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Abstract

We provide evidence for a bias that we call “representative signal distortion” (RSD)

which is particularly relevant to settings of statistical discrimination. Experimental

subjects distort their evaluation of new evidence on individual group members and in-

terpret such information to be more representative of the group the individual belongs

to (relative to a reference group) than it really is. This produces a discriminatory

gap in the evaluation of members of the two groups. Because it is driven by rep-

resentativeness, the bias (and the discriminatory gap) disappears when subjects are

prevented from contrasting different groups; because it is a bias in the interpretation

of information, it disappears when subjects receive information before learning of the

individual’s group. We show that this bias can be easily estimated from appropriately

constructed datasets and can be distinguished from previously documented inferential

biases in the literature. Importantly, we document how removing the bias produces a

kind of free lunch in reducing discrimination, making it possible to significantly reduce

discrimination without lowering accuracy of inferences.
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I. Introduction

In this paper we document a bias in inference that we call “representative signal dis-

tortion” (RSD). The bias is closely tied to the representativeness heuristic (Kahneman and

Tversky (1972b)) and distorts how people evaluate new evidence. In particular, when eval-

uating signals (e.g. evidence on behavior, credentials or performance) about a member of

a group (e.g., a gender, nationality, race) people tend to misinterpret evidence to be more

representative of that group (relative to another reference group) than it actually is. In

other words, when evaluating a group member, people (i) tend to see what they are “looking

for” and (ii) “look for” evidence that is representative of the group (perhaps because this

conforms with what they expect to find). The result is that people distort their evaluation

of individual level signals so that they seem more representative of the individual’s group

than they really are.

Because representativeness can only arise when a decision maker can contrast the charac-

teristics of one group (e.g. ethnicity or gender) to those of another, this bias is particularly

relevant to settings of statistical discrimination, which, by their nature, involve inferences

about individuals from two or more contrasting groups. RSD distorts inference in such set-

tings in a distinctive way, biasing perception of evidence in systematically opposite directions

for contrasting groups, thereby generating a discriminatory gap in inference which amplifies

underlying group differences. We show that this bias can be removed simply by changing the

context under which people evaluate evidence on individual group members, resulting in a

kind of free lunch in reducing discrimination by making it possible to reduce discrimination

without any cost to inferential accuracy.

To better understand the bias, consider an example of a hiring manager evaluating re-

sumes of applicants from an elite college and applicants from a lower-ranked college. The

applicants from the elite school have relatively stronger skills for the job on average than ap-

plicants from the lower-ranked school. Because of this, when contrasting applicants from the

two schools, high skills are representative of (i.e. relatively more common in) elite applicants

while weak skills are representative of lower-ranked applicants. If the manager suffers from

RSD, she looks for (or simply tends to better-notice) evidence in each applicant’s resume

that is representative of the college the applicant attended relative to the college the appli-

cant did not attend. By doing this, the manager distorts the signal provided by the resumes,

evaluating each lower-ranked applicant’s resume as providing a weaker signal of skills and

each elite applicant’s resume as providing a stronger signal of skills than the resumes actu-

ally warrant. Relative to a manager who rationally statistically discriminates by efficiently

combining undistorted signals (i.e. unbiased resume evaluations) with prior beliefs on the

skill distributions at each college, the manager suffering from RSD discriminates between

elite and low-ranked applicants inefficiently and far too much. We show that simple interven-

tions (e.g., withholding information on group identity at the stage where individual evidence
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is evaluated) can remove this bias altogether, sharply decreasing the discriminatory gap in

assessments without cost to (and sometimes improvement in) the accuracy of assessments.

In the first part of the paper (Section 2) we build a model of RSD, showing how it

can arise as a consequence of representativeness (Kahneman and Tversky (1972b)), a well-

documented mistake in which decision makers evaluate the likelihood of a characteristic or

type by considering not only its prevalence within the relevant group (as a Bayesian would

do), but also its relative prevalence in this group when contrasted to a reference group.

Formally, we extend Bordalo, Coffman, Gennaioli, and Shleifer (2016) who model how this

bias can distort the way people remember or represent the composition of groups, producing

stereotypes. In our model, the same mistake distorts not beliefs about group characteristics,

but instead the way people interpret new evidence (e.g. resumes and interviews), causing

people to “look for” (or simply better-notice) group-representative evidence when evaluating

a member of either group. In standard statistical discrimination models with normal priors

and signals, this mistake both increases discrimination and decreases accuracy by producing

a positive bias in the evaluation of members of the high-mean group and a negative bias

for members of the low-mean group. We show in Section 3 that the resulting bias can

easily be estimated from suitable data using simple regressions and distinguished from other

previously documented errors in inference such as base-rate neglect.

Our main contribution is a novel experiment (described in Section 4), designed to em-

pirically identify this bias and study its properties. In our main Baseline treatment, we ask

subjects to estimate the “type” (a number between 1 and 100) of an unspecified attribute of

a fictitious member of one of two groups (“green” or “orange”) that differ only in their mean

type (40 or 60). Prior to making this assessment, the subject is (i) told which group the

fictitious person is a member of (green or orange), and (ii) shown a number of dots on their

screen equal to the fictitious person’s true type for a split second. The short exposure to the

dots means that subjects cannot perfectly observe the true type and therefore receive only a

noisy, subjective signal. While subjects are paid based on only the accuracy of their assess-

ments, in our analysis we compare outcomes in terms of both accuracy and discrimination

(difference in assessments between individuals of the same type from contrasting groups).

