accuracy of 80 percent.2

With these primitives, the chance that the person is sick conditional on a positive test result

is 41 percent, but the literature has repeatedly documented that many subjects (and doctors!)

incorrectly consider this chance to be 80 percent (see Benjamin (2019) for a survey). Because such

beliefs completely fail to take into account the unconditional probability of the disease, we refer to

this bias as perfect base-rate neglect (pBRN).

While BRN is not the only deviation from the Bayesian benchmark observed in the data, it is

the overwhelmingly dominant one: More than half our subjects’ initial beliefs are consistent with

pBRN. The experimental design involves subjects facing the same decision problem for 200 rounds.

1For recent theoretical and empirical contributions see Esponda & Pouzo (2016) and Hanna, Mullainathan &
Schwartzstein (2014), respectively. For more references, see discussion of the literature.

2The probability of a positive test result conditional on the person being sick (not sick) is 80 (20) percent.
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In each round, a new state is randomly selected and a signal is drawn. Subjects submit beliefs

conditional on the signal, and observe the true state at the end of the round. The interface also

displays a record of all past outcomes. In our baseline treatment, labeled as Primitives, subjects

are presented with the above problem (albeit with a more neutral framing) and informed of the

primitives (i.e., the 15 percent prior and the 80 percent accuracy of the signal) so that, in principle,

they could provide the correct response of 41 percent (conditional on a positive signal) from the

very first round.

Our focus is on the optimality of long-run behavior in response to feedback, specifically how

close beliefs are to the Bayesian benchmark after 200 rounds. We find that, at the aggregate level,

the adjustment is slow and partial. For example, the average belief conditional on a positive signal,

which starts at 64 percent in round one, drops to 54 percent by round 200. While the adjustment is

significant, it also remains substantially above the Bayesian benchmark of 41 percent, implying that

the wrong state is persistently judged to be more likely. These results show that subjects’ incorrect

understanding of how to make use of the primitives have long lasting effects even in a context where

there is abundant evidence (feedback about past outcomes in this case) that is informative about

optimal behavior.

However, it is difficult to interpret long-run beliefs in Primitives on its own. We need a bench-

mark that captures how much subjects could have learned from the feedback provided in 200 rounds

in the absence of any other information that might induce an incorrect understanding and hence

bias behavior. In other words, we need a counterfactual environment where subjects need to rely

on feedback alone to determine optimal behavior. With this aim, we conduct a control treatment,

labeled as NoPrimitives, in which subjects face the same updating task described in the Primitives,

except that they are not provided with the primitives. That is, subjects receive the same descrip-

tion of the task but are not given the specific values for the prior and the accuracy of the signal.

As in the baseline treatment, we let subjects experience the realization of the state and the signal

in every round for a total of 200 rounds. The feedback subjects receive is structurally the same in

both treatments because it is generated by the same primitives, and it is exogenous to the subjects’

beliefs.

We find an important treatment effect after 200 rounds with respect to the accuracy of beliefs:

In aggregate, beliefs in the control treatment (NoPrimitives) are closer to the Bayesian benchmark

relative to beliefs in the baseline treatment (Primitives). For example, the average belief conditional

on a positive signal is at 46 percent in NoPrimitives which is eight percentage points lower than the
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value in Primitives.3 Moreover, the treatment effect disappears if we exclude subjects who provide

the pBRN answer in the initial round, suggesting that, of all initial misconceptions induced by the

Primitives treatment, it is principally those inducing the pBRN beliefs in round one that hinder

learning from feedback.

We then turn to understanding the channels through which learning from feedback is made

more difficult in Primitives. We conduct additional treatments and make use of a learning model

to provide insights on mechanisms.

First, we investigate whether initial misconceptions, induced by information on the primitives,

hinder learning from feedback by endowing subjects in Primitives with unjustified high confidence

in their initial responses. To test this, we run a diagnostic treatment that is identical to Primitives

except for one small difference. At the end of round one, we tell subjects (to whom the message

applies) that their initial responses are not correct. Otherwise, subjects experience 200 rounds of

feedback in the same way. The message has a large impact on how close beliefs are to the Bayesian

benchmark after 200 rounds of feedback. The average belief conditional on a positive signal drops to

42 percent, 12 percentage points lower than the value in Primitives. In fact, all subjects, including

those with initial pBRN beliefs, are capable and willing to learn from feedback. Together with our

earlier findings, this suggests that subjects with high confidence in their initial pBRN beliefs play

a critical role in inhibiting learning from feedback in Primitives.

Second, we ask whether initial misconceptions, induced by information on the primitives, hinder

learning from feedback by also reducing subjects’ attentiveness to the feedback available to them.4

Specifically, we conduct a set of diagnostic treatments to examine whether information on the

primitives impacts engagement with feedback. These treatments are identical to Primitives and

NoPrimitives, except that we allow subjects to “lock in” their responses at any point during the 200

rounds. Once responses are locked-in, they are automatically implemented for all future rounds.

This lock-in decision gives us a simple measure of engagement by revealing how many rounds of

feedback subjects are willing to see. Our results highlight large differences in engagement with

feedback. When provided with the primitives, only half the subjects choose to see more than 20

rounds of feedback and only four percent choose to observe all 200 rounds. By contrast, without

3The finding that long-run behavior is approximately optimal in NoPrimitives is in line with the frequentist
hypothesis in evolutionary psychology (Cosmides & Tooby 1996), which states that some reasoning mechanisms
in humans are naturally designed to use frequency information. It is also consistent with studies establishing that
animal foraging behavior is approximately optimal despite the primitives of the environment being unknown, a finding
sometimes attributed to the ability to track frequencies (e.g., Lima (1984)).

4Feedback in these treatments is presented on a round-by-round basis. The design also provides subjects with a
record of all past outcomes. By attentiveness, we mean going beyond merely observing outcomes, but also aggregating
them in a manner that may allow the agent to learn from them.
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information on the primitives, 94 percent of subjects choose to see more than 20 rounds of feedback

and 34 percent of subjects see all 200 rounds.

Third, the impact of initial confidence and the decision to engage with data crucially depends on

the cost of learning, and so we investigate the extent to which these costs hinder learning. We run

two more treatments, which are identical to Primitives and NoPrimitives except that we provide

feedback on a round-by-round basis in an aggregated and processed way. Specifically, in each

round, we summarize feedback observed up to that point in an easy-to-read table; in addition, we

report the empirical frequency of the state conditional on each signal. These treatments reveal how

behavior evolves differently with and without information on primitives when the cost of processing

feedback is effectively lowered to zero. Results show that when feedback is presented in this way,

subjects are able to learn more in both treatments. Average beliefs conditional on a positive signal

drop to 44 and 41 percent, in the treatments with and without information on the primitives,

respectively. Then, by making use of a simple learning model and combining results from the new

treatments with the earlier ones, we separately identify the degree to which our earlier results on

the long-run differences between Primitives and NoPrimitives are due to (i) higher confidence in

initial response; and (ii) lower attentiveness to feedback in the former environment. Our results

suggest that both channels play an equally important role.

Finally, we study whether subjects in Primitives who respond to feedback, simply adjust their

beliefs to be consistent with observed frequencies, or whether they gain a deeper understanding of

why their initial answers were wrong. We do so by including one last updating problem where the

prior and the accuracy of the test are changed, and subjects in both Primitives and NoPrimitives

are equally informed about the new primitives. We find that the treatment effect reverses: average

beliefs in Primitives are closer to the Bayesian benchmark than in NoPrimitives. While learning is

partially transferable to this new setting, a non-negligible amount of base-rate neglect remains in

Primitives, though a much higher proportion appears in NoPrimitives.

Throughout the paper, we use the term ‘misconception’, or alternatively incorrect ‘mental

model’, broadly to refer to an agent’s incorrect initial understanding of the environment that

misses or misrepresents important aspects of reality while endowing the agent with confidence in

their initial answer.5 We find persistent failures to learn in information-rich environments and that

these failures are driven by confidence in an incorrect initial answer. Confidence hinders learning

both by making subjects less responsive (put less weight) on new information and by lowering

5In a general sense, different types of initial misconceptions can arise in any setting, with or without information
on primitives. But, by contrasting such treatments (with and without information on the primitives), we are able to
study the long-run implications of misconceptions that manifest in one setting but not the other.
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attentiveness to such information.

These findings provide insights on what other types of mistakes might fail to be self-corrected

with experience. Our results suggest that mistakes that are driven by an incorrect understanding

of the environment that misses or misrepresents some aspects of reality might not be corrected. On

the other hand, not all mistakes are driven by incorrect mental models, such as those that arise

because it is cognitively costly to identify optimal behavior. In such cases, our findings suggest

that the agent will be self-aware of the possibility of a mistake, and will be more open to engaging

with feedback and correcting their behavior.

We conclude by assessing the generalizability of our results and testing our hypothesis about the

types mistakes that are likely to persist in a new environment. We conduct four more treatments

in a setting involving a voting decision where an agent, by conditioning on the case when her vote

is pivotal, could identify that there is a dominant action. However, the framing of the problem is

such that an agent who fails to condition on this contingency (pivotality) would incorrectly perceive

the decision as reflecting risk preferences.6 As in our original treatments, we elicit initial and long-

run responses in the presence of feedback. First, replicating our main result in a new setting, we

document higher rates of optimal behavior in the long-run in a treatment where subjects were not

given the primitives relative to one where they were. This result reaffirms the main message of

the paper that mistakes that are driven by incorrect understanding of the environment that miss

or misrepresent some aspects of reality are difficult to correct. In our last two treatments, we

present the same voting problem but with the options deliberately described in a more complicated

manner. This makes the initial misconception (that the problem represents a choice on risk) less

apparent. According to our hypothesis about the types of mistakes that are more likely to persist,

the complex description should make it more likely that subjects are aware of the possibility of a

mistake in their initial responses, and this should in turn improve learning. Consistent with our

hypothesis, we find that subjects are less confident in the complex framing, and do equally well in

the long run with or without information on the primitives.

Connections to the literature

The themes explored in this paper, in terms of how learning from past experiences is necessarily

shaped by our initial understanding of the world, connect with a few different literatures. First,

our results provide support for a growing literature in economics that studies the implications of

incorrect or misspecified models. A central premise of this literature is that the degree to which an

6The setting is based on the problem studied in Ali, Mihm, Siga & Tergiman (2021).
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agent learns from past experiences is constrained by her initial misspecified model.7 There is also a

related literature that models why misrepresentations can arise in the first place (e.g., Gennaioli &

Shleifer (2010), Bordalo, Gennaioli & Shleifer (2013), and Gabaix (2014)) and emphasizes cognitive

difficulties associated with comprehending and integrating important features of the environment

to the decision making process.8 Such cognitive difficulties may explain agents’ reliance on simpler

(but incorrect) mental models. Furthermore, our result that some agents change their model with

feedback but others do not speaks to a small literature that studies how agents question and change

their models of the world (e.g., Ortoleva (2012), Montiel Olea et al. (2022), Fudenberg & Lanzani

(forthcoming), He & Libgober (2023).)

Second, an emerging literature endogenizes attentiveness to payoff-relevant features of the envi-

ronment when there are information processing costs. The literature on rational inattention (e.g.,

Sims 2003; Caplin & Dean 2015) assumes agents have rational expectations about the value of such

information, but trade off this value against learning costs. Building on this intuition, but allowing

agents to be systematically misguided in how they assess the value of information, Schwartzstein

(2014) and more recently Gagnon-Bartsch, Rabin & Schwartzstein (2021) model the learning pro-

cess of an agent who channels her attention to a subset of events that are deemed relevant by her

(potentially incorrect) mental model, blocking out other types of information. Consistent with our

experimental results, these theory papers demonstrate how suboptimal behavior can persist in the

long run even when there are negligible attention costs because agents have mistaken initial views

on what and how they can learn from feedback. Following the language of Handel & Schwartzstein

(2018), such failures in learning would not be driven by “frictions” that are associated with costly

information processing, but “mental gaps” that are resulting from misjudgments about the value

of information.9

Even in the absence of direct information-processing costs, there could be other behavioral

forces that influence an agent’s engagement with feedback. For example, either due to motivated

beliefs (e.g. Bénabou & Tirole 2003; Brunnermeier & Parker 2005; Köszegi 2006) or simply due

to a desire for consistency (Falk & Zimmermann 2018), agents might be reluctant to adjust their

7For recent examples, see Esponda & Pouzo (2016), Fudenberg, Romanyuk & Strack (2017), Bohren & Hauser
(2021), and Heidhues, Kőszegi & Strack (2018).

8See for example, Eyster & Weizsäcker (2010), Cason & Plott (2014), Esponda & Vespa (2014), Louis (2015),
Dal Bó et al. (2018), Ngangoué & Weizsäcker (2021), Esponda & Vespa (2021), Mart́ınez-Marquina, Niederle & Vespa
(2019), Araujo, Wang & Wilson (2021), Martin & Muñoz-Rodriguez (2019), Moser (2019), Graeber (2022), Enke &
Zimmermann (2019), Enke (2020), Bayona, Brandts & Vives (2020).

9While there is limited empirical evidence on this, our paper is not the first to show that agents can be suboptimally
inattentive to features of the environment that are payoff relevant. For instance, Hanna et al. (2014) find that
Indonesian seaweed farmers persistently fail to optimize along a dimension (pod size) despite substantial evidence
because they fail to examine the data in a way that would suggest its importance. See Gagnon-Bartsch, Rabin &
Schwartzstein (2021) for more examples.
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behavior in response to past outcomes.10 These different literatures share a common insight that

initial misconceptions can inhibit learning by impacting the way agents engage with the data, and

our experiment provides strong evidence for this channel.

Our paper also relates to a literature that studies long-run outcomes in the presence of feedback.

In many of these cases, it is challenging to identify the mechanisms that hinder learning from

feedback. For example, learning in strategic settings is complicated by the fact that agents may

also have to make inferences about the strategies of others, and these strategies may change over the

course of the experiment. Moreover, in many problems, feedback is often partial, noisy, endogenous

to the subject’s choices, or subjects may face sample selection issues (e.g., Huck, Jehiel & Rutter

2011, Esponda & Vespa 2018; Enke 2020; Araujo, Wang & Wilson 2021; Barron, Huck & Jehiel

2019). Yet another example of why learning from feedback might be difficult is the case of an agent

who makes choices such that the collected information cannot challenge her model of the world

(e.g. Dekel, Fudenberg & Levine 2004; Fudenberg & Vespa 2019).11 To control for these issues, we

focus on simple decision problems in which feedback is simple, transparent and exogenous to the

subjects’ choices.

There is also a large literature on the specific bias that we primarily focus on, base-rate neglect,

initiated by Kahneman & Tversky (1972) and recently surveyed in Benjamin (2019), which also

summarizes evidence on the pervasiveness of this bias in important settings (e.g., medical diagnosis,

court judgments).12,13 The broader literature largely abstracts from responses to feedback and

learning. A small literature in psychology studies base-rate neglect in the presence of feedback,

but this literature focuses on the evolution of beliefs when subjects are not given the primitives

and only observe outcomes from a natural sampling process. To our knowledge, there has not

been an experiment contrasting learning in treatments with and without primitives with the goal

of studying the role initial misconceptions play in the persistence of biases.14

10See Bénabou & Tirole (2016) for an extensive review of this literature. Recently, Zimmermann (2020) and Huff-
man, Raymond & Shvets (2022) study the connection between persistent overconfidence and distortions in memory
through selective recall when there is repeated feedback.

11More details on the recent experimental papers studying subjects’ response to feedback is included in Online
Appendix A.

12The public debate on effectiveness of vaccines provides a perfect example of how base-rate neglect can have dire
consequences in a high-stakes environment. Major news organizations were reporting data on vaccine effectiveness
failing to properly account for base-rate information (e.g. link1). These types of misrepresentations of the data lead
to a public effort to train people to correctly account for base-rates (e.g. link2)

13There is also a literature related to the voting problem that we study in our last treatments. As a reference, see
Esponda and Vespa (2014, 2021), and Ali, Mihm, Siga & Tergiman (2021).

14More detailed discussion of the psychology literature studying base-rate neglect in the presence of feedback is
included in Online Appendix A.
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2 Experimental design

We designed the experiment to serve two main goals. First, the design allows us to study the

persistence of a well-documented bias (BRN) in the presence of feedback in a simple framework,

where feedback is natural, informative and independent of the subjects’ choices. Second, the design

includes a control treatment (without primitives) in which feedback is structurally the same, but

mistakes resulting from incorrect use of primitives (such as BRN) are not possible. Thus, the

control treatment provides us with a benchmark on subjects’ long-run beliefs when feedback is the

only information provided to them.

In this section, we describe the overarching design framework used in all treatments and the

details associated with the first two parts of the core treatments, which test the central hypothesis

in the paper. The remaining two parts of the core treatments and nine additional supporting

treatments are introduced in subsequent sections and designed to study the mechanisms underlying

these results and the generalizability of these results to other settings.15

I. Updating task: Round One

This first part, referred to as round one, introduces the main belief-updating task. The task

consists of updating beliefs about the chance that a randomly selected project is a success or failure

conditional on a signal being positive or negative. There are 100 projects in total, 15 of which are

successes and the remaining 85 are failures, implying a prior (ex-ante probability that a randomly

selected project is a success) of 15 percent. After randomly drawing a project, the interface produces

a signal, positive or negative, with a reliability of 80 percent. This means that if the project is a

success (failure), the signal, which is framed as a test result, will be positive (negative) with 80

percent chance and negative (positive) with 20 percent chance. This parameterization (prior p =

.15, reliability of signal q = .8) corresponds to the classic parameterization of Kahneman & Tversky

(1972).

The core of our experimental design consists of two between-subject treatments which differ

only in the instructions provided in this part. The treatments, referred to as Primitives and

NoPrimitives, vary in whether subjects are provided with the primitives of the problem or not. All

other parts of the instructions, in this part and in all subsequent parts, are identical.

In Primitives, subjects know that 15 projects are successes and 85 projects are failures and

15A full description of the experimental design for all treatments is provided in Online Appendix B. For the full
details that allow an exact replication of our experiment, we refer the reader to the Online Procedures Appendix,
where we include instructions and screenshots relating to each part.
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that the signal has a reliability of 80 percent. In NoPrimitives, subjects know that some projects

are successes and some are failures, but they are not told how many are successes and how many

are failures, and they are also not told the reliability of the signal. In both treatments, using the

strategy method, we ask subjects to submit two assessments: (1) the belief that the project is a

success conditional on the signal being positive (BPos), and (2) the belief that the project is a success

conditional on the signal being negative (BNeg). In this round and in all future belief-elicitation

rounds, subjects are incentivized using a standard incentive-compatible mechanism.16

In Primitives, subjects could in principle use Bayes’ rule to provide the correct answer. Given

the prior p = .15 and the reliability of the signal, q = .8, the Bayesian posterior that the project is a

success conditional on a positive signal is, in percentage terms, BBay
Pos = pq

pq+(1−p)(1−q)×100% = 41%.

Similarly, the Bayesian posterior that the project is a success conditional on a negative signal is

BBay
Neg = 4%. The literature, however, finds that many subjects respond by fully ignoring the prior

(treating it as uniform), a response that we call perfect Base Rate Neglect (pBRN) and we denote

in percentage terms by (BpBRN
Pos , BpBRN

Neg ) = (80, 20). In NoPrimitives, there is no correct way to

respond and there is of course no way to suffer from BRN, since the primitives are not provided.

To avoid confusion, we specifically tell subjects in this treatment that clearly there is not enough

information at this point to make an informed decision.

II. Learning: Repetition of updating task, rounds 2-200

This part of the experiment allows us to study how experience and feedback affects beliefs in each

treatment. In this part, subjects repeat the task they faced in round one for another 199 rounds.17

The reliability of the signal and the prior are the same in all rounds and equal to round one

(p = .15, q = .8), and the state is drawn independently and with replacement in every round.

This part is divided into two phases. The first phase encompasses rounds 2 through 100. At the

end of each round, subjects receive feedback on the signal (signal is positive vs. negative) and state

(project is a success vs. failure) realizations. The right side of the screen includes a history box

that records the signal and state realizations observed in each of the past rounds. Figure 1 shows

a screen shot of round 5. In the top-left of the screen, the subject submits a belief conditional

on a positive signal and a belief conditional on a negative signal. The figure shows a subject who

16Belief elicitation has been combined with the strategy method in a number of prior information-response experi-
ments, e.g. Cipriani & Guarino (2009), Toussaert (2017), Agranov, Dasgupta & Schotter (2020), Charness, Oprea &
Yuksel (2021). See Danz, Vesterlund & Wilson (2022) for a recent evaluation of belief elicitation practices and the
Online Procedures Appendix for further details on how our design introduces the elicitation method.

17Each part is introduced as a surprise, meaning that subjects were not informed in advance of what later parts
would entail.
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Figure 1: Interface Screenshot at Round Five of Core Treatments

completely neglects the prior and chooses BPos = 80 and BNeg = 20. Once the subject makes

this selection, the outcome in this round appears at the bottom of the screen. In the example in

the figure, the test was negative and the project turned out to be a failure in this round. On the

right hand side of the screen, the subject can observe the signal-state realizations from all previous

rounds.

The second phase encompasses rounds 101 through 200. The only difference with respect to

the first phase is that subjects are asked to report their beliefs only every 10 rounds, as opposed

to in every round, while receiving feedback in real time in every round. This is done to be able to

assess how an additional 100 rounds of feedback would affect beliefs while keeping the experiment

to a reasonable time limit.

Experimental procedures

Subjects participated in only one treatment condition (between-subjects design). Before subjects

began round one, we introduced them to the belief elicitation task and the incentive-compatible

BDM mechanism using simple examples. The two core treatments were conducted at the Univer-

sity of California, Santa Barbara and subjects (undergraduates at the university) were recruited

using ORSEE (Greiner 2015). In total, 128 subjects participated (64 in each treatment).18 The

experiment, which lasted 90 minutes, was conducted using zTree (Fischbacher 2007). In addition

18See Online Appendix B for details on other treatments (including number of subject, location of data collection).
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to the $10 show up payment, earnings from the experiment were either $25 or $0, for a grand total

of either $10 or $35.19 Payments on average from the core treatments equaled $22.5.

3 Results on Primitives vs. NoPrimitives

We begin by confirming that initial (i.e., round one) responses in Primitives replicate previous

findings in the literature related to BRN. We then focus on the evolution of beliefs with 200

rounds of feedback, and document differences between Primitives and NoPrimitives, first at the

aggregate level and then at the individual level. These results establish that information on the

primitives hinders learning from feedback such that by round 200, beliefs in NoPrimitives are closer

to the Bayesian benchmark than beliefs in Primitives. We postpone analyses on the mechanisms

underlying these treatment differences to the next section.

3.1 Base-rate neglect in round one of Primitives

In round one of Primitives, the mode and the median belief reported conditional on a positive

signal (BPos) is 80 percent (the pBRN prediction), which is consistent with the results for the

same parameterization in Kahneman & Tversky (1972).20 In fact, 56.3 percent of subjects in

this treatment submit beliefs that are consistent with pBRN. Only 4.7 percent of subjects submit

Bayesian beliefs the first time they are faced with the updating task. This share does not change

if we allow for reasonable computation errors by the subjects.21 Besides the pBRN and Bayesian

benchmarks, another natural response involves signal-neglect, where beliefs conditional on either

signal coincide with the prior. We find that 7.8 percent of our subjects respond in this way.

These findings confirm that the baseline condition needed for our study holds: For most subjects

in Primitives, beliefs submitted in the first round are far from the Bayesian Benchmark. The most

popular response is pBRN. We interpret this as information on the primitives inducing biased

behavior (pBRN being the most prominent one).

19For final payment in the experiment one part is randomly selected and if the part consists of more than one
decision, one decision is selected for payment in the randomly selected part. The BDM mechanism used for belief-
elicitation incentives results in a binary payment of either $0 or $25. See Online Appendix B for details.

20Kahneman & Tversky (1972) only ask about beliefs conditional on a positive signal.
21No additional subjects are added if we let BPos ∈ [36, 47] and BNeg ∈ [0, 9] (in percentage points).
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Figure 2: Evolution of Beliefs in Primitives and NoPrimitives

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark.

3.2 Learning in Primitives vs. NoPrimitives

Figure 2 presents the evolution of beliefs, BPos andBNeg, at the aggregate-level across all rounds

in Primitives vs. NoPrimitives.22 While beliefs for both treatments start far from the Bayesian

benchmark and move towards this benchmark, after 200 rounds beliefs in NoPrimitives are closer

to it, and most of the adjustment occurs in the first 100 rounds.

Specifically, average beliefs in Primitives move from (BPos, BNeg) = (64, 22) in round one to

(53, 16) in round 100. At this point, average beliefs are still twelve percentage points away from the

Bayesian benchmark conditional on either signal. Note, however that there could be many factors

that slow down learning in Primitives. The NoPrimitives treatment serves as a natural benchmark

allowing us to contextualize results from Primitives. In NoPrimitives, average beliefs in round one

are equal to (60, 39), which is quite far from the Bayesian benchmark. Yet after 100 rounds beliefs

move close to the benchmark, reaching (47, 11).

To provide statistical analysis on the differences between Primitives and NoPrimitives depicted

in Figure 2, we focus on two questions: (1) Are there treatment differences in how far beliefs are

22On average, subjects will experience 29 (58) rounds with a positive and 71 (142) rounds with a negative signal
by the end of 100 rounds (200 rounds).
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to the Bayesian benchmark? (2) Are beliefs different between the two treatments?23,24

For question (1), we use distance to Bayesian benchmark: |Bj − BBay
j | for j ∈ {Pos,Neg},

corresponding to the absolute value of the deviation from the benchmark. For question (2), we

directly use BPos and BNeg. To determine statistical significance, we run regressions where the

left hand side variable is the measure relevant to the question and the right-hand side variable is

a treatment dummy. 25 Such analysis reveals beliefs in NoPrimitives to be significantly closer to

the Bayesian benchmark relative to beliefs in Primitives by round 100 (p-value 0.011), a finding

that does not change after 200 rounds (p-value 0.007). Furthermore beliefs are different between

the two treatments (p-value 0.056 in round 100, p-value 0.049 in round 200).

3.3 Heterogeneity

To provide an overview of the heterogeneity in responses, Figures 3 and 4 present the distribution

of beliefs in Primitives and NoPrimitives at the initial and final rounds. As mentioned earlier,

most subjects (56.3 percent) submit beliefs consistent with pBRN in round one of Primitives. By

round 200, however, the distribution of beliefs in Primitives has shifted significantly, with one large

cluster close to or at the pBRN point and another one close to or at the Bayesian point. In fact,

12 percent of subjects submit beliefs consistent with pBRN in both round one and round 200.26

For NoPrimitives, subjects’ beliefs in round one can largely be organized into two groups. A

large mass of subjects (forty-five percent) submit (BNeg, BPos) = (50, 50). This is consistent with

subjects recognizing that they have no information to base these beliefs on (since they have not

been given the primitives). Another large group of subjects (fifty-two percent) submit beliefs that

suggest they consider the labels we used for the signals (positive vs. negative) to provide some

information, i.e., BPos > BNeg. By round 200 (right plot of Figure 4), the mass at (50, 50) largely

disappears and fifty-two percent of subjects are at ±10 percentage points of the realized frequencies.

These patterns suggest long-run differences between Primitives and NoPrimitives to be possibly

driven by those subjects who initially display perfect base-rate neglect in Primitives. To begin to

23Note that (1) are (2) are related, but conceptually different questions. For example, beliefs can be different in
the two treatments while being equally distant from the Bayesian benchmark (resulting from deviations in opposite
direction).

24In Online Appendix C.1, following an approach first introduced by Grether (1980), we also report treatment
differences in aggregate measures of base-rate neglect by focusing on changes in log likelihood ratios.

25We estimate a system of equations using seemingly unrelated regressions. The p-values that we report to evaluate
treatment effects result from using a Wald test on the hypothesis that both treatment coefficient estimates (focusing
on BPos and BNeg) are equal to zero. See Online Appendix C.1 for further details.

26By round 200, 35 percent of subjects are at ±10 percentage points of the pBRN benchmark and the similar
proportion is within ±10 percentage points of the realized frequencies.
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Figure 3: Density plots for Primitives

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs

are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of

subjects with such beliefs.
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Figure 4: Density plots for NoPrimitives

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs

are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of

subjects with such beliefs.

assess this possibility, we divide subjects in Primitives into two types: those who submit the pBRN

beliefs in round one and all others. In Figure 5 we depict the average evolution of beliefs for

these two types and compare them to the beliefs of subjects in NoPrimitives. The long-run beliefs

of round one pBRN subjects are different from subjects in NoPrimitives. For example, there is a

fifteen percentage-point difference in the average BPos between the two groups by round 200. Long-

run beliefs of these subjects are significantly different (p -value 0.001) and farther away from the

Bayesian benchmark (p -value < 0.001) relative to subjects in NoPrimitives. The average belief of
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Figure 5: Evolution of Beliefs for R1 pBRN Subjects and Others in Primitives vs. NoPrimitives

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark. Beliefs are separated by round one behavior.
Primitives R1 pBRN denotes beliefs of subjects who start at the pBRN point. Primitives Others refers to others in
the same treatment.

all others (i.e., non-pBRN subjects), however, are not different from the average beliefs of subjects

in NoPrimitives (p -value 0.760).27

We can further split (round one) pBRN subjects into those who are still stuck at the pBRN

response in round 200 and those who are not. By round 200, beliefs of those who are not stuck at the

pBRN response are still significantly farther from the Bayesian benchmark compared to subjects in

NoPrimitives (p -value 0.022).28 This suggests that both kinds of pBRN subjects (including those

who revise their beliefs away from the pBRN response) are responsible for hindering learning.29

Overall, these mechanical effects suggest that the Primitives treatment operates by inducing certain

initial misconceptions, and that, of all misconceptions, it is principally those that induce pBRN

beliefs in round one that hinder learning from feedback.

27Despite similarity in long-run beliefs between these groups, we do not want to suggest that others in Primitives
behave exactly the same as those in NoPrimitives. As seen in Figure 5, others in Primitives learn faster, suggesting
that they are using both data and information on primitives to learn.

28Tables 12 to 14 in Online Appendix G provide additional details of this comparison.
29We see evidence of both smooth changes in beliefs (consistent with Bayesian updating with an initially incorrect

answer) and of sudden large shifts that occurs only after sufficient evidence accumulates (consistent with models of
hypothesis testing, as in Ortoleva (2012)). However, our experiment was not designed to distinguish between different
learning models, but rather to focus on long-run outcomes and persistence of mistakes.
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Result #1: Long-run beliefs in NoPrimitives are different, and closer to the Bayesian benchmark,

than beliefs in Primitives. This treatment effect vanishes when we exclude subjects with pBRN

beliefs in round one of Primitives.

4 Mechanisms

In this section, we investigate possible mechanisms underlying the treatment differences between

Primitives and NoPrimitives. First, it is possible that subjects in Primitives, particularly those

who are giving the pBRN response, have formed an understanding of the environment (based on

information on the primitives) that incorrectly justifies and makes them more confident in their

initial response. Here, we use the term “confidence” to capture how strong the agent’s prior beliefs

are about the optimality of their responses in round one. The degree to which subjects’ beliefs

will change with new information (available through feedback) will depend on the strength of their

prior. Thus, a reasonable first hypothesis on why subjects don’t learn as much in Primitives is that

the additional information provided to them in this treatment makes them more confident in their

(incorrect) initial responses, and hence less responsive to new information.

A second mechanism, closely tied to the first, builds on the hypothesis that subjects in Primitives

could be highly confident in their initial responses. Confidence in one’s initial response can impact

how attentive subjects are to the feedback. A strong prior decreases incentives to engage in costly

learning. It is possible that subjects in Primitives don’t learn as much because they choose to

engage less with the feedback relative subjects in NoPrimitives.

The impact of these two mechanisms crucially depends on learning being costly. Note that while

we designed the experiment to make learning from feedback quite easy (by making it available at

any point), subjects still must pay some cost to process the many rounds of feedback they receive

to be able to learn from it. This suggests that lowering the cost of learning can improve optimality

of long-run beliefs.

In this section, we report results on additional treatments that allow us to assess the importance

of initial confidence, attention, and costly learning.

4.1 Confidence

If confidence in an incorrect initial answer is the reason why subjects don’t learn as effectively

in Primitives, then a shock to their confidence should facilitate learning. To test this possibility,

we conduct a new treatment, Primitives w/ shock, that is identical to Primitives except for one

16



difference: If a subject submits an incorrect answer in round one, the computer interface sends

them a message that says that their answer is incorrect before they start with round two.30

Given round one responses, 90 percent of subjects in Primitives w/ shock received a message

that stated both of their initial answers (on BNeg or BPos) were incorrect.31 Figure 6 depicts the

evolution of beliefs in Primitives w/ shock using an orange line. The figure also includes Primitives

and NoPrimitives (red and blue lines, respectively) for comparison. The figure reveals that long-run

beliefs (round 200) are different between Primitives w/ shock and Primitives (p-value 0.013), and

closer to the Bayesian benchmark in Primitives w/ shock relative to Primitives (p-value 0.021).

The differences are most striking for beliefs conditional on a positive signal. For example, there is

a sharp contrast between Primitives w/ shock and Primitives in how much BPos changes in the

first 50 rounds. Overall, the gap between the two treatments (between the orange and the red line)

widens with experience. By contrast, particularly after the first 50 rounds, beliefs in Primitives w/

shock are very similar to beliefs in NoPrimitives. Table 10 in Online Appendix D provides further

statistical analysis supporting these observations.

Result #2: Shocking confidence of subjects in their initial response (by telling them their answers

are incorrect) improves optimality of beliefs. Long-run beliefs in Primitives w/ shock are not

different from those in NoPrimitives.

It is also important to note that, in contrast to our findings in Primitives, subjects who display

perfect BRN in round one of Primitives w/shock learn as well as others in the same treatment.

Average beliefs in round 200 for these subjects (who display perfect BRN in round one) are 45 for

BPos and 12 for BNeg. The corresponding values are 41 and 11 for others in the same treatment.