This experiment includes a number of design elements that allow us to cleanly measure

the bias for the first time. First, unlike most inference experiments, we provide subjects

with a subjective signal (rather than a numerically described statistical signal) that can

be mis-perceived or otherwise mis-interpreted, creating scope for perceptual biases that are

shut down by design in most previous work.1 By requiring subjects to evaluate a perceptual

pattern rather than an objective number, we create an experimental paradigm that more

closely resembles real-world discrimination contexts in which perceptual error is possible, like

studying a resume, scanning a neighborhood for misbehavior or noticing what is expressed

1 By “subjective” signal we mean a signal that is complex enough to be open to interpretation.
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during a conversation. Second, unlike previous experiments on representativeness (e.g. Bor-

dalo et al. (2016)), we study a setting designed deliberately to minimize misrepresentation or

mis-remembering of the prior (i.e. of the groups themselves): we show subjects the prior dis-

tributions of types on their screens, give them significant training on how to interpret them

and verify that they understand their properties. This allows us to focus on biases occurring

due to misinterpretation of the signal rather than misrepresentation of the prior. Finally,

we deliberately designed the experiment to be completely abstract, cleanly removing other,

non-inferential sources of discrimination (such as animus or taste-based discrimination) that

might otherwise confound our measurement of representative signal distortion.

This experimental environment not only serves as a crisp testing ground for RSD, but

also as a natural setting for assessing the descriptive accuracy of models of statistical dis-

crimination. This is no accident. RSD can occur precisely in the inference setting described

by statistical discrimination models, in which a decision maker makes inferences about a

member of one of several possible groups by combining individual and group level informa-

tion. We therefore are able to use our dataset first to examine the hypothesis that RSD

exists and next to study the types of inefficiencies the resulting bias generates in statistical

discrimination.

First (in Section V), we document strong evidence of RSD in our data. Subjects positively

bias their estimates of members of the high-mean orange group and negatively bias their

estimates of members of the low-mean green group. This bias is large relative to base-rate

neglect (a classical error which we also find in our data) and is surprisingly stable, persisting

even after dozens of repetitions of the task. Importantly, however, the bias disappears entirely

in a diagnostic treatment (OneGroup) in which we ask subjects to make assessments about

members of only one group (green or orange) throughout the experiment, indicating that the

bias is a consequence of group contrasts and therefore representativeness. It also disappears

with experience in a second treatment (SignalFirst) in which subjects observe the individual-

level information, i.e. the signal (the set of dots), before learning of the individual’s group,

indicating that the bias operates by distorting subjects’ perception of the signal (rather

than, e.g., by distorting their understanding of the prior). Thus the bias we observe in our

Baseline treatment matches the empirical fingerprint of RSD: it is a distortion of perception

that arises out of representativeness, is distinct from classical over- and under-inference and

is highly robust to experience.

Next (in Section VI), we show that RSD causes fundamental inefficiencies in statisti-

cal discrimination, producing opportunities to costlessly reduce discrimination. Subjects in

our Baseline treatment follow the basic comparative statics of the statistical discrimination

model, improving their accuracy (although only marginally) relative to a control treatment

(NoGroup) in which subjects are not informed of the group, by “discriminating” between

members of the two groups. However this discrimination is inefficient in the sense that
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outcomes are far from the “accuracy-discrimination frontier”. We show that the two biases

documented in our data—RSD and base-rate neglect—have conflicting implications for dis-

crimination. While base-rate neglect pushes in the direction of less discrimination, on net

people discriminate significantly and inefficiently because of RSD. We show that, given the

information subjects are able to extract from perceptual signals, they could improve their

accuracy while simultaneously discriminating less between groups simply by avoiding RSD.

Indeed, we show that simple cognitively-inspired interventions which remove the scope for

RSD – like specializing subjects to make assessment about members of only one group,2 or

forcing subjects to evaluate evidence on individuals before learning of their group – produce

striking reductions in discrimination and in some cases significant improvements in accuracy.

To the degree that RSD arises also in field applications, our experiment suggests that such

cognitive interventions might be effective at costlessly reducing discrimination.

Finally (in Section 7) we show that RSD is empirically distinguishable from related biases

in inference and discrimination discussed in the prior literature. RSD is distinct from classical

inferential biases like base-rate neglect and conservatism because it is a distortion in the way

people evaluate signals rather than a mistake in the way people combine the prior and the

signal. We find evidence of base-rate neglect in our data, but can empirically distinguish it

from RSD. Likewise, RSD is different from classical confirmation bias, because it biases beliefs

towards representative beliefs rather than the true prior. We find no evidence of classical

confirmation bias (e.g., reluctance to form beliefs far from the prior mean) in our data but

strong evidence for RSD. RSD is also distinct from representativeness-driven stereotypes as

described by Bordalo et al. (2016) because it is a distortion in the signal (i.e. new information

about individual group members) rather than a distortion in beliefs about the characteristics

of the group itself. As such it can be empirically distinguished from stereotypes in our data.

Finally, unlike models of bounded rationality like rational inattention or efficient coding,

RSD is non-Bayesian and therefore is characterized by violations of the martingale property

of Bayes’ rule that these models don’t allow.

The remainder of the paper is organized as follows. Section II presents our theoretical

framework and Section III our empirical framework. Section IV describes the experimental

design. Section V presents results on RSD and Section VI documents its effects on statistical

discrimination. Section VII discusses how the bias we measure relates to and is distinguish-

able from other biases and discriminatory behaviors documented in the literature. Section

VIII concludes by discussing the implications of our results.

2In our experiment, we are able to shut down RSD by making subjects entirely unaware of the properties

of a reference group simply by making no mention of that group. It is possible that similar effects might

follow from policies that reduce information on or salience of a reference groups, though whether this is the

case is an empirical question. See Section VI for further discussion.
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II. A Model of Representative Signal Distortion

In this section we present a model of representative signal distortion (RSD). We first

describe the kind of inference task in which this bias can arise. We then show how represen-

tativeness—defined via the contrast of different groups with distinct prior distributions—can

distort the agent’s perception of the signal and give rise to representative signal distortion.