These differences are not statistically significant (p-value 0.598).32 These patterns in Primitives w/

shock confirm that all subjects, including those who start at the pBRN point, are capable and willing

to learn from feedback when they are informed about the incorrectness of their initial response.

These results rule out the possibility that pBRN subjects are intrinsically worse at learning from

feedback compared to others, and further supports the hypothesis that initial confidence in the

pBRN response is driving the treatment differences between Primitives and NoPrimitives.

30Specifically, subjects were told either both of their answers (on BPos or BNeg) were incorrect, or at least one
of their answers were incorrect. In particular, subjects who submitted a Bayesian response to both questions didn’t
receive any message.

31In addition, three percent of subjects received a message indicating that at least one of their answers were
incorrect. In Online Appendix D, we document that the results in one round of Primitives w/ shock are not statistically
different from those of Primitives, which is to be expected since the treatments are identical up to the end of round
one.

32Figure 25 in Online Appendix G reproduces Figure 5 depicting the evolution of beliefs in Primitives w/shock
separately for (round one) pBRN subjects vs. others. This appendix also includes further analysis on differences
with respect to these types.
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Figure 6: Comparing Evolution of Beliefs in Primitives w/ shock to Primitives and NoPrimitives

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the

foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.

The horizontal green lines correspond to the Bayesian benchmark.

4.2 Attentiveness

There are two ways in which confidence in initial (round one) responses may hinder learning from

feedback. First, confidence can lead a subject to put more weight on her initial answer relative

to new information or feedback. Second, confidence can lead a subject to pay less attention and

engage less with feedback. In this section, we introduce new treatments to assess differences in

attentiveness between Primitives and NoPrimitives.

In the original experiment, feedback was visually available to the subjects at any point at almost

no cost. But, given the stochastic nature of the task, no single round of feedback can invalidate

a subject’s beliefs. With attentiveness, we mean to capture a more meaningful notion in which

subjects don’t just look at the data but also engage with it in a way that could effectively change

their beliefs. For example, the empirical distribution of the state conditional on each signal after

100 rounds provides a strong statistical signal that the pBRN response is not correct. While the

data underlying this signal is readily available, subjects might not sufficiently engage with the data

in this way, potentially because confidence in their initial answers endows little value to such an

exercise. This is precisely the type of inattentiveness we hope to capture in the new experiment.
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Notes: Subjects who never locked in are coded as locked in at round 200. Vertical lines denote mean values. Vertical
dashed lines indicate mean value by treatment.

Studying the degree to which learning is slowed down by partial attentiveness to the feedback

is difficult because it is not possible to directly observe attentiveness (as defined above) in our core

treatments. To overcome this challenge, we run two diagnostic treatments, Primitives w/ lock in

and NoPrimitives w/ lock in. These treatments are identical, respectively, to the main parts of

Primitives and NoPrimitives (as described and analyzed earlier) except for one difference in how

subjects move through the 200 rounds of feedback. Critically, subjects are allowed, in the new

treatments, to “lock in” their choices at any round, which automatically implements their latest

responses for all future remaining rounds.33 We do not take the lock-in round as a perfect measure

of attentiveness, but we interpret differences between the Primitives w/ lock in and NoPrimitives

w/ lock in in terms of lock in decisions to reflect differences between these two environments in

willingness to engage with the feedback.

Figure 7 shows the cumulative distribution of round of lock in decisions in Primitives w/ lock

in and NoPrimitives w/ lock in.34 There are large differences between these two treatments with

respect to willingness to engage with the feedback. In fact, the distribution of lock-in decisions

in NoPrimitives w/ lock in first-order stochastically dominates that of Primitives w/ lock in.35 In

33Instructions indicated clearly that subjects wouldn’t be able to leave the experiment earlier by locking-in their
responses. Thus, we removed incentives to use the lock in option to end the experiment earlier.

34In Online Appendix E, we confirm that initial responses are similar between the core treatments and the new
ones with the lock in option. One difference is that there are slightly fewer pBRN subjects in Primitives w/ lock in
relative to Primitives: 42 percent vs. 56 percent (p -value 0.094). As is clear from the stark treatment differences in
lock in choices, this does not impact the conclusions that we can draw from the lock-in treatments.

35We test for first-order stochastic dominance using the test in Barrett & Donald (2003). The test consists of two
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Primitives w/ lock in, only half the subjects choose to see more than 20 rounds of feedback and

only four percent of subjects choose to see all rounds of feedback. By contrast, in NoPrimitives

w/ lock in, 94 percent of subjects choose to see more than 20 rounds of feedback and 34 percent

of subjects choose to see all rounds of feedback. The average lock-in round is roughly three times

higher in NoPrimitives w/ lock in (difference p -value < 0.001).

Result #3: Subjects lock in their choices earlier in Primitives w/ lock in relative to NoPrimitives

w/ lock in.

Interestingly, the average lock-in round is not very different between (round one) pBRN subjects

and others in Primitives w/ lock in, with both types engaging less with data relative to subjects in

NoPrimitives w/ lock in (p-value < 0.001 for both types).36 But the reasons why subjects don’t

engage as much with data are likely to be different for pBRN subjects and others. For some pBRN

subjects, confidence in their initial model may make them reluctant to engage with data. For

others or those who are more willing to question their model, having access to the primitives means

they can learn more effectively relative to subjects in NoPrimitives, thus requiring less rounds of

feedback. In fact, when we compare long-run beliefs, we find once again that learning is hindered

for (round one) pBRN subjects in Primitives w/ lock in while there are essentially no differences

in learning between others in Primitives w/ lock in and subjects in NoPrimitives w/ lock in.37

Overall, these treatments suggest important differences between the two environments corre-

sponding to our core treatments (with and without primitives) in willingness to engage with and

learn from feedback. Hence, these results are in support of our hypothesis that differences in atten-

tiveness to feedback are an important factor in explaining differences in long-run beliefs between

Primitives and NoPrimitives.

4.3 Costly attention

Learning from feedback requires engaging with that feedback in a way that may be costly. In this

section, we investigate the extent to which learning costs play a role in hindering learning. We run

steps. We first test the null hypothesis that the distribution in NoPrimitives w/ lock in either first order stochastically
dominates or is equal to the distribution in Primitives w/ lock in. We reject this null hypothesis (p-value <0.001).
We then test the null hypothesis that the distribution in Primitives w/ lock in first order stochastically dominates
the distribution in NoPrimitives w/ lock in. We cannot reject the null in this case (p-value 0.829).

36Specifically, in Primitives w/ lock in, (round one) pBRN subjects lock in slightly later than others (p-value 0.079).
The difference is only marginally significant if we take out (round one) Bayesian subjects from others (p -value 0.097).
It is worth noting that there are 12 subjects (39 % of pBRN subjects) in this treatment who remain at the pBRN
response for all 200 rounds, but their average lock-in round is 61.

37Figure 19 in Online Appendix E reproduces Figure 2 for these new treatments. Figure 26 in Online Appendix G
reproduces Figure 5 separating behavior for (round one) pBRN subjects and others.
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Figure 8: Evolution of Beliefs in Treatments with Frequencies Relative to Core Treatments

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark.

two new treatments, labeled as Primitives w/ freq and NoPrimitives w/ freq. These treatments

are identical, respectively, to the main parts of Primitives and NoPrimitives (as described and

analyzed above) except for one difference in how the feedback is presented to the subjects. Recall

that, in the earlier treatments, subjects were provided feedback on a round-by-round basis and

feedback from all previous rounds were recorded in a history table (see Figure 1). In Primitives w/

freq and NoPrimitives w/ freq, we still provide feedback on a round-by-round basis. But feedback

from all previous rounds is now aggregated and presented in a two-by-two table which summarizes

the total number of actual rounds in which each combination of the signal and state realization

were observed. In addition, we also compute empirical frequencies. For example, we report to

subjects the total number of rounds in which they observed the signal to be positive in the past

and the empirical frequency of success among these rounds.38 The goal of these new treatments is

to minimize the cost of attentiveness to feedback.

Figure 8 depicts the evolution of beliefs with feedback in the treatments with frequency in-

38Figure 20 in Online Appendix F provides a screenshot from this treatment. To ensure that subjects are indeed
aware of all this information presented to them, the interface also requires subjects to give us back the frequency
information (which is presented on the same screen) every 20 rounds. For details see Online Appendix B.
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formation and contrasts these to the core treatments.39 The figure reveals stark differences in

learning when feedback is presented in an aggregated form. By round 200, beliefs in the treat-

ments with frequency information are different from those in the core treatments (p-value is 0.010

between Primitives w/ freq and Primitives, and 0.033 between NoPrimitives w/ freq and NoPrim-

itives) and closer to the Bayesian benchmark relative to core treatments (p-value < 0.001 for both

comparisons). The evidence also suggests convergence in behavior between the treatments with

frequency information. While Figure 8 reveals different learning dynamics in these treatments

(with the dashed red line depicting Primitives w/ freq consistently hovering above the dashed blue

line depicting NoPrimitives w/ freq), long-run differences observed in our core treatments (between

Primitives and NoPrimitives) are greatly reduced in new treatments (between Primitives w/ freq

and NoPrimitives w/ freq). By round 200, beliefs are not statistically different between Primitives

w/ freq and NoPrimitives w/ freq (p-value 0.196), and not statistically different with respect to

distance to Bayesian benchmark (p-value 0.313).40

To summarize, we find that eliminating costs associated with attending to the data, by pre-

senting feedback in terms of empirical frequencies, significantly improves optimality of long-run

behavior. This is true regardless of whether subjects were provided information on the primitives

or not. This suggests attention costs play an important role in hindering learning in both Primitives

and NoPrimitives.

4.4 A model of learning

We have established that confidence in an initially incorrect answer can negatively impact the

optimality of long-run behavior for two related reasons: Subjects place more weight on a stronger

prior, and subjects are less attentive to feedback that is costly to process. At this point we would

like to assess the relative importance of prior strength and attentiveness, since these mechanisms

have different policy implications regarding how to correct biases.

Consider the following counterfactual: Suppose that subjects in Primitives, with their presum-

ably stronger priors, were equally attentive to feedback as subjects in NoPrimitives. By how much

39In Online Appendix F we provide a more detailed analysis of treatment comparisons. Table 11 of this appendix
summarizes statistical analysis presented in this section. In particular, we show that the new treatments, Primitives
w/ freq and NoPrimitives w/ freq, do not differ, respectively, from Primitives and NoPrimitives in terms of round
one behavior.

40There is some evidence to suggest that the difference in long-run beliefs between Primitives w/ freq and No-
Primitives w/ freq are driven by those subjects in the former treatment who are consistent with pBRN in round
one. Despite the frequency information, eight percent of subjects in this treatment are consistent with pBRN both
in rounds one and 200. See Online Appendix G for more analysis, including a reproduction of Figure 5 for these
treatments.
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would the gap in distance to the Bayesian benchmark between the two treatments be reduced?

Because attention is not directly observable in our core treatments, to answer this question we will

rely on a simple learning model.

We assume the agent is uncertain about the true likelihood p of an event (e.g., the project being

a success conditional on a positive signal). The agent’s prior is given by the Beta distribution and

is characterized by two parameters p0 and η, such that:

E(p | p0, η) = p0 and V(p | p0, η) =
p0(1− p0)

η + 1
.

While p0 denotes the expected value of p, η captures the strength of the prior and, hence, can be

interpreted as a measure of the agent’s confidence.41

The agent updates beliefs on p using outcomes from a Bernoulli process where the probability

of the event happening is the true p. The data observed by the agent can be characterized by two

parameters: the number of observations n, and the observed frequency of the event among these

observations f . Partial attentiveness can be introduced naturally here by assuming that the agent

remembers only a subset of the observations. To keep things simple, we model this by assuming

the agent misremembers n as σn for some σ ∈ [0, 1] (but remembers f correctly).42 The agent’s

updated posterior is still characterized by a Beta distribution with adjusted parameters p̃ and η̃:

p̃ =

(
η

η̃

)
p0 +

(
1− η

η̃

)
f and η̃ = η + σn (1)

In summary, the model describes how beliefs evolve with feedback as a function of three parameters:

p0, prior expected value on p; η, a measure of initial confidence; and σ, attentiveness to data.

We assume that the agent’s reported belief corresponds to the expected value of p as described

above. In our data, we directly observe the feedback experienced by subjects (n and f). Prior

expected value (p0) can be directly identified from initial responses. However, since the evolution

of beliefs depend on σ/η, we need a way to separately identify these parameters.43 We do so by using

the treatments with frequency information. Specifically, we estimate η from the the treatments with

frequency information by assuming that attentiveness to data is maximal, i.e., σ = 1. Then, taking

as given the estimated values of η (from the new treatments), we use data from the core treatments

41In the standard formulation, the Beta distribution is characterized by two parameters: α, β such that E(p |α, β) =
α

α+β
and V(p |α, β) = αβ

(α+β)2(1+α+β)
. The mapping to p0 and η are such that p0 = α

α+β
and η = α+ β.

42The model could be enriched by assuming that the agent remembers each observation independently with proba-
bility σ. In expectation, the agent will misremember n as σn and f as f . Since our estimation will focus on aggregate
results, we simplify the model by eliminating the randomness around this.

43By Equation 1, expected beliefs change with observed frequency f as a function of η
η̃
= η

η+σn
= 1

1+σ
η
n
.
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Figure 9: Estimates of the Learning Model for Treatments with Frequencies and Core Treatments

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines depict
estimates from the learning model. Orange line represent a counterfactual estimate where subjects in Primitives
are set to be as attentive as those in NoPrimitives (keeping confidence level the same). The horizontal green lines
correspond to the Bayesian benchmark.

to estimate σ.44

Figure 9 plots the model predictions overlaid on actual data. We find that the model (using

only a few parameters) does a remarkable job capturing the qualitative differences between the

treatments in terms of how beliefs change with feedback. Focusing on the treatments with fre-

quency information (depicted using dashed lines), differences in speed of learning are attributed to

differences in confidence. Specifically, our estimates for η are substantially higher for those subjects

who were given the primitives vs. those who were not.45

Nonetheless, our estimates for σ reveal that there are also important differences between Prim-

itives and NoPrimitives in terms of attentiveness to feedback. While subjects in both treatments

are extracting less information from the feedback than those in the treatments with frequency in-

44We use least squares estimation to fit average behavior in each treatment. In Online Appendix F, we present
the details of the estimation procedure as well as results from an alternative estimation where we also account for
heterogeneity across subjects. This analysis generates the same qualitative conclusions about the importance of the
two channels discussed above.

45Estimates of η for BPos (BNeg) are 4.2 and 2.2 (5.9 and 25) in Primitives and NoPrimitives, respectively.
Statistical tests using bootstrapping show differences to be significant (p-value < 0.001 for both BPos and BNeg).

24



formation, our estimates for σ are higher (for both BPos and BNeg) in NoPrimitives relative to

Primitives.46

These results indicate that both channels—confidence and attentiveness to feedback—play an

important role in determining how much subjects learn from their experiences. But, it remains an

open question, how much subjects in Primitives could have learned (keeping confidence in their

initial response constant) if they had been as attentive as those in NoPrimitives. The learning

model allows us to compute this counterfactual, which is included (with an orange line) in Figure

9. This exercise leads to the following observations. For low levels of feedback (early rounds),

differences between Primitives and NoPrimitives are primarily driven by differences in confidence

and differences in starting points. This is revealed by the proximity of the orange line to the red

line in this region. But, as the amount of feedback increases (as we move towards 200 rounds), the

orange line departs substantially from the red line. This suggests that, in the long run, differences

in attentiveness between the two treatments also play a significant role in explaining the differences

in beliefs.

Result #4: Beliefs move closer to the Bayesian benchmark when feedback is presented in a

processed way. Results from a learning model suggest differences in long-run beliefs between our

core treatments (Primitives vs. NoPrimitives) to be driven by differences in both confidence and

attentiveness.

4.5 Transfer learning: Behavior with different primitives

So far our design does not distinguish between two different ways in which subjects who know

the primitives but initially submit incorrect beliefs, can learn from feedback. The first involves

subjects simply adjusting their beliefs to be consistent with the data. The second entails a deeper

form of learning, where subjects gain an understanding of why their initial answers were incorrect

(for example, that they failed to account for the base-rate).47

We tackle the question of what subjects are learning from their experiences in the last part of

our core treatments. In this part, subjects face a new updating task in which the primitives are

changed to p′ = .95 and q′ = .85. Prior to this part, we presented subjects in these treatments with

ample feedback processed for them such that almost all subjects converged to beliefs very close to

46Estimates of σ for BPos (BNeg) are 0.10 and 0.18 (0.19 and 0.35) in Primitives and NoPrimitives, respectively.
Statistical tests using bootstrapping show differences to be significant (p-value < 0.001 in both cases).

47A few papers have studied transfer of learning across environments and find limited evidence for it (e.g. Kagel
(1995), Cooper & Kagel (2009), Cooper & Van Huyck (2018)). In Esponda et al. (forthcoming), we provide a more
detailed discussion of the literature on transfer learning and examine the related, but different, question of whether
subjects can learn not to update in the wrong direction when they know the primitives of the problem.
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the Bayesian benchmark.48 In this last part of the experiment, subjects in the core treatments are

asked to report beliefs just once, without any feedback. Note that subjects in both the Primitives

and NoPrimitives treatments are now given the primitives of this new updating task, but only

subjects in Primitives could have learned to take the base rate into account from their experience

in the original task.

Our main finding is that the treatment effect switches direction relative to earlier parts, and

now subjects in Primitives are both closer to the Bayesian benchmark (p-value 0.022) and exhibit

a much lower rate of base-rate neglect relative to NoPrimitives. For example, if we allow for ±

5 percentage points in each belief, then 47 percent of subjects in NoPrimitives and 25 percent

of subjects in Primitives are classified as pBRN, i.e., (BpBRN ′

Pos , BpBRN ′

Neg ) = (85, 15). The results

suggest that at least some subjects in Primitives can extrapolate from what they learned with the

baseline primitives to new primitives. However, we should also note that such learning is partial

as average beliefs in Primitives, (BPos, BNeg) = (85, 41), continue to be far from the Bayesian

benchmark, (BBay′

Pos , BBay′

Neg ) = (99, 77).49

Result #5: When subjects encounter a new updating task with new primitives, beliefs in Prim-

itives are closer to Bayesian benchmark than those in NoPrimitives. This suggests that some

subjects in Primitives learn to take the prior into account.

5 Evidence beyond the updating problem

An important question motivating this paper is whether systematic biases in decision making

are self-corrected in the long run when agents are accumulating feedback informative of optimal

behavior. Our paper establishes a negative answer to this question in a specific setting where the

dominant deviation from optimal behavior is base-rate neglect. In this section, we provide evidence

on the generalizability of these results to other settings.

The results presented in Section 4 suggest that failures of learning in our original experiment, as

captured by the long-run difference between Primitives and NoPrimitives, are driven by confidence

in an incorrect initial answer. Confidence hinders learning in two ways: (i) makes subjects less

responsive (put less weight) on new information, (ii) lowers attentiveness to such information.

These findings provide insights on what other types of mistakes might fail to be self-corrected with

48See Online Appendix B for more details on the implementation and Online Appendix C.2 for the results. These
results are consistent with findings in Fudenberg & Peysakhovich (2016). The paper studies an environment with
adverse selection and shows that subjects tend not to use feedback optimally. However, processing the same data for
subjects by presenting simple averages gets individuals most of the way to optimality.

49Figure 28 in Online Appendix H presents the distribution of beliefs in both treatments for this round.
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experience. Our results suggest that mistakes that are driven by an incorrect understanding of

the environment that misses or misrepresents some aspects of reality might not be corrected. Our

use of the term incorrect mental model is intended to capture any misconception that produces

suboptimal behavior while inducing confidence in such behavior.

Not all mistakes are driven by incorrect mental models, as we have just defined. Mistakes

also arise when it is cognitively costly to identify optimal behavior. These costs could include

everything from comprehension of primitives of the problem to using these primitives to make an

inference about optimal action. To lower costs, an agent might use simpler (cognitively less costly

but suboptimal) methods to determine which action to take. In such cases, the agent will be self-

aware of the possibility of making a mistake, will be less confident in their initial answer, and open

to correcting their behavior when there is new information provided that is indicative of optimal

behavior.

In different words, our results suggest the following hypotheses. First, in settings in which agents

have confidence on choices that are actually suboptimal, learning will be hindered. Meanwhile, in

cases where subjects are aware of a possible mistake, they would have lower confidence in their

initial answer and increase engagement with data.

We conduct four more treatments, in a new setting, to provide a first test of these ideas.50

The specific problem we use is a variation of the problem studied in Ali, Mihm, Siga & Tergiman

(2021). The agent and a computerized player simultaneously vote either for an option that pays

$6 for sure (option 1), or for an option that pays either $0 or $10 (option 2). Option 1 determines

the agent’s payoff if there is one or more votes for it. Option 2 is selected only if it gets both votes.

Option 2 pays $10 whenever a random integer in {1, ..., 100} (uniformly selected) is higher than

60. The agent knows that the computer is programmed to vote for option 2 whenever the random

number is higher than 60. While there is an appearance of a safe (option 1) vs. risky (option 2)

choice, voting for option 2 is actually dominant. The computer’s vote carries information since the

computer votes for option 2 only when option 2 pays $10. If the subject votes for option 2, her

payoff will be either $6 (when the computer votes for option 1) or $10 (when the computer votes

for option 2). However, to realize the dominance of voting for option 2, the agent has to reason

contingently, focusing on the event when their vote is pivotal.51 Subjects who fail to do so might

incorrectly perceive this as a choice reflecting their risk preference, endowing them with confidence

50These treatments were conducted on Prolific with 130 subjects per treatment. Details about experimental design
are presented in Online Appendix B.

51This has been shown to be challenging for many subjects; see Esponda & Vespa (2014), Ali, Mihm, Siga &
Tergiman (2021).
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in their suboptimal choice.

Our baseline treatment Primitives (Voting) corresponds to exactly this case. As in our original

experiment, subjects submit initial responses unaware the the task will be repeated. After submit-

ting the first answer, they are asked (unincentivized) about their confidence in their initial answer

using a 1-5 scale slider.52

Subsequently, we repeat the task for a total of 99 rounds. In between rounds, subjects receive

information indicative of optimal behavior. We provided feedback with the same characteristics as

in our original treatments, that is, feedback corresponds to natural sampling and is independent of

subjects’ choices. Specifically, in odd (even) rounds subjects learn the payoff of a random participant

who voted for option 1 (option 2).53 Learning is particularly easy here since there is a dominant

action: Voting for option 1 always generates a payment of $6, while voting for option 2 generates

a payment of $6 with 60 percent probability and $10 with 40 percent probability. In particular, it

is straightforward to notice that option 2 never pays $0.

In NoPrimitives (Voting), everything is identical to Primitives (Voting) except that, as in the

comparison between our core treatments, we do not provide subjects with the numerical values of

any of the primitives in the problem. Specifically, in the instructions, payments $0, $6 and $10 are

replaced by unknown variables A, B, C; in addition, subjects know that the computer knows the

random number determining the payoff of option 2, but do not know whether or how the computer

uses this information. Feedback is provided in the exact same way as in Primitives (Voting). A

comparison between Primitives (Voting) and NoPrimitives (Voting) provides a test that is similar

in nature to the comparison between our core treatments (Primitives and NoPrimitives). Extrap-

olating from our earlier results, we expect that subjects in Primitives (Voting) will be relatively

confident in their initial answer but that in the long run participants will make better choices in

NoPrimitives (Voting) than in Primitives (Voting).

Results are summarized in the top portion of Table 1. First, notice that mean and median first-

round confidence in Primitives (Voting) is significantly higher relative to NoPrimitives (Voting) (p-

value < 0.001 in both cases). However, the frequency of last-round optimal choices in NoPrimitives

(Voting) is close to 75 percent and is significantly higher than the 57 percent of the Primitives

(Voting) treatment (p-value 0.003). Approximately one-third of subjects responded optimally in

52Specifically, we ask them: ‘How confident do you feel about your choice in Part 1?’
53If we provided payoff feedback directly on subjects’ choices in this problem, a subject who votes for option 1

would not have the opportunity learn: they would just observe a payoff of $6 in every round. In general, as pointed
out in the introduction, feedback that is endogenous to the subject’s choices can affect learning as has been shown
in the literature (e.g. Esponda & Vespa (2018), Fudenberg & Vespa (2019)). In this paper, we abstract from this
factor.
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the first round of Primitives (Voting), but if we focus on those who selected the suboptimal option

1 in the first round of both treatments, there is an even larger difference in long-run behavior.

Approximately 70 percent of these subjects in NoPrimitives (Voting) are optimally voting for

option 2 in the last round, but the number goes down to 43 percent in Primitives (Voting).54

These results are in line with the hypothesis that confidence in a suboptimal initial answer, driven

by an incorrect understanding of the environment, results in lower levels of optimal behavior in the

long run.

The other two treatments are generated to test the hypothesis that when subjects in an en-

vironment with primitives do not have as much confidence in their initial answer, they remain

attentive to feedback. Thus, long-run behavior would not depend on whether primitives are ini-

tially provided or not. Specifically, Complex Primitives (Voting) involves the same problem as

Primitives (Voting), except that options are described deliberately in a more involved manner.55

We hypothesized that subjects would be less confident in their initial answers in this treatment as

the presentation makes the ‘safe’ vs. ‘risky’ framing not transparent. We also conduct a Complex

NoPrimitives (Voting) treatment transforming the problem we just described in the same way as

for NoPrimitives (Voting). Feedback is provided in an identical manner in all four treatments.

Results for these treatments are summarized at the bottom of Table 1. We first point out that

while there is a small but significant difference in average confidence, this is driven by a few outliers.

In fact, median confidence in both treatments is the same and at the center of the scale. In terms of

long-run choices, we now report no differences between treatments regardless of whether we focus

on all subjects, or condition on whether subjects make an optimal round-one choice or not.56 Note

also that the rate of optimal last-round choices in Complex Primitives (Voting) is similar to that

of NoPrimitives (Voting). This evidence is consistent with the hypothesis that if subjects are less

confident in an initial incorrect answer, they are more likely to learn in the long run.

Result #6: Long-run behavior is more optimal in the voting problem when payoff-relevant prim-

54Meanwhile the table also shows that there is essentially no last-round difference across treatments for subjects
who selected optimally in round 1. For further analysis on these treatments see Online Appendix I.

55Option 1 is described as paying $6 if there is only one vote for option 1; if there are two votes for option 1, it
pays $6 if the random number is smaller than or equal to 60, $0 if the random number is between 61 and 70, $10 if
the random number is higher than 70. Notice that since option 1 can only have two votes when the computer votes
for it, and the computer votes for it whenever the random number is lower than 60, option 1 will always pay $6 as
in Primitives (Voting). Option 2 pays $0 if the random number is smaller than or equal to 58, $6 if the random
number is 59 or 60, and $10 otherwise. Notice that since option 2 is implemented if there are two votes for it and
the computer votes for it whenever the random number is higher than 60, then voting for option 2 will either pay $6
(when the computer votes for option 1) or $10, as in Primitives (Voting).

56The proportion of optimal choices in the last round of Complex Primitives(Voting) at 70 percent is significantly
higher (p-value 0.029) than the 56.9 percent in Primitives (Voting), despite evidence suggesting that learning in the
Complex case is more challenging; see Online Appendix I.
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Table 1: Optimality of Long-Run Behavior and Confidence in Voting

Optimality of Vote in Last Round (in %) Confidence
All R1 Optimal R1 Not Optimal Mean Median

Primitivites (Voting) 56.9 84.1 43.0 3.76 4.00
NoPrimitivites (Voting) 74.6 78.8 70.3 2.55 2.50

∆ 17.7 -5.3 27.3 -1.21 -1.5

p-value 0.003 0.495 0.001 <0.001 <0.001

Complex Primitivites (Voting) 70.0 87.2 57.3 3.39 3.00
Complex NoPrimitives (Voting) 73.1 78.8 69.2 2.76 3.00

∆ 3.1 -8.4 11.9 -0.63 0.00
p-value 0.584 0.248 0.128 < 0.001 1.00

Note: To test for significance we use OLS. The left-hand side variable is the last-round choice (1=correct) in the
first three columns of results. The sample in the second column of results is constrained to subjects who answered
round 1 (R1) optimally, while the third on subjects who answer round 1 incorrectly. In the case of confidence, the
right-hand side variable is the confidence measure where 5 is extremely confident and 1 indicates no confident at all.
For the median we use quantal regressions.

itives are not provided. This replicates our main result (#1) in a new setting. Complicating the

framing of the problem, and hence lowering confidence in initial answer, eliminates such a treatment

effect.

6 Conclusion

We studied the persistence of mistakes in the presence of feedback and brought to light the dif-

ferent mechanisms that hinder learning from feedback. Our findings suggest mistakes are more

likely to be persistent when they are driven by incorrect mental models that miss or misrepresent

important aspects of the environment. Such models induce confidence in initial answers, limiting

engagement with and learning from feedback. This insight also connects closely with the literature

on learning with misspecified models and learning with endogenous attention, as we discussed in

the introduction.

While it is beyond the scope of this paper to study persistence of every mistake in the presence of

information, it is useful to think about the implications of our results for other biases. Our results

suggest that learning from feedback might be easier in settings where agents make suboptiomal

decisions but are aware of the fact that they are using mental shortcuts to avoid costs associated

with identifying the optimal response, as in satisficing (Caplin, Dean & Martin 2011), but harder

in settings where suboptimal behavior is driven by conceptual mistakes agents are less likely to

be aware of, as documented here for base rate neglect and pivotal voting, but also likely with the

winner’s curse or the Monty Hall problem.57 Confidence measures in initial responses can be useful

57See e.g. James, Friedman, Louie & O’Meara (2018) for difficulties with the Monty Hall problem and Kagel & Levin
(2002) for the winner’s curse. Relatedly, Danz, Vesterlund & Wilson (2022) study belief elicitation using a binarized-
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in differentiating between mistakes to identify ones where subjects are more or less self aware of the

suboptimality of their behavior. This brings a new perspective to an emerging research focusing

on eliciting such measures.58

It is also worth highlighting the types of interventions that did and did not facilitate learning

in our experiments. Simply providing information that is indicative of optimal behavior was not

sufficient to counter systematic biases. Instead, it is important to be able to target agents’ engage-

ment with this information. The results also reveal several counterintuitive interventions that were

effective in inducing optimal behavior in the long run. First, we find that withholding information

that agents consider as payoff-relevant can increase attentiveness to feedback and foster learning.

Second, we find that informing agents directly about the suboptimality of their actions increases

engagement with feedback. Third, we find that complicating the framing of the problem lowers

confidence in initial answer, fostering learning from feedback, consequently improving optimality of

long-run behavior. While the controlled environment of the laboratory provides a natural starting

point to study the interaction between biases and learning and possible interventions to facilitate

learning, we believe that further work should examine these issues and the validity of our results

in prominent field applications.
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A Literature review: Further details

A.1 Literature on base-rate neglect with feedback

This section first provides a review of the experiments on base-rate neglect (BRN). Our focus is

on the extent to which the different studies document changes in behavior in response to feedback.

At the end of the section we also include a brief overview of probability-matching experiments and

the connection to our paper.

The literature on base-rate neglect is founded on two seminar papers by Kahneman and Tversky

(1972, 1973). The two papers differ in the type of updating problem used in the experiment

to study base-rate neglect. In Kahneman and Tversky (1973) subjects were asked to make a

judgment about the probability that a person is an engineer or a lawyer based on a description.

The description provided was designed to include characteristics “representative” of being either an

engineer or a lawyer.59 However, this design was criticized by some (Nisbett et al. 1976) who were

concerned that the detailed textual description provided as a signal, which stood in contrast to the

statistical description of the prior, could explain why base rates were not as strongly incorporated

into posterior beliefs. However, base-rate neglect is also observed in more standard updating

problems. Kahneman & Tversky (1972) purposefully used an abstract problem (although framed

as the famous cab problem), where the state and signal were simply colors (green vs. blue) and

the reliability of the signal was explicitly given to the subjects to enable Bayesian updating.60 The

parameters used in our experiment are precisely the values from this paper, although we change

the framing slightly as described in the experimental-design section. The literature that followed

from these papers broadly falls into two corresponding categories: experiments where the primitives

are fully provided (as in Kahneman & Tversky 1972) or experiments where either the prior or the

signal reliability is open to interpretation (as in Kahneman and Tversky 1973).

59After being provided with a prior (on the person being a lawyer of an engineer), subjects were given, for example,
the following description. “Jack is a 45 year old man. He is married and has four children. He is generally conservative,
careful, and ambitious. He shows no interest in political and social issues and spends most of his free time on his many
hobbies which include home carpentry, sailing, and mathematical puzzles.” Results revealed subjects’ posteriors to
vary very little with the base rate. An important advantage of this design is that the degree to which base rates are
incorporated into the posterior can be tested without explicitly fixing the informativeness of the description (hence,
without studying directly whether subject over or under react to the information).

60Subjects were asked the following problem: “Two cab companies operate in a given city, the Blue and the Green
(according to the color of cab they run). Eighty-five percent of the cabs in the city are Blue, and the remaining
15 percent are Green. A cab was involved in a hit-and-run accident at night. A witness later identified the cab
as a Green cab. The court tested the witness’ ability to distinguish between Blue and Green cabs under nighttime
visibility conditions. It found that the witness was able to identify each color correctly about 80 percent of the time,
but confused it with the other color about 20 percent of the time. What do you think are the chances that the errant
cab was indeed Green, as the witness claimed?” The correct answer is 41percent.
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Grether (1980, 1992) and Griffin and Tversky (1992) are some of the early economics-style

experiments on the topic where subjects are financially incentivized to form accurate beliefs and

the updating problems are presented in the standard framework of judging the likelihood of abstract

events (for example, event involving balls drawn from different urns). Importantly, Grether (1980)

also introduces a general way of measuring partial base-rate neglect based on regression analysis

focusing on the log likelihood ratio of different events. This approach is now commonly used in many

papers, including this one, studying updating behavior. It should be noted that none of these early

papers studied how behavior changes with feedback. In most experiments subjects only answered

one belief updating question, and in others that included multiple questions, the parameters and/or

the environment changed between questions with no feedback between questions.