A decision maker (e.g. a hiring manager or admissions officer) must estimate the type,

t, (e.g, a characteristic, score or measure of ability or fit) of an individual. The individual

belongs to a group, g, (e.g. a gender, nationality or ethnic group), which is observed by the

decision maker. The individual’s type is drawn from a distribution f(t|g) that depends on
the group she belongs to. The decision maker observes a noisy signal, s, (e.g. a resume or

an application package or the candidate’s interview performance) of the individual’s type,

distributed according to h(s|t, g). The decision maker’s task is to form an estimate t̂ of t

that is accurate in the sense that it minimizes the expectation of (t̂− t)2.

By Bayes’ rule, posterior beliefs on t given s and g are characterized by fp(t|s, g) =
h(s|t,g)f(t|g)∫
h(s|t,g)f(t|g)dt . An implication of this is that the optimal estimate, which corresponds to the

posterior expected type, can be written as
∫
fp(t|s, g)tdt.

Anticipating the setting of our experiment, we focus on a case in which (i) the type and

signal distributions are Gaussian, (ii) the type distributions have the same variance, and

(iii) the signal is an unbiased estimate of the type: t ∼ N (µg, σ
2), s ∼ N (t, ξ2g). In this

standard setting, the optimal estimate is a linear combination of the group’s prior mean and

the realized signal s,

t̂ = ωgµg + (1− ωg)s, (1)

where ωg is the weight on the prior mean. For an agent who correctly perceives the prior

and signal distributions, the optimal Bayesian weight on the prior mean is

ωBay
g = ξ2g/(ξ

2
g + σ2), (2)

which is increasing in the relative precision of the prior vs. the signal distribution. As

discussed in Section VII, the literature has documented several inferential biases that are

characterized by a failure to attach Bayesian weights to priors and signals, including, notably,
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base-rate neglect, in which the weight on the prior in equation (1) is too low, ωg < ωBay
g .3,4

By contrast, our interest is on biases that distort not the way people combine existing

information, but the way people perceive that information in the first place.

To model contrast-driven misperceptions, we draw from Gennaioli and Shleifer (2010)’s

and Bordalo et al. (2016)’s work on stereotypes, which is in turn based on Kahneman and

Tversky’s representativeness heuristic.5 Bordalo et al. (2016) show how a decision maker

can form distorted beliefs about a target group by overweighting its representative types.

Representative types are those that are observed more frequently in the target group relative

to the reference group.

Formally, Bordalo et al. (2016)’s representativeness measure R(t, g,−g) := f(t | g)
f(t | −g)

cap-

tures how representative type t is of group g given reference group −g. The model describes

how, through representativeness-based recall, the decision maker can distort beliefs about

the distribution of types in group g, misrepresenting f by f̃ in the following way:

f̃(t | g) = κf(t | g)(R(t, g,−g))γ
p

,

where κ is a normalization factor and γp ≥ 0 is a parameter that captures how susceptible

the decision maker is to representativeness. When γp = 0, the agent does not suffer any

distortions due to representativeness and f̃ = f . But when γp > 0, the agent overweights

the likelihood of types that are representative of group g (relative to −g) and f̃ ̸= f .

We are interested in a distinct but complementary possible effect of representativeness:

that it distorts the evaluation of new evidence rather than beliefs about the distribution of

types within a group – the perception of the noisy signal s instead of the prior f . Intuitively,

the idea is that when the decision maker is faced with new evidence she is more likely to

interpret the evidence to be more representative of the group the individual belongs to. For

example, when contrasting applicants from two schools, a manager suffering from RSD looks

3The standard approach to studying deviations from Bayesian updating (since Grether (1980)) focuses

on distortions in odds ratios. Two parameters capture potential deviations in how the prior odds ratio and

the signal likelihood ratio is used to form a posterior odds ratio (α and β below, respectively):

p(t = t1 | s)
p(t = t2 | s)

=

(
p(t1)

p(t2)

)α (
p(s | t = t1)

p(s | t = t2)

)β

,

Given signal s, the agent forms Bayesian beliefs about the relative odds of type t being equal to t1 vs. t2
when α = β = 1. In Online Appendix B, we show that when s ∼ N (t, ξ2), for any value of (α, β), assessments

consistent with the equation above are given by t̂ = ωµg + (1− ω)s, where ω = αξ2

βσ2+αξ2 . That is, while this

framework can account for deviations from optimal weight ω, it doesn’t allow for average bias in assessments

with E[t̂] ̸= µg.
4Base-rate neglect could be driven by overconfidence in one’s ability to read the signal, leading to a

perceived signal variance ξ̂2g < ξ2g and thus a perceived optimal weight ωg = ξ̂2g/(ξ̂
2
g + σ2) < ωBay

g . This

phenomenon is also known as overprecision in the literature (Moore and Healy, 2008).
5See Kahneman and Tversky (1972a,b), and Tversky and Kahneman (1983).
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for (or simply tends to better-notice) evidence in each applicants resume that is representative

of the college the applicant attended relative to the college the applicant did not attend. By

doing this, the manager distorts the signal provided by the resumes, evaluating applicants

from the lower-ranked school as providing a weaker signal of skills and each elite applicants

resume as providing a stronger signal of skills than the resumes actually warrant.

More generally, what we have in mind is a decision maker who (i) is prone to see what

she is ‘looking for’ when evaluating an individual, possibly due to cognitive limitations

(search costs, costly attention, etc.) and (ii) what she expects to see is biased because of

representativeness, that is, she ‘looks for’ evidence that is representative of the group the

individual belongs to. We formalize the consequence of this by modeling a decision maker

who misperceives the signal, s, as being more representative of the individual’s group relative

to the reference group than it actually is.6

Let y(s | g) :=
∫
h(s | t, g)f(t | g)dt be the distribution of the signals conditional on only

g. We assume that the perception of the signal (conditional on true type) is distorted to

be more representative of the group the individual belongs to (relative to a reference group

−g). In particular, instead of drawing signals from the distribution h(s | t, g), the agent

draws signals from the distorted distribution

h̃(s | t, g) = κh(s | t, g)(R(s, g,−g))γ
s

where as before κ is a normalizing factor, R(s, g,−g) = y(s | g)
y(s | −g)

describes how representative

signal s is of group g, and γs ≥ 0 is a measure of the distortion in the signal distribution

due to representativeness. Again, when γs = 0 the decision maker’s evaluation of evidence is

unaffected by representativeness and h̃ = h. When γs > 0, the decision maker’s evaluation

of evidence is distorted such that she is more likely to observe signals that are representative

of group g relative to group −g and, as a result, h̃ ̸= h. In Online Appendix ?? we provide a

micro-foundation for this bias by modelling the subjective perception of an agent who receives

psychological utility from seeing signals that are representative of a group but incurs costs

from perceiving objective stimuli in a distorted way.

We call this bias “representative signal distortion” (RSD) because it (i) originates from

representativeness, and (ii) is a distortion in the evaluation of new evidence (the signal)

rather than of the representation of the prior distribution.

This error, as described, rests on two premises about the decision problem. First, in

order for the distortion to occur due to representativeness, there must be multiple groups,

allowing the decision maker to contrast an individual’s signal distribution with that of an-

6Alternatively, and following the tradition of utility-based biases in beliefs (e.g., Brunnermeier and Parker

(2005)), we could assume that the agent chooses a distorted or perceived signal that maximizes a psychological

benefit from observing representative signals minus a cost of distorting the true signal.
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other reference group. Second, in order for representativeness to impact “what the decision

maker sees,” the decision maker must already be aware of an individual’s group identity (and

thus its representative characteristics) before observing new evidence on the individual. We

therefore assume R(s, g,−g) = 1 when either of these conditions are not met.7 Since this

has the effect of eliminating the bias, these two requirements will be useful for distinguishing

this bias from other inferential biases.

To isolate the impact of representative signal distortion, we assume that the decision

maker distorts only the signal, and not the prior distribution.8 We show in Online Appendix

A that representative signal distortion biases the mean of the signal distribution, such that

the subjectively observed signal is s ∼ N (t+∆g, ξ
2
g) with

∆g = γs
ξ2g

ξ2g + σ2
(µg − µ−g),

where γs is a measure of how much the decision maker distorts her perception of the signal

based on representativeness, ξ2g denotes the variance of the signal, σ2 denotes the variance

of the prior, and µg and µ−g denote the mean value of group g and reference group −g,

respectively.9

Importantly, the decision maker is unaware of the fact that her perception of the prior

signal is distorted, and therefore, when combining the subjective signal with prior information

about the group, the decision maker uses equation (1), where the only difference is that s is

now a signal realized from the distorted distribution of signals. By rewriting the distorted

signal as s = t + ∆s
g + ϵg, where ϵ ∼ N (0, ξ2g) is idiosyncratic signal noise, it follows from

equation (1) that if the true type is t, then the predicted type is a random variable given by

t̂ = (1− ωg)∆
s
g + ωgµg + (1− ωg)t+ (1− ωg)ϵg. (3)

Equation (3) will form the basis of our empirical strategy, outlined in the next section.

III. Empirical strategy and hypotheses

Consider a dataset (matching our experiment below) in which we observe a decision

maker’s estimate t̂, the true type t and the group identity g , but we do not observe the

subjective signal of the decision maker. We begin by postulating a simple empirical model

that is agnostic to the underlying model of decision making. We then link this empirical

model to the model of representative signal distortion (RSD) described in Section II.

7 For the case in which the agent is aware of the existence of two groups but is uninformed about group

identity before observing the signal, setting R(s, g,−g) = 1 acknowledges the fact that evidence cannot be

judged representative (or unrepresentative) of a group until the group is known.
8In Online Appendix I.A, we consider a more general model that also allows for distortions in the prior.
9The impact of representativess as a distortion in means when using the normal distribution has also

been shown in Bordalo, Gennaioli, and Shleifer (2018).
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For the empirical model, our only assumption is that the expected predicted type condi-

tional on true type is linear in the true type, i.e., for each group g, E[t̂ | t] is linear in t.10

This is a testable assumption (which we verify in our data) and it implies11

t̂ = Bg + ωgµg + (1− ωg)t+ εg, (4)

where:

• Bg is a group bias term; more precisely, Bg = E[Bias(t)], where Bias(t) ≡ E[t̂ | t]− t;

• ωg is the weight on the group’s prior mean µg vs. the true type t;

• εg is an error term satisfying E[εg | t] = 0.

This theoretically-agnostic empirical model is useful because, as long as the linearity as-

sumption is satisfied, it allows us to characterize agent behavior using two reduced-form

parameters: (i) a group bias term and (ii) the weight on the prior group mean vs. the true

type. These terms can be estimated using simple OLS regressions (details provided in Table

I).