The literature on base-rate neglect grew quickly in the next few decades. Koehler (1996)

provides an extensive review of experiments on base-rate neglect up to that point. There are three

important observations in this paper that are relevant to our research question. First, Section 2.1.1

of this paper concludes that in experiments where subjects are faced with multiple versions of a

belief elicitation question (without any feedback) whether the base rate or the characteristics of

the signal are varied within subject can have an impact of the results. In general, subjects respond

more to base rates if they are varied within, or alternatively if there is no variation in signal

characteristics within. Second, the paper highlights a line of research studying whether the base

rate is integrated more in a belief updating problem when the question is framed or presented in

terms of frequencies rather than probabilities. This perspective was first introduced by Gigerenzer

(1991) and Gigerenzer & Hoffrage (1995). Further evidence on different aspects of this are also

presented in Cosmides & Tooby (1996), and more recently in Barbey and Sloman (2007).

Third, more closely related to our research question, Section 2.1.2 of Koehler (1996) discusses

several early experiments where subjects have an opportunity to learn about base rates from direct

feedback. For example, Manis et al. (1980), Lindeman et al. (1988), and Medin and Edelson (1988)

provide evidence that base rates influence probabilistic judgements more when they are directly

experienced through trial-by-trial outcome feedback. None of these papers include a treatment that

can be mapped back cleanly to either of our treatments, but they provide insights that parallel some

of our findings. In Manis et al. (1980) subjects were shown 50 yearbook pictures of male students

and, for each randomly selected picture, they were asked to predict the person’s position on two

issues (marijuana legalization and mandatory seatbelt legislation). Note that a signal in this context

can be interpreted to be the characteristics of person observed in the picture. The informativeness of

these pictures is ambiguous and actually manipulated to be non-existent. The results suggest that
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subjects adjust their judgments in response to the accuracy of their past predictions. In Lindeman

et al. (1988) subjects are given 16 different versions of Kahneman and Tversky’s engineer-lawyer

problem. While the analysis indicates that feedback leads to adjusted probability estimates closer

to the Bayesian benchmark, the type of feedback that subjects are provided is highly unnatural

and unusual.61 It is also important to note that the paper does not find any transfer of learning

in this environment to another one where subjects can display base-rate neglect (based on Zukier

and Pepitone 1984). Medin and Edelson (1988) report results from an experiment where the task

involved participants diagnosing hypothetical diseases on the basis of symptom information. It is

difficult to interpret their results as their learning environment is complicated by the fact that there

are many features of the environment that are varied within subjects and some of these involve

ambiguous signals. Overall, they find mixed results for subjects incorporating the base rate. Among

these set of papers, the closes to our work is Christensen-Szalanski and Beach (1982). The paper

demonstrates that subjects make use of base rates in forming posterior probabilities when they

have experienced the relationship between the base rate and the diagnostic information, but fail to

make use of the base rate when they only experience the base rate and are given the reliability of

the signal.62

Since the review article of Koehler (1996), there has been a considerable literature in psychol-

ogy studying whether subjects can learn through direct experience to incorporate base rates into

posterior beliefs. These papers are reviewed in Goodie and Fantino (1999). While this body of

work often provides evidence that subjects can learn from experience to adjust actions towards

optimal behavior, the approach in these papers are fundamentally different from ours. The frame-

work adopted in most of these experiments is one where subjects repeatedly choose between two

binary options after observing a binary cue, receiving feedback about the optimality of the choice

after each round. The choices are often between abstract options (for example, green or blue) and

the cues could be labeled similarly or differently from the options (for example, matching colors or

arbitrary shapes). Critically, subjects are not informed about the primitives determining statistical

61In each problem, subjects were asked to form beliefs based on the same description using different base rates.
While the informativeness of the description is not explicitly given in this experiment, a subject’s answer to the first
question implies a ‘correct’ answer to the second question if subjects are assumed to be Bayesian. The experiment
elicited both beliefs while giving feedback on what the ‘correct’ answer should have been to the second question
(conditional on the answer to the first question).

62One of their treatments (where subjects experience both the state and the signal in direct feedback) is similar to
our NoPrimitives treatment where subject are not given the primitives and learn from feedback. However, a critical
difference is that subjects form beliefs only after observing all the feedback. Christensen-Szalanski and Beach (1982)
also go further and tell subjects explicitly that they “will be asked to use this information” to answer several question
in the future. In their second treatment, they provide subjects only with the reliability of the signal, and then provide
subjects with 100 rounds of natural feedback only on the base rate. They find that subjects cannot successfully make
use of the feedback in this context.
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relationship between the cue and the optimal action.63 In this respect, these experiments are closest

to our NoPrimitives treatment in which the prior and the reliability of the signal were not provided

to the subjects. However, there are still some differences in how such a treatment is implemented

in these papers that could be important for behavior. For example, in these experiments, subjects

are not told explicitly that the environment they face repeatedly is a stationary one in the sense

that each round corresponds to an independent draw of optimal action/cue pair from the same

distribution. Note also that the learning problem is different from the one we study in that in

these experiments subjects can possibly learn the optimal binary action conditional on each signal

without ever forming precise beliefs conditional on each signal.

Despite the relatively large literature on the topic, we have not identified a paper that includes

a treatment in which subjects were provided with the primitives and also had to opportunity to

learn from direct feedback while repeatedly experiencing the same environment. Moreover, we

have not found a single study that compares differences between the description and experience

paradigms within the same sample of subjects.64 Fantino and Navarro (2012) provide a survey of

the description-experience gap (the finding that people respond differently to the same quantitative

information depending on whether it is described or experienced) in different environments. With

respect to the description-experience gap in base-rate neglect experiments, they compare across

experiments within each paradigm (only description experiments, such as Kahneman & Tversky

(1972), or only experience experiments, such as Goodie and Fantino (1996)). That is, they report

that there was no single study that compared the description to the experience paradigm within

the same group of participants.

Literature on probability matching & feedback

The experimental literature on probability matching is surveyed in Vulkan (2000) and, more recently

in Erev and Haruvy (2013). Most papers in the early literature on probability matching used an

environment in which the primitives were not provided to subjects. To illustrate, here is a typical

example taken from Erev and Haruvy (2013). There is an event E that happens with probability

0.7, but subjects do not know this probability. In a given round, subjects click on button H or

63In these experiments subjects are not even allowed keep track of past realizations. In the instruction subjects
are explicitly told: “Please don’t use any outside tools, such as a pencil and paper, to help you remember what you
saw” (Goodie and Fantino 1999).

64The ‘experience’ paradigm corresponds to experiments described in the previous paragraph (surveyed in Goodie
and Fantino (1999)), where subjects are not provided with the primitives but can learn from feedback. Meanwhile, the
‘description’ paradigm captures the standard Kahneman & Tversky (1972) example, where primitives are provided
and subjects answer one question. Notice that this comparison does not involve a treatment in which people are
given the primitives and feedback.
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button L. Button H pays (L pays) a positive amount if E occurs (E does not occur). After 50

rounds, the observed rate of H selection is 70%. This finding coincides with the earlier literature

in which subjects were reported to make choices that are close to ‘probability matching’ instead of

optimizing. However, more recent papers have demonstrated that longer experience slowly moves

choices toward maximization. In that example, the H rate in the data was 90% between rounds 51

and 150. These findings are consistent with our long-run findings for the NoPrimitives treatment.

Relatively recent papers do provide primitives.65 Newell et al. (2013) present an experiment in

which a 10-sided die with 7 green and 3 red sides, which subjects can see, is going to be rolled in

each round. The subjects’ task is to predict the color of the die. In the first 50 rounds, the rate of

green choices was close to 80 percent. In rounds 51 to 150, the rate is close to 85 percent. These

findings suggest that while subjects make choices consistent with probability matching early on,

suboptimal choices decrease with feedback. This finding is in line with our result for the Primitives

treatment in which feedback moves average beliefs closer to the Bayesian benchmark.

Koehler & James (2010) provide evidence suggesting that when primitives are provided, the

‘probability-matching’ heuristic more readily comes to mind relative to the optimal strategy. This

opens up the possibility that subjects may have confidence in an incorrect choice, but we did not

find a reference that would measure confidence. While the evidence from experiments with and

without primitives suggests that mistakes are corrected we do not know of a paper that tests both

environments with the same sample. The closest evidence to compare between the two environments

that we found is what we provided in the previous two paragraphs, so from the literature it is not

possible to know if in the long run there would be a treatment effect.

A.2 Learning theory in experiments: A brief description of recent related pa-

pers

There is a large set of experiments in which feedback of some sort plays a role but where feedback

is not part of the central object of study. Meanwhile, the literature that focuses specifically on

feedback can perhaps be organized into two groups. The first is the relatively large experimental

literature that studies how people use feedback to learn in games, which dates at least back to

Harrison and Hirshleifer (1989) and Prasnikar and Roth (1992), and is less directly related to our

work in this paper. Models such as reinforcement learning (Erev and Roth (1998), Roth and Erev

(1995)), directional learning (Selten and Stoecker 1986), adaptive learning (Cheung and Friedman

65See Gal (1996), West and Stanovich (2003), Newell and Rakow (2007), Koehler and James (2009, 2010), James
& Koehler (2011).
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1997), experience-weighted attraction (Camerer and Hua Ho 1999), and rules-based learning (Stahl

2000) were proposed and tested in this literature. The focus is on what kind of model can rationalize

how people learn from feedback, mostly in settings in which taking into account the behavior of

other players is crucial. For a detailed survey of the literature, see Part 5 of Dhami (2020).

The second group involves a more recent set of papers that are closer to our paper and focus

on evaluating subjects’ use of feedback in testing long-run predictions of (behavioral) learning

theories. Attention is not on exactly on what model better rationalizes how subjects process the

feedback, but on whether long-run choices are consistent with learning-theory predictions.66 Long-

run predictions may differ from Nash equilibria for essentially two reasons. The first case concerns

with mistakes that are due to off-path play (i.e. incorrect off-path beliefs that are not corrected

via feedback), while the second captures congitive limitations that generate on-path mistakes. We

provide examples of both cases next.

As a first example of off-path mistakes leading to long-run behavior that is not part of a Nash

equilibrium, consider Fudenberg & Vespa (2019). This paper studies experimentally a signaling

game presented in Dekel et al. (2004) in which the first player selects to enter or to stay out and

the second player is only asked to make a binary choice (Y or Z) only when the first player selects

to enter. Player 1 can have two types (A, B). The game has a unique Nash equilibrium in which

player 1 enters and player 2 selects Y. In a first treatment, subjects experience 120 repetitions of this

game, each time being randomly matched with another participant, and in each repetition Nature

randomly assigns a type to player 1. In this case, self-confirming and Nash equilibria coincide. In

a second treatment, types are fixed. A player 1 subject assigned type B may initially believe that

player 2 would select Z upon entry, and in such case player 1 type B would want to stay out. If she

stays out, she would never collect feedback that challenges such beliefs. It is thus possible in the

long run that player 1 type B never enters, so with fixed types there is a self-confirming equilibrium

that is not Nash. The experiment in Fudenberg & Vespa (2019) presents data in line with the

comparative static.

Cognitive limitations of agents are behind the second case capturing long-run play that deviates

from Nash play. For example, the notion of Behavioral Equilibrium (Esponda 2008) captures

the long-run behavior of an agent that has difficulties to understand endogenous selection in her

feedback. An experimental test of these predictions is studied in Esponda & Vespa (2018). An

agent who does not control for selection will have a biased view of the environment. Such biased

view would lead to decisions that are suboptimal, but could generate feedback that results in a

66A central theoretical reference in this literature is Fudenberg and Levine (1998).
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Non-Nash equilibrium. The experimental test consists of comparing choices in a treatment in which

feedback involves a selected sample against a treatment in which such selection is not present. The

evidence suggests that most subjects do not adjust for selection and end up making suboptimal

choices in the long run.

Fudenberg & Peysakhovich (2016) study a version of the classic lemons problem (Akerlof 1970)

in which subjects observe 30 rounds of feedback and in which on-path mistakes can arise. The

experiment is designed to distinguish between different theoretical notions of behavior that capture

cognitive limitations (e.g. cursed equilibrium (Eyster and Rabin 2005) and behavioral equilibrium

(Esponda 2008)). The data suggests that subjects give more weight to recent observations (i.e. a

recency effect), a feature that was not present in behavioral learning models. Connected to our

paper, they also find that providing subjects with a processed summary of the information they

have observed helps them make better choices.

Relatedly, Barron et al. (2019) study a situation in which individuals try to learn from observing

behavior of others who have faced similar decisions previously. However, information from others

involves selection because choices of others are observed conditional on private information. Their

experimental paper uses the theoretical selection neglect framework of Jehiel (2018). The paper

documents evidence of selection neglect, which is consistent with findings in other papers in this

literature. They also document that issues with selections increase when the agents generating the

feedback that others use have more private information.67 In all of the papers in this part of the

literature the quality of the feedback depends on subject’s choices. A difference with our paper is

that in the environments we study the quality of subjects’ choices is independent of the quality of

the feedback that subjects receive.

67There is also a related set of papers that do not focus on feedback per se but that also show that taking selection
into account is extremely challenging for many subjects. Prominent recent examples include Enke (2020) and Araujo
et al. (2021).
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B Details on the experimental design

In this appendix, we summarize our experimental design. For full details on the experimental

material, see the Procedures Appendix.

Core treatments

The core treatments consist of nine parts. For expositional purposes, in the main text we grouped

the nine parts into four. What we described as the first part in Section 2 corresponds to the BRN

task (Part 2 below), and the instructions necessary to introduce the elicitation mechanism (Parts

0 and 1 below). The second part in Section 2 maps to Parts 3 and 4. The third and fourth parts,

were introduced in Section 4.5. Specifically, the third part corresponds to Parts 5, 6, 7 and 8. The

fourth part includes only Part 9. We now briefly summarize what each of the nine parts achieves.

Part 0

This part uses a simple example to describe the BDM belief elicitation method. Specifically we

ask subjects to consider a trivial question: “What is the chance that a fair coin lands Heads vs.

Tails?” We ask them to submit an answer to this question (non-incentivized) using a similar 0 to

100 slider as we will use in our main task later. Given a selection in the slider (which is initially

blank) the top of the slider indicates the percent chance that the coin lands heads that corresponds

to the selection and the bottom of the slider describes the percent chance that the coin lands tail

that corresponds to the selection. We then describe, given the BDM mechanism, why it is payoff-

maximizing to report their best assessment that the coin will land heads. Given that there is an

objective answer to this question, we describe qualitatively why answering 50% is optimal.68

Part 1

The aim of this part is to introduce the strategy method. There are two decks of cards, each with

100 cards and cards can be green or blue. One card of the 200 cards is randomly selected and they

have to indicate the chance that the selected card is green vs. blue in case it belongs to deck 1, and

separately, in case it belongs to deck 2. On the screens subjects are informed of the composition of

68The BDM mechanism works in the following manner. After subjects submit a choice X% that the event at the
top of the slider happens, the interface uniformly draws a value between 0 and 100, which we call Y . If Y ≥ X, the
subject wins $25 with Y% chance. If Y < X, the subject wins $25 if the event occurs.
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each deck before they submit their answers. As the problem in Part 0, there is an objective answer

to maximize payoffs in this problem. After they submit their answers, an explanation appears on

the screen describing the answers that maximize payoffs. They repeat this problem twice, each

time with different compositions of each deck.

Part 2

This section involves the main task. For each possible test result (positive, negative) participants

submit the chance that the project is a success vs. a failure. The instructions are presented in

Appendix J. This is the only part in the experiment where the instructions to treatment Primitives

differ from those of NoPrimitives.

Part 3

Consists of 99 repetitions of the Part 2 task. The Part 2 task is referred to as round 1 of Part

3, participants get feedback on their round 1 choice and subsequently make 99 additional choices,

getting feedback in each round. Feedback is presented round by round on a table, where for each

round they learn whether the test was positive or negative and whether the project was a success

or a failure.

Part 4

This part consist of 100 additional rounds. It is identical to Part 3, except that subjects make a

choice every ten rounds.

Part 5

In this part, we ask subjects to recall the feedback they received on the updating task in the last 200

rounds. Specifically, we ask them to recall the number of rounds in which the four possible types

of events were observed: positive signal and success, positive signal and failure, negative signal and

success, and negative signal and failure. For payment, the interface selects one of the four entries

(with equal chance). The subject earns $25 if the number reported is within plus or minus 5 of the

actual number that they experienced.
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Part 6

In this part, we confront subjects with the actual data they observed in a conveniently aggregated

manner. We present the data in a two-by-two table showing the number of actual rounds in which

a specific combination of the signal and state realization was observed. Because it was hard to

anticipate what kind of concrete feedback would prompt subjects to revise their incorrect beliefs

prior to running the experiment, we proceeded in three steps.

In the first step (Part 6), we present subjects with data from the previous 200 rounds that they

experienced. After observing this information, subjects do one more round of the belief elicitation

task.