The model of RSD in the previous section provides a structural economic interpretation

of these parameters, and, as we discuss in Section VI, it will also be convenient for conducting

counterfactual analysis. Comparing equations (3) and (4), it follows that the group bias term

captures the effects of RSD, i.e.,

Bg = (1− ωg)∆g

= (1− ωg)γ
s

ξ2g
ξ2g + σ2

(µg − µ−g). (5)

In addition, the weight ωg on prior mean vs. true type is also the weight placed by the agent

on the prior mean vs. her observed signal. Finally, comparison of the equations (3) and

(4) reveal that the error term in the empirical model is a direct function of the signal error:

10This is true if and only if (t, t̂) are jointly normally distributed for each group g. This is why we chose

the variable under our control, t, to be (approximately) normally distributed in our experimental design,

described below.
11To see how equation (4) is derived from the linearity assumption E[t̂ | t] = αg + βgt, note that this

assumption implies that

t̂ = E[t̂ | t] + εg

= αg + βgt+ εg,

where E[εg | t] = 0 by construction. Next, note that the bias term defined in the text, Bg = E[αg +

(βg − 1)t] = αg + (βg − 1)µg, so that replacing αg = Bg − (βg − 1)µg in the first equation we obtain

t̂ = Bg + (1− βg)µg + βgt+ εg. To get to equation (4), we define ωg := 1− βg.
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εg = (1−ωg)ϵg. This allows us to estimate the variance of the agent’s observed signal, giving

a measure of the precision of her information. Thus, from these empirical parameters we can

directly derive structural estimates of ∆g, ωg and ξ2g , the key parameters of our theoretical

model.

The model of representative signal distortion makes a distinctive set of predictions about

the group bias term that we use to derive the main hypotheses we seek to test in the

experiment. First, as discussed previously, RSD is differentiated from the classical inferential

biases of over-inference (base-rate neglect) and under-inference (conservatism) in that it leads

to the signal being perceived with a bias. By contrast, base-rate neglect and conservatism

occur as distortions on the weight ωg placed on the prior mean vs. the signal. Perhaps most

importantly, RSD makes distinctive predictions about the sign of the group bias term Bg:

If the agent faces members of a relatively high mean group h and low mean group l (i.e.,

µh > µl), Bh will be a positive bias and Bl will be a negative bias.

H1 When the decision maker evaluates members of two groups with different means, the

group bias term is positive for the high-mean group and negative for the low-mean

group, i.e., Bh > 0 and Bl < 0.

Thus, estimates that reveal zero group bias terms, or that reveal bias terms that do not have

opposite signs in the right direction for the two groups would each serve as evidence against

RSD in the data. The latter pattern would be evidence of some other distortion, including

for example distortions inherent in the signal technology, such as positively or negatively

biased signals.

Second, RSD, because it is an outgrowth of representativeness, only occurs when groups

with different underlying distributions are contrasted (implicitly) to each other. Thus, such

a bias cannot arise in the absence of a second group. This allows us to state a second

hypothesis.

H2 When the decision maker evaluates only one group g without access to information

about a second group −g, Bg = 0.

Thus, if the signal bias terms Bg were similar in settings (i) in which subjects are aware of

only one group and (ii) are aware of two groups, we would have evidence against RSD. We

would instead have evidence of some alternative bias in perception or inference.

Third, RSD is not the only way that representativeness might distort beliefs in inference

settings like ours. For instance, as in Bordalo et al. (2016), representativeness can cause

decision makers to mis-characterize or mis-remember (i.e., stereotype) the characteristics of

the groups themselves, producing a distortion in the prior distribution f(t | g) rather than

the signal distribution h(s | t, g). Similarly, representativeness might distort the recollection
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of evidence after it has been observed, producing a bias similar to ours but in the memory of

evidence rather than in its perception. Indeed, as we show in Online Appendix A, these types

of recollective distortions will generate biased estimates that satisfy the first two hypotheses.

However, relative to these distortions, RSD makes a distinctive prediction that separates

it from these alternatives. In our formulation of the inference problem above, the decision

maker learns the group identity of individuals before observing evidence directly about their

type. This ordering should have no impact on this bias if representativeness operate by

distorting the prior or the memory of evidence: under both such mechanisms we would

expect to find biased estimates regardless of the timing of events (see Section VII for more

discussion on this point).12 By contrast, because RSD involves a misperception of the signal

itself that is guided by group information, it should disappear in an alternative ordering in

which the decision maker learns of the group after she has already evaluated evidence. We

state this as a third hypothesis.

H3 When (i) an agent evaluates signal s prior to learning the individual’s group g, Bg = 0

but (ii) when she evaluates the signal after learning the individual’s group, Bg ̸= 0.

Thus, if Bg were invariant to the order in which we present the group identity and the signal,

we would have evidence against RSD as modeled above. Results consistent with the first

two hypotheses which also violate the third would be evidence in favor of representativeness

that operates through memory rather than perception, as discussed above.13

Finally, RSD makes no prediction about the extent of over or under-inference, a bias

that, as we have mentioned, is of a different nature. Importantly, all of our hypotheses hold

for any weight that agents place on the prior mean vs. the signal, regardless of whether

this weight is optimal. It is worth highlighting, however, that as Equation 5 indicates, the

bias that results from RSD increases with the weight on the signal, implying that base-rate

neglect will exacerbate the impact of RSD on estimates. Thus, while these biases are of a

distinct nature, their interaction and separation will be important for explaining deviations

from optimal behavior and predicting counterfactual behavior, as we demonstrate in Section

VI.

12This observation does not rule out the possibility that the ordering of information might influence the

weight people place on the signal relative to the prior under one of these alternative mechanisms. Importantly,

however, we can measure such weight effects using our estimates of ωg and separate this from the bias created

by representativeness. As we show below, the order in which subjects observe information has no impact on

the relative weight placed on signal and prior.
13As presented in the next section, our experimental design will deliberately minimize the possibility that

representativeness impacts inference through these alternative channels.

12



Figure 1. Screenshot from the Inference Task as Employed in Baseline.
The square grid showing the actual score of the person (number of black dots) disappears after 0.25 seconds.