Part 7

In the next step, the interface simulates an additional 800 rounds of signal-state realizations, adds

it to the existing 200 rounds, and presents the data in the same table format. Thus, subjects now

observe feedback from 1,000 rounds in a table format. After observing this information, subjects

do one more round of the belief elicitation task.

Part 8

In the last step, the interface computes the relevant frequencies of the entries presented in the table

from the previous step. In particular, conditional on each possible signal (positive or negative), the

interface reports the percentage of all 1,000 rounds in which the project was a success vs. failure.

After observing this information, subjects have to enter it back themselves (to minimize any chance

that they are not reading the data) and subsequently do one more round of the belief elicitation

task.

Part 9

In the last part of the experiment, we change the primitives of the belief elicitation task to p′ = .95

and q′ = .85. Subjects in both the Primitives and NoPrimitives treatment are informed of these

primitives, and subjects submit beliefs once without the possibility of further feedback.
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Survey

At the end of the experiment, we conducted a brief survey consisting of four questions to assess

whether the subject had taken a class in probability and/or statistics in college, whether or not

their major is STEM related, their gender, and their year of study in college (freshman, sophomore,

junior, senior, or graduate student).

Mechanism treatments

Primitives w/ shock

This treatment is identical to the Primitives treatment until the beginning of Part 3. After in-

structions for Part 3 are read but before they receive feedback, the screen displays a message in

case their answers to Part 2 were not correct. Specifically, if only one answer was not correct, they

would see the following message “At least one of the answers that you provided in Part 2 is NOT

CORRECT.” If both answers were incorrect, the screen would shot the following message: “Both

answers that you provided in Part 2 are NOT CORRECT.”

Subsequently, Parts 3 and 4 proceed as in the Primitives treatment. Subjects then face Parts 5

and 6 as in the core treatments.

Primitives w/ lock in and NoPrimitives w/ lock in

These treatments are identical to the Primitives and NoPrimitives treatment, respectively until

Part 3. At that point and for both treatments, the instructions for Part 3 include the following

sentences in the last paragraph: “(...) You will also have a ‘lock-in’ option. This option enables

you to use your current choices for the current round and all future rounds. In other words, if

you select this option, you will not need to click through all the remaining rounds; instead you

will jump to the end of the experiment. But this also means that you will not be able to modify

your choice for future rounds. Note that even if you use the ‘lock-in’ option to skip to the end of

the experiment, you will not be able to leave early. We will pay you only after everybody is done.

You will be able to make choices at your own pace in this part. Part 3 will end after you make

your choices for all rounds.” Given the option to lock in choices, we merged parts 3 and 4 in this

treatment. Essentially, subjects were told that in Part 3 they would face additional 199 rounds.
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Primitives w/ freq. and NoPrimitives w/ freq.

These treatments are identical to the Primitives and NoPrimitives treatments, respectively, except

that the feedback in Parts 3 and 4 is presented in a two-by-two table showing the number of actual

rounds in which a specific combination of the signal and state realization was observed so far.69

Voting treatments

We conducted for voting treatments. Participants were recruited from Prolific and there are 130

participants per treatment.70 These treatments have two parts. Full details of instructions with

screenshots are provided in the Procedures Appendix.

Part 1

After reading detailed instructions and questions on the instructions, subjects make the decision

for Part 1. How the choice between Option 1 and Option 2 changes across the four treatments is

described in Table 3. The problem in Complex Primitives (Voting) is the same as the problem in

Primitives (Voting) except that the options are described in a less transparent manner. A similar

comment applies to the No Primitives treatments.

After subjects submit their choice for Part 1, we ask them: “How confident do you feel about

your choice in Part 1?” This question is unincentivized. Possible answers range from ‘Not confident

at all’ to ‘Extremely confident,’ with three additional options in between.

Part 2

Part 2 consists of 99 rounds, with the first round providing feedback on the Part 1 choice. This part

is identical in all treatments. Subjects observe informative feedback, which is exogenous to their

choices, as in the BRN treatments. We implement this by telling subjects that they will receive

feedback from a different participant. In odd rounds they receive feedback from a participant who

selected Option 1. In even rounds they receive feedback from a participant who selected Option 2.

After responding understanding questions, they start Part 2.

69These treatments do include Part 5 (which asks subjects to recollect the data), but we did not ask Part 6 as it
essentially would have implied a repetition of the last choice they made in Part 4. Due to a software error we did not
collect the survey variables at the end of these treatments.

70We decided to double the sample size relative to the BRN experiments because research suggests that online
participants can be noisier (Gupta et al. 2021)
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Treatment Voting Complex Voting

Option 1 pays A

pays A if only one vote for it

If there are two votes: (i) A if RN ≤ X

(ii) B if RN ∈ {X + 1, ...X + 10}
(iii) C if RN > X + 10

Option 2

pays B if RN ≤ X − 2

pays B if RN ≤ X pays A if RN ∈ {X − 1, X}
pays C if RN > X pays C if RC > X

Option 1 selected? If there is at least one vote for Option 1

Option 2 selected? If there are two votes for Option 2

Computer’s Vote Option 2 if RN > X

Notes: (i) RN is a random uniform integer in {1, ..., 100}. Subjects are told that the computer knows RN.
(ii) In NoPrimitives (Voting) and Complex NoPrimitives (Voting), subjects are told that A, B, C and X
represent numbers, but that they are not be told what the actual numbers are. We also do not tell them
what the computer’s strategy is or whether it depends on RN.
(iii) In Primitives (Voting) and Complex Primitives (Voting) subjects know that A = 0, B = 6, C = 10 and
X = 60. Subjects also know the computer’s strategy.
(iv) Option 1 pays the same in both problems. The computer votes for option 1 when RN ≤ X. So, if
there are two votes for option 1 in complex, it pays A. If there is one vote for option 1 in complex, it pays
A. Hence, option 1 in complex pays A.
(v) Option 2 pays the same in both problems. The computer votes for option 2 when RN > X. If there
are two votes for option 2 (and option 2 is only implemented if there are two votes for it), it pays C in both
problems.

Table 3: Summary of Voting Treatments: Part 1

They observe feedback in the form of a table, where for each round they can see the other

participant’s vote and the other participant’s payment. They make a choice for each round and

the experiment is over once they make the choice for the last round.
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C Additional analysis: Results on Primitives vs. NoPrimitives

C.1 Treatment differences in rounds 1-200

Statistical analysis on treatment differences

Conditional on positive signal Conditional on negative signal H0

P NP Diff. P NP Diff. P = NP

Round 1 31 19 p < 0.001 18 35 p < 0.001 p < 0.001
p < 0.001 p < 0.001 p < 0.001

Round 50 25 19 p = 0.041 15 13 p = 0.599 p = 0.107
p = 0.043 p = 0.710 p = 0.117

Round 100 24 18 p = 0.025 13 8 p = 0.045 p = 0.011
p = 0.026 p = 0.053 p = 0.011

Round 200 21 13 p = 0.002 10 7 p = 0.183 p = 0.007
p = 0.002 p = 0.203 p = 0.008

Table 4: Average Distance to Bayesian Benchmark in Primitives vs. NoPrimitives

Notes: P and NP denote Primitives and NPrimitives. For each round and each treatment the table reports the average
of bj , where bj is the absolute value of the distance between the submitted belief and the Bayesian benchmark, that
is, bj = |Bj −BBay

j |. At each given round and for each possible signal, the first p-value of the difference corresponds
to the p-value of βj (j ∈ {Pos,Neg}) in the following equation: bj = αj + βjP+ υj , where; υj is an error term; and
P is a dummy that takes value 1 if the variable comes from Primitives. The second p-value includes three survey
controls in each equation: a dummy for whether the subject has taken a probability class, a dummy for whether the
subject is enrolled in a STEM major, and a gender dummy. To obtain p-values, we estimate both equations jointly
as a system, using seemingly unrelated regressions. This allows us to allow for a correlation across equation (because
for a fixed subjects beliefs can be correlated) but assume independence across subjects. Because the regressions are
estimated as a system, we can use a Wald test and evaluate the joint hypothesis that there is no treatment effect (i.e.
βPos = βNeg = 0). The p-value of such test (not including and including survey controls) is reported in last column.

Aggregate measure of partial base-rate neglect

Figure 2 presents average beliefs for different rounds relative to the perfect base-rate neglect and

Bayesian benchmarks. An alternative way to present our data and highlight treatment differences is

to measure the degree to which responses in aggregate display partial base rate neglect. We use an

approach that was introduced by Grether (1980) and since has become standard in empirical work

studying updating behavior. This approach does not necessarily have a behavioral interpretation,

particularly when applied to beliefs submitted over multiple rounds and to a treatment without

primitives, but it does provide an indication of how close beliefs are to the benchmark where

subjects know the primitives and can apply Bayes’ rule by appropriately weighting the prior and

the signal accuracy.

To conduct this analysis, we make use of an implication of Bayes’ rule that the posteriors
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Conditional on positive signal Conditional on negative signal H0

P NP Diff. P NP Diff. P = NP

Round 1 64 60 p = 0.258 22 39 p < 0.001 p < 0.001
p = 0.297 p < 0.001 p < 0.001

Round 50 57 47 p = 0.028 18 16 p = 0.488 p = 0.077
p = 0.028 p = 0.579 p = 0.080

Round 100 53 47 p = 0.159 16 11 p = 0.035 p = 0.056
p = 0.175 p = 0.041 p = 0.064

Round 200 54 46 p = 0.021 13 10 p = 0.112 p = 0.049
p = 0.025 p = 0.123 p = 0.055

Table 5: Average Beliefs in Primitives vs. NoPrimitives

Notes: P and NP denote Primitives and NPrimitives. For each round and each treatment the table reports the
average of bj , where bj is the submitted belief, that is, bj = Bj . At each given round and for each possible signal,
the first p-value of the difference corresponds to the p-value of βj (j ∈ {Pos,Neg}) in the following equation:
bj = αj + βjP + υj , where; υj is an error term; and P is a dummy that takes value 1 if the variable comes from
Primitives. The second p-value includes three survey controls in each equation: a dummy for whether the subject
has taken a probability class, a dummy for whether the subject is enrolled in a STEM major, and a gender dummy.
To obtain p-values, we estimate both equations jointly as a system, using seemingly unrelated regressions. This
allows us to allow for a correlation across equation (because for a fixed subjects beliefs can be correlated) but assume
independence across subjects. Because the regressions are estimated as a system, we can use a Wald test and evaluate
the joint hypothesis that there is no treatment effect (i.e. βPos = βNeg = 0). The p-value of such test (not including
and including survey controls) is reported in last column.

odds ratio (in log form) can be written as a linear function of the prior odds ratio and the signal

likelihood ratio. Specifically, we estimate the following regression for each round of our data:

ln
(

Bj

1−Bj

)
= αln

(
p

1−p

)
+ βln

(
Qj

1−Qj

)
, where for j = {Pos, Neg}, QPos = q and QNeg = 1− q. The

parameter α captures responsiveness to the prior (controlling for its strength), while β captures

responsiveness to the signal (controlling for its informational value). This provides us with two

benchmarks: α = β = 1 for a Bayesian, and α = 0, β = 1 for a pBRN agent. Importantly, the

estimate on α gives us a continuous measure of the level of partial base rate neglect in the aggregate

data.71

While there are no significant differences in the estimates of β between treatments (and estimates

are relatively close to 1), Figure 10 reveals large differences in the estimates of α.

Consistent with our earlier findings, the estimate of α for both treatments remains substantially

below the Bayesian benchmark even after 200 rounds. More importantly, the 200-round estimate

of α for treatment Primitives, which equals .55, is significantly smaller than that of treatment

NoPrimitives, which is .82 (p-value 0.001). Table 6 summarizes estimates of α and β at round 200

in all our treatments involving the updating task.

71To study treatment differences, we pool data from Primitives and NoPrimitives allowing for different α and β
estimates for the two treatments. Reported significance is with respect to the equivalence of the estimates from the
two treatments. We cluster standard errors by subject.
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Figure 10: Estimates of α per round by treatment

Estimates

P NP Ps Pl NPl Pf NPf

α 0.55 0.82 0.82 0.49 0.72 0.89 0.99
β 0.87 0.88 0.81 0.77 0.84 0.83 0.99

Differences

P vs. NP P vs. Ps NP vs. Ps Pl vs. NPl Pf vs. NPf Pf vs. P NPf vs. NP

α p = 0.001 p = 0.001 p = 0.987 p = 0.014 p = 0.127 p < 0.001 p = 0.015
β p = 0.897 p = 0.444 p = 0.414 p = 0.430 p = 0.334 p = 0.412 p = 0.122

Notes: P and NP, Ps, Pl, NPl, Pf, NPf, denote Primitives and NoPrimitives, Primitives w/ shock, Primitives w/
lock in, NoPrimitives w/ lock in, Primitives w/ freq, and No Primitives w/ freq. Reported values correspond to the

following regression for round 200: ln
(

Bj

1−Bj

)
= αln

(
p

1−p

)
+ βln

(
Qj

1−Qj

)
, where for j = {Pos, Neg}, QPos = q and

QNeg = 1 − q. The parameter α captures responsiveness to the prior (controlling for its strength), while β captures
responsiveness to the signal (controlling for its informational value).

Table 6: Estimates from Grether Regressions in Round 200
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Behavior of Round 1 pBRN subjects vs. Others in Primitives
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(b) BPos ∈ [70, 100] and BNeg ∈ [0, 30]

Figure 11: Evolution of submitted beliefs by subgroups

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Triangles
indicate the Bayesian and the pBRN benchmarks. Squares (Circles) report averages in treatment Primitives (No-
Primitives). Diamonds indicate averages for R1 pBRN subjects in Primitives. Crosses indicate average for R1 other
subjects in Primitives. The numbers indicate the round for which the averages are taken.

Figure 11a separately follows with diamonds the behavior of Round 1 pBRN subjects. Note that,

by definition, all Round 1 pBRN subjects make pBRN choices in round one, so that the starting

point for this group is (BPos, BNeg) = (80, 20). While beliefs for these subjects move towards

the Bayesian benchmark with experience, by round 200 beliefs for these subjects are substantially

farther away from the Bayesian benchmark relative to the average in Primitives. Furthermore, the

beliefs of Round 1 pBRN subjects are significantly different from subjects in NoPrimitives. This is

shown in column (1) of Table 7; for example, there is a significant fifteen percentage-point difference

in the average of BPos between the two groups.72 Here, we focus on Round 1 pBRN subjects who

made pBRN choices in round 1, but may change their behavior as the session evolves. Additionally,

it is possible to trace the proportion of subjects in each round who make choices consistent with

pBRN. Such evolution is presented in Figure 12.

72If we test the joint hypothesis that there are differences in BPos and BNeg, we obtain p-values of 0.007 and 0.001
in rounds 100 and 200, respectively.
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Sample

(1) (2) (3)
Round 1 pBRN v. NoPrimitives Round 1 pBRN v. Round 1 Others Round 1 Others v. NoPrimitives

γPos γNeg γPos γNeg γPos γNeg

Round 1
19.8 -18.5 36.2 -5.4 -16.3 -13.1

(.000) (.000) (.000) (.192) (.000) (.002)

Round 100
10.0 8.6 9.1 6.8 0.9 1.8

(.047) (.010) (.157) (.115) (.858) (.486)

Round 200
15.2 3.9 16.2 2.5 -0.9 1.5

(.000) (.068) (.003) (.279) (.808) (.539)

#Obs 100 64 92

Table 7: Estimation output for subsets of subjects

Notes: The table presents different estimates of γPos and γNeg, where BPos = δPos + γPosP + υPos and BNeg =
δNeg + γNegP + υNeg. Equations are estimated jointly using the seemingly unrelated regressions procedure. In (1)
the dummy P takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0 if the subject is in
NoPrimitives. In (2) the dummy P takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0
if the subject is not classified as Round 1 pBRN in Primitives (what we refer to as Round 1 Others in Primitives).
In (3) dummy P takes value 1 if the subject is classified as ‘Round 1 Others in Primitives’ and 0 if the subject is
in NoPrimitives. Between parentheses we report standard errors. Each row constrains the sample to the decision
referred to in the first column. The last row indicates the number of observations in each regression.
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Figure 12: Proportion of choices consistent with pBRN in Primitives as the session evolves

In Figure 11b, we demonstrate that these distinct patterns observed for Round 1 pBRN subjects

are not due to the fact that they start out in round one with particularly extreme beliefs that are

quite far from the Bayesian benchmark. To do so, we study treatment differences focusing on a

subset of subjects who start with similar initial beliefs. Specifically, we constrain the sample in

both treatments to include only subjects with BPos ∈ [70, 100] and BNeg ∈ [0, 30] in round 1. In
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Sample

(1) (2) (3) (4)
Round 1 pBRN BPos ≥ 70 Round 1 pBRN Round 1 Others

v. NoPrimitives BPos ≤ 30 v. Round 1 Others v. NoPrimitives

γPos γNeg γPos γNeg γPos γNeg γPos γNeg

Round 1
19.8 -18.5 2.0 0.4 36.2 -5.4 -16.3 -13.1

(.000) (.000) (.186) (.790) (.000) (.192) (.000) (.002)

Round 100
10.0 8.6 12.5 11.6 9.1 6.8 0.9 1.8

(.047) (.010) (.079) (.015) (.157) (.115) (.858) (.486)

Round 200
15.2 3.9 15.5 6.4 16.2 2.5 -0.9 1.5

(.000) (.068) (.012) (.008) (.003) (.279) (.808) (.539)

Table -1000- freq
-0.1 3.3 1.4 2.4 0.7 3.6 -0.8 -0.3

(.930) (.091) (.336) (.483) (.534) (.216) (.577) (.548)

#Obs 100 60 64 92

Table 8: Estimation output for subsets of subjects

Notes: The table presents different estimates of γPos and γNeg, where BPos = δPos + γPosP + υPos and BNeg =
δNeg+γNegP+υNeg. Equations are estimated jointly using the seemingly unrelated regressions procedure. In (1) the
dummy P takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0 if the subject participated
in NoPrimitives. In (2) P takes value 1 if the subject is in Primitives and as 0 if in NoPrimitives, but the sample is
restricted to subjects who in round 1 submitted beliefs such that: BPos ≥ 70 and BNeg ≤ 30. In (3) the dummy P
takes value 1 if the subject was classified as Round 1 pBRN in Primitives and 0 if the subject not classified as Round
1 pBRN in Primitives (what we refer to as R1 Others in Primitives). In (4) dummy P takes value 1 if the subject is
classified as ‘Round 1 Others in Primitives’ and 0 if the subject participated in NoPrimitives. Between parentheses
we report standard errors. Each row constrains the sample to the decision referred to in the first column, where
Table-1000-freq refers to the decision after we provide subjects with the relevant frequencies from the 1000-round
table. The last row indicates the number of observations in each regression.