IV. Experimental Design

In our experiment subjects face a series of inference tasks. In each task, they are asked

to estimate the type of a fictitious individual by combining (i) statistical information about

the type distribution associated the individual’s group, and (ii) imperfect subjective infor-

mation directly about the individual. Our goal is to cleanly measure representative signal

distortion (RSD) in a simple and stylized design that has key features of many statistical

discrimination settings, and to examine its implications for the tradeoff between accuracy

and discrimination described by statistical discrimination models. As such, we designed the

experiment around the model, empirical framework and hypotheses described in Sections II

and III. In Section IV.A, we present the inference task used in the experiment by describing

our Baseline treatment. In Section IV.B, we describe how this task is used in our sessions

and how it varies across treatments. In Section IV.C, we explain how this design allows us

to achieve the empirical goals of our paper. Finally, in Section IV.D, we describe details on

the implementation of the experiment.

IV.A. The Inference Task

The experiment consists of a series of 75 inference tasks. In each task, the computer first

randomly selects one of two distributions (or “groups”) of “types” that are approximately

normally distributed and differ only in their mean.14 The “high-mean group” (called the

“Orange group” in the experiment) has a mean type of 60, the “low-mean group” (the

“Green group”) has a mean type of 40 and both have a standard deviation of 10. The

14We discretize the distribution using integers between 0 and 100.
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computer then randomly draws the “type” of one fictitious “person” from the distribution

of the selected group.15 The subject’s task is to assess or guess the type of the person the

computer has selected by inputting a number between 0 and 100, and they are paid based

on the accuracy of this assessment (as described in Section IV.D).

In our Baseline treatment, subjects are tasked with combining two types of information

to make their assessment. Figure IV.A shows a screenshot of the task.16

First, the subject is reminded of the two distributions, on the left side of the screen.

Then, the subject is given “group information,” shown in the center of the screen. In the

example, the subject has been told the person is from the Orange group.

Next, the subject is shown a perceptually noisy “signal”on the right side of her screen.

The signal is a grid of 100 dots (white and black) which flashes on the screen for 0.25 seconds.

The number of black dots in this grid is always equal to the actual type of the person, but

the subject does not have time to exactly count. Therefore, the signal is, in practice, noisy.

After seeing the grid flash on her screen, the subject is given a text box to input her

guess. She is, afterwards, immediately shown the true type for the task and then clicks a

button to move on to the next task, which will feature a new draw and possibly a different

group.17

IV.B. Session and Treatment Design

The experiment employs a between-subjects design consisting of four treatments. One is

the Baseline treatment, described above. The other three are variations on the same design,

consisting of 75 independent inference tasks, the same set of distributions, the same grid

signals displayed for the same amount of time (0.25 seconds) and the same incentives.

One of the treatments allows us to verify the comparative statics of statistical discrimi-

nation models:

NoGroup: Like Baseline, but subjects make their assessments without ever receiving

group information. Subjects observe the distributions shown on the left side of Figure

IV.A but are never provided the group information (the middle panel). Instead, they

click a button to observe the signal (the right panel) for 0.25 seconds and enter their

assessment.

The other two treatments provide the subject with the same information as the Baseline

15In the experimental interface “types” are referred to as “values”.
16Please see instructions for our Baseline treatment in Appendix L on how we implemented these distri-

butions in the laboratory and trained subjects in terms of their properties.
17Providing feedback about true type at the end of each round gives subjects an opportunity to recognize

patterns in their mistakes, enabling them to potentially adjust their inference strategy.
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treatment (i.e., both group information and signal). However, they provide the information

in two distinct ways and provide insight into how subjects perceive signals and integrate the

two pieces of information we provide them:

SignalFirst: Like Baseline, but subjects observe the signal before knowing which

group the person belongs to rather than after. Subjects first click a button to observe

the signal for 0.25 seconds. Three seconds later, group information appears on their

screen and remains there for the remainder of the task.18

OneGroup: Like Baseline, but instead of randomly observing members of the low-

mean and high-mean groups over the course of the 75 tasks, subjects are assigned to

always observe members of one group only (high-mean or low-mean) over all 75 tasks.

Subjects are only shown one of the two distributions on the left side of Figure IV.A

and are only informed about that group in the instructions.

IV.C. Understanding the Design

We designed the experiment to identify RSD empirically and examine its properties,

guided by the theoretical and empirical considerations in Sections II and III. Here we

highlight how the design facilitates this identification.

First, we deliberately designed an inference problem with subjective, perceptual signals

rather than the objective, statistical signals usually employed in inference experiments. We

did this because RSD involves distorted perception or evaluation of new evidence and so it

is important that we include signals that are rich enough to be subjectively misinterpreted.

This led us to show subjects a matrix of dots as a signal rather than, e.g., a number with a

known distribution as in a typical inference experiment. Showing that signal quickly (in a

quarter of a second) ensures that it will be perceived noisily and also that there is very little

scope for using deliberate effort (á la a costly information acquisition model) to reduce this

noise.

Second, on the other hand, we deliberately designed an inference problem with an ob-

jective, salient set of prior distributions. In particular we trained subjects on the properties

of the prior distribution, quizzed them on these properties and visually reminded them of

these distributions on the screen throughout decision making. We did this to minimize the

possibility that representativeness can impact inference through other channels than RSD.

For instance, stereotypes, as documented in Bordalo et al. (2016), rely on misrepresentation

of prior distributions, and we make this unlikely by making the priors objective and salient

throughout choice. We did this not because we think stereotypes are unimportant in appli-

18In the Baseline, there was a similar three second delay after group information was revealed before

subjects could click to see the signal.
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cations but rather to give us clearer and less confounded measurement of RSD, our paper’s

main novelty.

Third, unlike most inference experiments, we studied a setting with normal (Gaussian)

prior distributions (typically inference experiments focus on simpler binary settings). We

did this to facilitate simple recovery of parameters using the empirical framework described

in Section III. Specifically (i) normality of types and (ii) normality of the signal error jointly

guarantee that the conditional expectation E[t̂ | t] is linear in the type t. While only (i)

is controllable by us in the design, we verify below that subjects’ inferences are consistent

with the linearity assumption. This linearity allows us to cleanly estimate Bg, the bias from

RSD, separate it from over- and under-inference, and test that the properties predicted for

it in Hypothesis 1 are satisfied.

Fourth, we included treatment OneGroup to test Hypothesis 2. As that hypothesis speci-

fies, a distinctive implication of RSD that distinguishes it from other perceptual distortions is

that it should disappear in environments in which subjects lack a comparison group against

which to assess representativeness. The OneGroup treatment implements this, allowing us

to test whether the bias is an outgrowth of representativeness.

Fifth, we included treatment SignalFirst to test Hypothesis 3. That hypothesis states

that (unlike other effects of representativeness like stereotyping), RSD should disappear

when a subject learns the group after observing the signal. RSD requires the decision maker

to distort her perception or interpretation of evidence, guided by representativeness, and

this cannot happen if the agent does not know the group at the moment of she observes

the signal. The SignalFirst treatment switches the order of evaluation relative to Baseline,

allowing us to look for this distinctive comparative static.

Sixth, we included the NoGroup treatment to allow us to study the basic comparative

static of statistical discrimination models and study how it is distorted by biases like RSD

and base-rate neglect.

Seventh, we included a large number of periods of repetition (75) of the inference task

for two reasons. First, this allows us to study the persistence of RSD and other biases in

the presence of feedback. Specifically, we are able focus our analysis on the last half of

the experiment after subjects already have dozens of periods of experience with the task,

likely improving the external validity of our conclusions. Second, it allows us to estimate the

parameters of the model described in Section III also at the individual subject level.

Finally, we made a deliberate decision to study a completely abstract problem involving

fictional groups (orange and green) and individuals. We did this for identification reasons.

Settings involving real group labels (e.g. ‘men’ and ‘women’) introduce a risk that unmea-

sured taste-based discrimination (or deeply seated stereotypes) might confound our mea-

surements of RSD. RSD is a purely cognitive bias, and as such can be cleanly measured in
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a purely abstract setting in which these confounding preferences and beliefs cannot interfere

with measurement.

IV.D. Implementation Details

We ran all treatments of the experiment simultaneously on Prolific on June 19th 2021

with 241 subjects from the US (57 in Baseline, 61 in NoGroup, 62 in SignalFirst and 61 in

OneGroup). The experiment was conducted using software programmed by the authors in

Javascript and deployed using Qualtrics. All subjects had to successfully answer comprehen-

sion questions in which they were tested on the properties of the prior distributions to begin

the experiment. The experiment also included a risk measure adopted from the Caltech

Cohort Study (Gillen, Snowberg, and Yariv, 2019) which was presented to the subjects at

the end of the experiment. There were no time limits and on average the experiment lasted

for 60 minutes.

All subjects received a base payment of $7.50. They also had the chance to win an

additional $20 depending on the accuracy of their answers and up to $2.20 depending on

their choice in the risk elicitation task. The percent chance of winning $20 was set to 100

minus the mean squared error of their assessments over the 75 rounds.19 Earnings for subjects

ranged from $7.50 to $29.60 with average earnings of $15.90.

V. Evidence on Representative Signal Distortion

In this section, we report estimates from our statistical model (Section III) and use

these estimates to test the hypothesis of representative signal distortion (RSD). We report

systematic evidence of RSD (a new inferential error) and also of base-rate neglect (an old

one).

In order to focus our analysis on the behavior of subjects experienced with the interface

and the decision problem, we report results using the last half of the session (after period

37); we report results from the full dataset in Appendix H and flag differences (i.e., evidence

of learning) where relevant in the text. Except where otherwise stated, all statistical tests

reported in the text are based on linear regressions with errors clustered at the subject

level whenever there are multiple observations per subject. For measures computed at the

aggregate level or derived from regression estimates (such as ∆g or ξ
2
g), we use bootstrapping

to make statistical statements. In pooled statistics (but not in individual-level analysis), we

remove 10 (out of our 241) subjects who made extreme forecasting errors and were clearly

19Note that since the underlying distribution for each group has variance of 100, a subject who ignored

the signal in the Baseline and only reported the group mean in every round would be expected to win the

$20 with 0 percent chance.

17



inattentive or confused.20 Doing this provides a more accurate portrait of the data’s central

tendencies, but does not change any of our qualitative conclusions.

Figure 2 gives us a first view of the data by plotting mean assessments as a function of

true type, and corresponding linear fits for each group (the low group in green and the high

group in orange) in each treatment. The size of the circles represent the relative frequency

with which a specific type (within each group/treatment) was observed in the data. The plots

reveal approximate linearity in assessments for both groups in all treatments. In Appendix F,

we test and fail to reject the hypothesis that assessments are linear in type. The observation

that average assessments are sharply increasing with the true type reassures us that subjects

are attentive to the signals and willing to learn from them.

These raw views of the data preview our main findings. Key parameters of the empirical

model—B and ω from equation (4)—can be visually identified in the graphs: the slope of

the best linear fit corresponds to 1 − ω and the vertical distance between the best linear

fit and the 45 degree line at t = µ visualizes average group bias B in assessments. In the

NoGroup treatment, where statistical discrimination is impossible, linear fits are identical

across groups and coincide with the 45-degree line, which suggests that there is no group bias

and all the weight is placed on the subjective signal (i.e., perfect base-rate neglect). When

subjects are shown group information (in the Baseline treatment) they show clear evidence

of subjects engaging in statistical discrimination: conditional on type, members of each

group are evaluated very differently (i.e., best linear fits are vertically separated for the two

groups) and the slopes of linear fits are similar across the groups and clearly different from

1 (indicating positive ω values). Most importantly, this discrimination is biased: negative

and positive deviations from the 45-degree line at means of 40 and 60 (measuring bias term,

B) in the low-mean green and high-mean orange groups respectively, are consistent with

hypothesis H1. These biases disappear altogether in OneGroup and SignalFirst as predicted

by H2 and H3 respectively, suggesting the bias is driven by representativeness and is mostly

a bias in the perception of the signal. The raw data thus matches the empirical fingerprint

of RSD, as described in Section III.