Primitives, only Round 1 pBRN subjects are included with this constraint, while in NoPrimitives

approximately thirty percent of subjects (who likely assigned high informational value to the signal

labels) satisfy the constraint. Even within this subset, large treatment differences emerge by round

100, and these differences remain by round 200. Table 8 verifies these patterns statistically.

To provide further evidence that the treatment differences are driven by the Round 1 pBRN

subjects, we also separately analyze beliefs of those subjects who are not classified as Round 1

pBRN in Primitives. We refer to such subjects as Round 1 Others. Average beliefs for these

subjects in rounds 1, 100, and 200 are depicted (with crosses) in Figure 11a. At the 100-round and

the 200-round marks, average beliefs of Round 1 Others are statistically different from Round 1

pBRN subjects in Primitives, but not statistically different from subjects in NoPrimitives.73

In summary, the decomposition of subjects in Primitives depending on their round one choices

shows that beliefs of Round 1 pBRN subjects in round 200 are statistically different from other

subjects in the same treatment and from subjects in NoPrimitives. But such differences are not

present between subjects in NoPrimitives and subjects in Primitives who were not classified as

73The p-value of the joint test of γPos = γNeg = 0 by round 200 for the estimates reported in column (3) of Table
7 equals .011, but the same test for estimatates in column (4) delivers a p-value of .760.
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Round 1 pBRN, and the beliefs of subjects in these groups are closer to the Bayesian benchmark

than the beliefs of Round 1 pBRN subjects in Primitives.

Convergence and time

We also use convergence as a measure of when subjects stop responding to data. We code a subject’s

beliefs to have converged by round t if the subject does not change either belief from round t until

round 100.74 We use t = 91 (t = 96) to look at the share of subjects whose beliefs converged

by the last 10 (5) rounds. We find substantial differences between the treatments. The share of

subjects whose beliefs converged by the last 10 rounds is 77 percent in Primitives and this share

increases to 94 percent when we focus on the last 5 rounds. By contrast, the corresponding values

for NoPrimitives are only 36 and 47 percent.

Similar patterns are observed with respect to the time that subjects take to make their decisions.

The average (median) amount of minutes that subjects in NoPrimitives take to complete the

first 100 rounds is 15 (12.5), while subjects in Primitives take 10.7 (9.2). That is, subjects in

NoPrimitives take about 30 percent more time relative to subjects in Primitives, and the difference

is statistically significant (p-value 0.001).

C.2 Treatment differences after round 200

Recollection of feedback

In this part of the experiment, we test how well subjects can recall the feedback they experienced in

the rounds 1-200. As explained in Online Appendix B, each subject submits four numbers denoting

the number of rounds in which each possible signal-state realization was observed.

A first look at results is presented in Table 9a, which shows the average implied frequency of

success conditional on each signal calculated from subjects’ recollection of feedback and, in the first

row, the actual average frequencies that subjects observed.

We find that frequencies implied by the recollection of feedback are farthest away from the

actual frequencies for Round 1 pBRN subjects. Note also that for these subjects the frequencies

implied by the recollection of feedback deviate from actual frequencies precisely in the direction of

74Recall that rounds 101-200 are introduced as a surprise, so when facing the first 100 rounds subjects did not
know that they would receive additional feedback.
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Signal was: Positive Negative

Actual .41 .04

Round 1 pBRN .54 .15

Round 1 Others .45 .10

NoPrimitives .47 .11

(a) Frequency of Success: Actual and in-
ferred from reports

(1) (2) (3)

Dep. var.: ∆B,F ∆B,R ∆R,F

DRound 1 pBRN 17.9 12.3 14.3

DRound 1 Others 11.4 9.4 8.1

DNoPrimitives 9.8 10.3 9.6

Hypotheses:

DRound 1 pBRN = DRound 1 Others .006 .262 .021

DRound 1 pBRN = DNoPrimitives .000 .333 .033

DRound 1 Others = DNoPrimitives .454 .719 .542

(b) Differences between beliefs, reports and feedback across
treatments

Table 9: Recollection of feedback

Notes: The right-hand side variable in each regression of panel (b) is indicated on the first row. The right-hand
side of each regression includes three dummy variables, each taking value 1 when the subject is in Primitives and
classified as Round 1 pBRN (DRound 1 pBRN), in Primitives and classified as Round 1 Others (DRound 1 Others), or in
NoPrimitives (DNoPrimitives). Coefficient estimates for the dummy variables are reported in the corresponding row.
The p-values associated with the null hypothesis that the coefficient equals zero are are all lower than 0.001 and not
reported.

the beliefs they submit.75

To study more carefully how well subjects recall feedback and how that connects to the beliefs

they submit, in Table 9b we focus on the relationship between three objects: actual realized fre-

quencies (Fj), frequencies implied by recollection of feedback (Rj) and beliefs reported in round

200 (Bj), where j ∈ {Neg,Pos}.76 These results can be summarized as follows. (1) We find that

frequencies implied by the recollection of feedback, as well as beliefs, to be farthest away from the

actual frequencies for Round 1 pBRN subjects at 14.3 and 17.9 percentage points, respectively (see

column ∆R,F and ∆B,F of Table 9b). While other groups of subjects also have a noisy recollection

of the data, the test of hypotheses at the bottom of the table show that such differences are smaller

than for Round 1 pBRN subjects. (2) However, there are no statistically significant differences be-

tween groups in terms of how far beliefs are from frequencies implied by the recollection of feedback

(see column ∆B,R of Table 9b).

These observations suggest that Round 1 pBRN subjects differ from other subjects in a very

specific way. Their beliefs are similarly consistent with their recollection of the data as others, but

75This is consistent with subjects using their mental model (due to their limited recollection of past events) to
reconstruct what might have happened to them.

76We then construct a measure of distance for each subject by computing ∆x,y =
|xNeg−yNeg|−|xPos−yPos|

2
, where

x and y represent any two of the objects of interest. We report regressions in which the distance measure is the
dependent variable, and the right-hand side includes a dummy variable for each group of subjects (Round 1 pBRN,
Round 1 Others and NoPrimitives).
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Figure 13: Reported beliefs at different parts of the session

Notes: The vertical (horizontal) axis represents beliefs conditional on the signal being positive (negative). Triangles
indicate the Bayesian and pBRN benchmarks. Squares (Circles) report averages in Primitives (NoPrimitives). The
numbers indicate the round for which the averages are reported. ‘Table’ refers to when subjects are presented with a
summary table of the feedback collected in 200 rounds. ‘Table + Simul’ refers to when the summary table includes
800 additional simulated rounds (for a total of 1000 rounds). ‘Freq’ refers to when subjects see the table with 1000
rounds of feedback and the relevant frequencies.

they stand out from others in that they have a systematically biased recollection of the data.

Summary tables

In this section we study the effect of showing subjects aggregate data (that they have already expe-

rienced) in a summarized table form. As explained in Online Appendix B, we begin by presenting

subjects with feedback from rounds 1-200 using a two-by-two table that reports the number of

rounds that each of the four combinations of signal-state realizations were observed.77 We view

the provision of the table as an intervention that significantly reduces the attention costs of the

subjects.

The main finding is that introducing the table dramatically moves beliefs closer to the Bayesian

benchmark in Primitives, particularly with respect to BPos. The movement of average beliefs can

77Interventions where subjects are presented with aggregate information is common in the psychology literature.
For example, Gigerenzer & Hoffrage (1995) find that providing natural frequencies, as opposed to primitives, reduces,
but does not eliminate, base-rate neglect. This literature, however, does not inform on how subjects respond to
aggregate information when they are already given the primitives and/or when they have previously experienced the
same information directly through natural sampling.
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be observed in Figure 13a, in which the average belief for this part of the experiment (denoted

‘Table’) is shown for different groups. While there is no significant change with respect to BNeg,

we observe a downwards adjustment in BPos of approximately 14 percentage points in treatment

Primitives.

As explained in Online Appendix B, the part where we provide a summary table is divided into

three phases. In the first phase, discussed above, each subject observes a summary table with data

from the 200 rounds they experienced. In phases two and three, which we now discuss, subjects

observe a summary table from an additional 800 simulated rounds, for a total of 1,000 rounds,

and later observe a table with realized frequencies of success and failure conditional on a positive

and negative signal. As mentioned earlier, the treatment effect disappears with the first of these

interventions. Phases two and three have a small additional impact on beliefs, the main one being

that beliefs get closer and closer to the Bayesian benchmark in both treatments. By end of this

part, the belief conditional on a positive signal, BPos, is statistically indistinguishable from the

Bayesian belief of 41 percent in both treatments. The belief conditional on a negative signal, BNeg,

is statistically different from the Bayesian benchmark of 4 percent in both treatments, but this

difference is very small. The findings are presented in the left panel of Figure 14 and Figure 15,

which reveal, essentially all subjects in both treatments to report beliefs very close to the Bayesian

benchmark by the end of the final phase.
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Figure 14: Density plots in the Primitives treatment

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs

are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of

subjects with such beliefs. Table-200 refers to when feedback from 200 rounds is presented in table form. Table-

1000-freq refers to when 1000 rounds of feedback is presented in table form including frequency of state realization

conditional on signal.
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Figure 15: Density plots in the Primitives treatment

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs

are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of

subjects with such beliefs. Table-200 refers to when feedback from 200 rounds is presented in table form. Table-

1000-freq refers to when 1000 rounds of feedback is presented in table form including frequency of state realization

conditional on signal.
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D Additional analysis: Confidence
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Figure 16: Density Plots for Primitives w shock

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.

Treatment differences Distance to Bayesian benchmark
P+s vs. P P+s vs. NP P+s vs. P P+s vs. NP

Round 1 p = 0.419 p < 0.001 p = 0.159 p < 0.001
p = 0.432 p < 0.001 p = 0.193 p < 0.001

Round 50 p = 0.026 p = 0.933 p = 0.063 p = 0.902
p = 0.024 p = 0.897 p = 0.073 p = 0.868

Round 100 p = 0.404 p = 0.605 p = 0.040 p = 0.656
p = 0.443 p = 0.625 p = 0.045 p = 0.677

Round 200 p = 0.013 p = 0.510 p = 0.021 p = 0.927
p = 0.012 p = 0.503 p = 0.031 p = 0.935

Table 10: Comparing Primitives w/ shock to Primitives and NoPrimitives

Notes: P+s, P and NP denote Primitives w/ shock, Primitives and NoPrimitives. The first p-value in each comparison
results from estimation a system of equations (using seemingly unrelated regressions) for j ∈ {Pos,Neg} given
by: bj = αj + βjT + υj , where; υj is an error term; and T is a treatment dummy. In columns with the heading
‘Treatment differences,’ bj is the submitted belief, that is, bj = Bj . In columns with the heading ‘Distance to Bayesian
benchmark,’ bj is the absolute value of the distance between the submitted belief and the Bayesian benchmark, that
is, bj = |Bj − BBay

j |. The treatment dummy changes depending on the comparison in the column. For example,
in ‘P+s vs. P, it takes value one if the observation comes from Primitives w/ shock and zero if it corresponds
to Primitives. Because the regressions are estimated as a system, we can use a Wald test and evaluate the joint
hypothesis that there is no treatment effect (i.e. βPos = βNeg = 0). Each cell reports the p-value of such test. The
second p-value in each comparison results from using the same procedure, but including three right-hand side survey
controls: a dummy for whether the subject has taken a probability class, a dummy for whether the subject is enrolled
in a STEM major, and a gender dummy.
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E Additional analysis: Attentiveness
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Figure 17: Density Plots for Primitives w/ lock in

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.
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Figure 18: Density Plots for NoPrimitives w/ lock in

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.
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Figure 19: Evolution of Beliefs in Treatments with Lock In

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
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F Additional analysis: Costly attention

Figure 20: Interface Screenshot of Treatments with Frequencies (Round 50)
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Figure 21: Density Plots for Primitives w/ freq

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.
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Figure 22: Density Plots for NoPrimitives w/ freq

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs.

Details on estimation of the learning model on the aggregate level

Estimation of η: We use least squares estimation to find parameters ηPj and ηNP
j for j ∈ {pos, neg}

that best describe evolution of beliefs with feedback in Primitives w/ freq and NoPrimitives w/

freq, respectively.

For each j ∈ {Pos,Neg} and t ∈ {P,NP}, we find

argmin
ηtj∈R

∑
r=2,200

((
ηtj

ηtj + nr

)
B̂1

j +

(
1−

ηtj
ηtj + nr

)
f r − B̂r

j

)2

,

where B̂t
j is average belief, n

r, average number of observations, and f r, average empirical frequency

at round r.

Estimation of σ: Given estimates for η, we use least squares estimation to find parameters σP
j

and σNP
j for j ∈ {Pos,Neg} that best describe evolution of beliefs with feedback in Primitives and

NoPrimitives, respectively.

Taking σP
j and σNP

j as given, for each j ∈ {Pos,Neg} and t ∈ {P,NP}, we find

argmin
σt
j∈R

∑
r=2,200

((
ηtj
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jn

r
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j +
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Treatment differences Distance to Bayesian benchmark
Round Pf vs. NPf Pf vs. P NPf vs. NP Pf vs. NPf Pf vs. P NPf vs. NP

1 p < 0.001 p = 0.710 p = 0.190 p < 0.001 p = 0.935 p = 0.141
50 p = 0.174 p = 0.007 p = 0.004 p = 0.326 p < 0.001 p < 0.001
100 p = 0.272 p = 0.005 p = 0.058 p = 0.394 p < 0.001 p = 0.001
200 p = 0.196 p = 0.010 p = 0.033 p = 0.313 p < 0.001 p < 0.001

Notes: Pf, NPf, P and NP denote Primitives w/ freq, No Primitives w/ freq, Primitives and NoPrimitives. For
each cell we estimate a system of equations (using seemingly unrelated regressions) for j ∈ {Pos,Neg} given by:
bj = αj + βjT + υj , where; υj is an error term; and T is a treatment dummy. In columns with the heading
‘Treatment differences,’ bj is the submitted belief, that is, bj = Bj . In columns with the heading ‘Distance to Bayesian
benchmark,’ bj is the absolute value of the distance between the submitted belief and the Bayesian benchmark, that
is, bj = |Bj − BBay

j |. The treatment dummy changes depending on the comparison in the column. For example, in
‘Pf vs. P, it takes value one if the observation comes from Primitives w/ freq and zero if it corresponds to Primitives.
Because the regressions are estimated as a system, we can use a Wald test and evaluate the joint hypothesis that
there is no treatment effect (i.e. βPos = βNeg = 0). Each cell reports the p-value of such test. Due to a software
error, we did not collect survey variables in the frequency treatments.

Table 11: Primitives w/ freq and NoPrimitives w/ freq

where B̂t
j is average belief, n

r, average number of observations, and f r, average empirical frequency

at round r.

Estimates on long-run outcomes

The model estimates can also be used to project outcomes for longer horizons than can be observed

in our experimental design (beyond 200 rounds). Figure 23 below uses the model to project beliefs

for rounds 200 too 1000. While beliefs continue to move towards the Bayesian benchmark in this

rage, the qualitative results from the first 200 rounds reported in the paper (particularly the relative

comparison of Primitives to NoPrimitives) remain.
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Figure 23: Model Estimates on Evolution of Beliefs for Rounds 1-1000

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines depict
estimates from the learning model. Orange line represent a counterfactual estimate where subjects in Primitives are
set to be as attentive as those in NoPrimitives (keeping confidence level the same). Green line denotes Bayesian
benchmark.

Estimating the learning model on the individual level

Here we estimate both ex-ante expected value p0 and η/σ, which captures relative importance of the

prior relative to feedback for each subject in treatments Primitives, NoPrimitives, Primitives w/

table and NoPrimitives w/ table. To compute the counterfactual, we need a measure of attentiveness

in NoPrimitives. We do this by comparing the median estimated value of η/σ in NoPrimitives to

NoPrimitives w/ table. Then we apply this parameter to Primitives. We do so by adjusting all

individual level estimates from η/σ in Primitives by the same ratio so that the median value in

this treatment compares to Primitives w/ table in the same way as between NoPrimitives and

NoPrimitives w/ table.
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Figure 24: Model Estimates on Evolution of Beliefs Accounting for Heterogeneity

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines depict
estimates from the learning model. Orange line represent a counterfactual estimate where subjects in Primitives are
set to be as attentive as those in NoPrimitives (keeping confidence level the same). Green line denotes Bayesian
benchmark.
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G Additional analysis: Heterogeneity

In this section, we study the extent to which long-run treatment differences between treatments

with and without information on primitives is driven by those subjects who start at the BRN point.

We replicate main figures in the main text depicting evolution of beliefs with experience, separately

showing beliefs for those subjects who start at the BRN point and others in the same treatment.

Tables 12 to 14 provide further information on statistical differences between treatments without

primitives and with primitives (separated by subgroups) at important points: rounds 50, 100, and

200, respectively.

Here we summarize key findings:

1. In all cases where there is a long-run difference in beliefs between treatments with and without

primitives, this treatment effect is driven by those subjects who start at the BRN point in

round one. For evidence on this, see Figures 5 and Figures 26, as well as Tables 12 to 14.

2. In Tables 12 to 14, we go further and look at a subset of subjects in treatments with primitives

who start out at the BRN point. Specifically, we separate those subjects who start at the BRN

point, but then end up with different beliefs in round 200. Focusing on the contrast between

Primitives and NoPrimitives, we find that beliefs of these subset of subjects in Primitives are

significantly different from those in NoPrimitives. This suggest that the aggregate treatment

difference is not driven only by those subjects who never move from the BRN point.

3. Interventions that close or reduce the long-run difference in beliefs between treatments with

and without primitives (such as shock to confidence or presentation of feedback as frequency

tables) has the largest impact on those subjects who start at the BRN point. For evidence

on this, see Figures 25 and Figures 27 particularly, as well as Tables 12 to 14.

4. In treatments with lock-in option, when primitives are provided, those who start at the BRN

point lock-in slightly later than others (p = 0.079) in the same treatment, but much earlier

than those who are not given primitives (p < 0.001). However, subjects who start at the

BRN point do not keep revising their beliefs for significantly longer than others in the same

treatment (but both groups stop revising earlier than those who are not given primitives).78

This indicates that information on primitives lowers engagement with the data for all subjects

(both those who start at the BRN point and others). This suggests that subjects classified

78This is also the case in other treatments, except in Primitives w shock where subjects starting at the BRN point
revise their beliefs for longer than others in the same treatment. Furthermore, these pattern do not change when we
control for those subjects who are the Bayesian benchmark in round one.
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as others in treatments with primitives learn both from data and from primitives. See Tables

15 and 16 for details.
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Figure 25: Evolution of Beliefs for R1 pBRN Subjects and Others in Primitives andPrimitives w/
shock vs. NoPrimitives

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark. Beliefs are separated by round one behavior. R1
pBRN denotes beliefs of subjects who start at the pBRN point. Others refers to others in the same treatment.
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Figure 26: Evolution of Beliefs for R1 pBRN Subjects and Others in Primitives and Primitives w/
lockin vs. NoPrimitives

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark. Beliefs are separated by round one behavior. R1
pBRN denotes beliefs of subjects who start at the pBRN point. Others refers to others in the same treatment.
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Figure 27: Evolution of Beliefs in Primitives, Primitives w/ freq, NoPrimitives and NoPrimitives
w/ freq

Notes: Shaded lines in the background show average belief in each round of each treatment. Darker lines in the
foreground show beliefs averaged over prior ten rounds to make general patterns in evolution of beliefs more discernible.
The horizontal green lines correspond to the Bayesian benchmark. Beliefs are separated by round one behavior. R1
pBRN denotes beliefs of subjects who start at the pBRN point. Others refers to others in the same treatment.
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Table 12: Round 50

Share (%) BPos BNeg ∆Pos ∆Neg

NP 47 15 19 13

P pBRN in R1 56 61 20 p = 0.011 28 17 p = 003
P pBRN in R1 but not in R200 44 54 19 p = 0.078 23 15 p = 0.056
P Others 44 51 15 p = 0.706 20 12 p = 0.859

NP w/ lockin 52 16 21 14

P w/ lockin pBRN in R1 42 64 21 p = 0.050 27 17 p = 0.145
P w/ lockin pBRN in R1 but not in R200 24 49 17 p = 0.696 20 13 p = 0.658
P w/ lockin Others 58 47 15 p = 0.543 20 11 p = 0.681

P w/ shock pBRN in R1 49 48 16 p = 0.995 20 13 p = 0.969
P w/ shock pBRN in R1 but not in R200 47 46 15 p = 0.995 18 12 p = 0.998
P w/ shock Others 51 44 15 p = 0.790 17 11 p = 0.611

NP w/ freq 45 7 13 6

P w/ freq pBRN in R1 61 50 12 p = 0.126 19 9 p = 0.044
P w/ freq pBRN in R1 but not in R200 53 45 11 p = 0.513 13 8 p = 0.464
P w/ freq Others 49 43 11 p = 0.352 10 8 p = 0.490

Notes: P and NP denote Primitives and NPrimitives. The table reports the average belief (BPos or BNeg) or average
distance to the Bayesian benchmark (∆Pos = |BPos −BBay

Pos | and ∆Neg = |BNeg −BBay
Neg |). The first p-value reports

whether beliefs in selected group in P are different from closest NP treatment. The second p-value reports whether
distance to Bayesian benchmark is different relative to closest NP treatment. For details of regressions see Table 4.
For each group, the closest NP treatment is listed right above (except for treatment with shock where the original
NP treatment is considered).

Table 13: Round 100

Share (%) BPos BNeg ∆Pos ∆Neg

NP 47 11 17 8

P pBRN in R1 56 57 19 p = 0.007 26 16 p < 0.001
P pBRN in R1 but not in R200 44 49 16 p = 0.078 22 13 p = 0.021
P Others 44 48 13 p = 0.784 20 10 p = 0.664

NP w/ lockin 50 14 19 11

P w/ lockin pBRN in R1 42 64 19 p = 0.015 27 16 p = 0.050
P w/ lockin pBRN in R1 but not in R200 24 50 16 p = 0.660 20 13 p = 0.658
P w/ lockin Others 58 48 15 p = 0.853 20 11 p = 0.886

P w/ shock pBRN in R1 49 45 12 p = 0.196 18 11 p = 0.514
P w/ shock pBRN in R1 but not in R200 47 48 13 p = 0.258 16 10 p = 0.546
P w/ shock Others 51 45 12 p = 0.749 15 9 p = 0.721

NP w/ freq 42 6 10 5

P w/ freq pBRN in R1 61 43 10 p = 0.391 16 7 p = 0.077
P w/ freq pBRN in R1 but not in R200 53 40 9 p = 0.456 11 7 p = 0.542
P w/ freq Others 49 43 10 p = 0.424 8 7 p = 0.509

Notes: P and NP denote Primitives and NPrimitives. The table reports the average belief (BPos or BNeg) or average
distance to the Bayesian benchmark (∆Pos = |BPos −BBay

Pos | and ∆Neg = |BNeg −BBay
Neg |). The first p-value reports

whether beliefs in selected group in P are different from closest NP treatment. The second p-value reports whether
distance to Bayesian benchmark is different relative to closest NP treatment. For details of regressions see Table 4.
For each group, the closest NP treatment is listed right above (except for treatment with shock where the original
NP treatment is considered).
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Table 14: Round 200

Share (%) BPos BNeg ∆Pos ∆Neg

NP 46 10 14 7

P pBRN in R1 56 61 14 p = 0.001 25 11 p < 0.001
P pBRN in R1 but not in R200 44 50 12 p = 0.073 18 9 p = 0.022
P Others 44 45 11 p = 0.760 15 8 p = 0.762

NP w/ lockin 48 13 18 11

P w/ lockin pBRN in R1 42 64 19 p = 0.004 27 16 p = 0.027
P w/ lockin pBRN in R1 but not in R200 24 50 16 p = 0.497 20 12 p = 0.620
P w/ lockin Others 58 48 15 p = 0.927 20 11 p = 0.834

P w/ shock pBRN in R1 49 45 12 p = 0.758 16 9 p = 0.717
P w/ shock pBRN in R1 but not in R200 47 42 11 p = 0.764 14 8 p = 0.852
P w/ shock Others 51 41 11 p = 0.229 12 8 p = 0.792

NP w/ freq 41 6 7 3

P w/ freq pBRN in R1 61 46 9 p = 0.116 12 6 p = 0.071
P w/ freq pBRN in R1 but not in R200 53 41 8 p = 0.691 7 5 p = 0.789
P w/ freq Others 49 41 8 p = 0.550 6 5 p = 0.431

Notes: P and NP denote Primitives and NPrimitives. The table reports the average belief (BPos or BNeg) or average
distance to the Bayesian benchmark (∆Pos = |BPos −BBay

Pos | and ∆Neg = |BNeg −BBay
Neg |). The first p-value reports

whether beliefs in selected group in P are different from closest NP treatment. The second p-value reports whether
distance to Bayesian benchmark is different relative to closest NP treatment. For details of regressions see Table 4.
For each group, the closest NP treatment is listed right above (except for treatment with shock where the original
NP treatment is considered).
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Table 15: Round of Last Revision in Beliefs (OLS)

(1) (2) (3) (4)

Primitives -42.84∗∗∗ -90.99∗∗∗ -42.79∗∗∗

(13.15) (10.31) (11.87)

R1 pBRN -16.43 11.53 43.35∗∗ 9.205

(14.62) (12.36) (17.87) (12.89)

Constant 175.5∗∗∗ 113.1∗∗∗ 90.50∗∗∗ 191.5∗∗∗

(7.254) (6.505) (12.46) (6.286)

Observations 128 139 70 118

Standard errors in parentheses.

∗∗∗1%, ∗∗5%, ∗10% significance.

(1): Data from Primitives and NoPrimitives.

(2): Data from Primitives w/ lockin and NoPrimitives w/ lockin.

(3): Data from Primitives w/ shock.

(4): Data from Primitives w/ freq and NoPrimitives w/ freq.

Table 16: Round of Lock-in Decision (OLS)

Round of Lock-in

Primitives -90.09∗∗∗

(11.48)

R1 pBRN 24.32∗

(13.76)

Constant 124.5∗∗∗

(7.245)

Observations 139

Standard errors in parentheses.

∗∗∗1%, ∗∗5%, ∗10% significance.

Data from Primitives w/ lockin and NoPrimitives w/ lockin..
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H Additional analysis: Transfer learning
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Figure 28: Transfer Learning: Density Plots in Final Round with New Primitives

Notes: The vertical (horizontal) axis captures the belief conditional on the signal being positive (negative). Beliefs
are presented at the individual level (rounded to multiples of 3). The size of each bubble represents the number of
subjects with such beliefs. The data is from the final round of the core treatments where the prior and the reliability
of the signal is changed.
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I Additional Analysis: Evidence beyond the updating problem

In the text we focus on the proportion of choices that are correct in the last round and compare

it across treatments. A limitation of this exercise is that it is does not measure convergence. It

is possible that subjects making an optimal choice in the last round are still unsettled in their

choice and just happened to make an optimal choice at that point. Here we provide an alternative

presentation that controls for convergence.

As a reference we will say that a subject converged to the correct choice if the participant made

such choice in all the last five rounds. Figures 29 and 30 provide this information. In addition,

for each round t, the figures depict for each treatment the proportion of subjects who selected

optimally from that round onward.

Consider Figures 29 first. The proportion of subjects who choose correctly from round one

onward (i.e. in all rounds) in the Primitives (Voting) treatment is approximately 18 percent. These

are subjects who very likely identify that there is a dominant vote from the instructions and, hence,

have nothing to learn. In NoPrimitives (Voting), identifying the optimal vote from the instructions

is not possible and, accordingly, the proportion of subjects selecting consistently in all rounds is

lower, at close to ten percent. However, there is substantial learning in NoPrimitives (Voting). In

the last five rounds the difference between treatments is 21.5 percentage points, which is significant

(p-value <0.001)79. The same type of exercise can be done with a less strict consistency condition

on optimality, by relaxing the demand that subjects make no mistakes from round t onward. For

example, it is possible to construct the same figure demanding that z percent of choices from round

t onward are optimal. While such analysis changes the levels, the treatment effects remain the

same for values of z ∈ {70, 75, 80, 85, 90, 95}.

Figure 30 provides the same comparison but for “Complex” treatments. In this case, there

is little to no difference throughout the session. The last-round proportion of subjects behaving

optimally is slightly higher in the environment with no primitives but the difference is not significant

(p-value 0.537).

The figures also suggest that it is more demanding to learn from feedback in the Complex envi-

ronment, even though the actual feedback that subjects receive is structurally identical. To see this,

notice that the proportion of subjects behaving optimally in the last five rounds of NoPrimitives

(Voting) is approximately ten percentage points higher than in Complex NoPrimitives (Voting).

79We test the null hypothesis of no difference by running a regression in which the proportion of subjects making
optimal choices in the last round is on the left-hand side and the right-hand side includes a treatment dummy.
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Figure 29: Subjects making optimal choices in Primitives (Voting) and NoPrimitives (Voting)

Notes: For each treatment the figure reports the percentage of subjects choosing optimally from round t onward.

This suggests that even if the data is of the same quality, having more involved instructions to

begin with may make it more difficult for subjects to learn from feedback. It also suggests that

the difference between Primitives (Voting) and Complex Primitives (Voting) may understimate the

real difference given that learning in the Complex setting is more challenging. The difference in

the last round from comparing these two treatments results in approximately 10 percentage points

more subjects behaving optimally in Complex Primitives (Voting) than in Primitives (Voting). We

leave it for future research to study how learning in settings where options are more difficult to

parse to begin with might affect long-run learning.
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Figure 30: Subjects making optimal choices in Complex Primitives (Voting) and Complex NoPrim-
itives (Voting)

Notes: For each treatment the figure reports the percentage of subjects choosing optimally from round t onward.
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J Experimental instructions

Full details on our implementation are provided in the Procedures Appendix. In the instructions

to the subjects part 2 refers to round 1 as described in the paper. For a more direct access to

the crucial differences between treatments in this section, we include the instructions that were

presented to subjects on the main updating task (round 1) and how the two treatments (Primitives

and NoPrimitives) differ in this respect. The sections of the instructions that differ by treatment

are highlighted between brackets [].

Round 1 Instructions:

There is a total of 100 projects, and one of these projects will be randomly selected (with all

projects having an equal chance of being selected).

[Primitives: Of the 100 projects, there are 15 projects that are successes and 85 projects that

are failures.]

[NoPrimitives: Of the 100 projects, a certain number of them are successes and the remaining

ones are failures. We will not tell you how many of them are successes and how many are failures.]

Your task is to assess the chance that the project that was randomly selected is a Success vs.

Failure.

To aid your assessment, the computer will run a test on the selected project.

[Primitives: The test result can be either Positive or Negative and has a reliability of 80%.]

[NoPrimitives: The test result can be either Positive or Negative and has a reliability of R%.]

That means that:

[Primitives:

• If the project is a Success, the test result will be Positive with 80% chance and the test result

will be Negative with 20% chance.

• If the project is a Failure, the test result will be Negative with 80% chance and the test result

will be Positive with 20% chance.]

[NoPrimitives:
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• If the project is a Success, the test result will be Positive with R% chance and the test result

will be Negative with (100-R)% chance.

• If the project is a Failure, the test result will be Negative with R% chance and the test result

will be Positive with (100-R)% chance.

The reliability R is a specific number between 0 and 100, but we will not tell you this number.]

We will ask you to submit two assessments:

• If the test is Positive, what is the chance that the project is a Success vs. Failure?

• If the test is Negative, what is the chance that the project is a Success vs. Failure?

For each possible test result (Positive and Negative), you will select a point that indicates the chance

that the randomly selected project is a Success vs. Failure given the test result. [NoPrimitives:

Clearly, you are not given enough information to make an informed decision. Please go ahead and

take a guess.]

If this part is selected for payment, the interface will first randomly select a project. It will

then conduct a test, as described above. If the test result is Positive, we will use your submitted

choice for the case where the test is Positive and pay you as explained in the instruction period. If

the test result is Negative, we will use your submitted choice for the case where the test is Negative

and pay you as explained in the instruction period. The important thing to remember is that to

maximize your payment you should give us your best assessment of the chance that the project is

a Success vs. Failure given the test result.
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Round 1 screenshot (part 2 in instructions):

Figure 31: Interface screenshots for round 1 (presented as part 2 to subjects)
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