Table I reports estimates of OLS parameters (group bias B and weight on prior ω),

structural parameters derived from these estimates (weight-adjusted bias ∆, variance of the

subjective signal, ξ2 and optimal weight on signal ωBay) obtained by pooling all observations

as if they were coming from the same individual. These measures are estimated separately

for each treatment and each group (high-mean and low-mean, differentiated by subscript

g ∈ {l, h}). Below, we show that similar results hold when these parameters are estimated

20Specifically, we removed the 5% of subjects whose MSE (mean squared error of assessment) was greater

than 200 – the MSE a subject could achieve simply by choosing the unconditional mean of 50 every period,

ignoring group- and individual-level information. It is virtually impossible to make such extreme errors

unless inattentive or confused, and removing such subjects is typically necessary in experiments using online

samples.
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instead at the individual level.
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Figure 2. Average Assessment by Type in Each Treatment
The size of the circles represent the relative frequency with which a specific type (within each group/treatment) is observed in

the data. Green (Orange) dots are for low-mean (high-mean) group. Green (to the right) and Orange lines (to the left) depict

best linear fit by group and treatment; gray line depicts 45 degree line. Empirical strategy is described in Table I. See

Sections II and III for further discussion and interpretation of B and ω.
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TABLE I. Model Estimates

Baseline NoGroup SignalFirst OneGroup

Regression estimates:

ωl 0.199∗∗∗ 0.0192 0.184∗∗∗ 0.0898∗∗∗

(0.0393) (0.0330) (0.0302) (0.0218)

ωh 0.157∗∗∗ 0.0196 0.151∗∗∗ 0.164∗∗∗

(0.0331) (0.0360) (0.0268) (0.0339)

Bl -1.743∗∗∗ -0.289 -0.327 0.408

(0.314) (0.589) (0.368) (0.317)

Bh 1.836∗∗∗ -0.0990 0.245 -0.156

(0.402) (0.466) (0.404) (0.377)

Estimates derived from ω and B:

∆l -2.17∗∗∗ -0.30 -0.40 0.45

∆h 2.18∗∗∗ -0.10 0.30 -0.19

ξ2l 74∗∗∗ 68∗∗∗ 77∗∗∗ 47∗∗∗

ξ2h 82∗∗∗ 80∗∗∗ 75∗∗∗ 60∗∗∗

ωBay
l 0.43∗∗∗ 0.25∗∗∗ 0.43∗∗∗ 0.32∗∗∗

ωBay
h 0.45∗∗∗ 0.29∗∗∗ 0.43∗∗∗ 0.37∗∗∗

Tests:

H0: ωl = ωh 0.318 0.995 0.341 0.072

H0: Bl = Bh 0.000 0.741 0.317 0.257

H0: ∆l = ∆h 0.000 0.350 0.164 0.134

H0: ωl = ωBay
l 0.000 0.000 0.000 0.000

H0: ωh = ωBay
h 0.000 0.000 0.000 0.000

Observations 2052 2204 2242 2280

Notes: For each treatment and group g ∈ {l, h}, we estimate Bg and ωg using OLS on the following

specification: yg,i = Bg + ωgxg,i + εg,i, where i denotes each distinct observation, yg,i ≡ t̂g,i − tg,i, and

xg,i ≡ µg − tg,i. This specification is derived by subtracting tg,i from both sides of equation (4). Given

estimates for Bg and ωg, we back out ∆g using equation (5) and estimate ξ2g by identifying the error

associated with the signal using εi,g = (1 − ωg)ϵi,g and then taking the sample average of ϵ2i,g. Given ξ2g ,

ωBay
g is derived from equation (2). See Sections II and III for further discussion. Standard errors (clustered

at the subject level) are reported in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance. Rows on tests report

p-value associated with test of each hypothesis. Statistical assessments on estimates derived from ω and B

use bootstrapping.

20



-3
-2

-1
0

1
2

3
Baseline NoGroup OneGroup SignalFirst

Δ

(a) Representative Signal Distortion

-.4
-.3

-.2
-.1

0
.1

.2
.3

.4

Baseline NoGroup OneGroup SignalFirst

ω
Ba

y  -
 ω

(b) Base-Rate Neglect

Figure 3. Estimates of Representative Signal Distortion (∆) and Base-Rate Neglect (ωBay − ω)

by Treatment and Group
Empirical strategy is described in Table I. Orange bars (on the left) and green bars (on right) depict high-mean and low-mean

groups, respectively. See Sections II and III for further discussion. Vertical lines denote 95 percent confidence intervals.

Estimates of the group bias terms Bl and Bh in Table I, confirm that in the Baseline

treatment (i) the biases in each group (h and l) are large, significant and symmetric, (ii) of

opposite sign and therefore (iii) widely separated, producing a large (and statistically sig-

nificant) irrational discriminatory gap in the assessment of individuals from the two groups.

This pattern of group-driven bias is characteristic of RSD, producing support for hypothesis

H1.

Relative to the bias described by the model in Section II, these group bias terms are

attenuated by a factor of (1−ω) as reflected in Equation 5. Table I corrects for this to produce

structural estimates of the key RSD parameter from the model: ∆h (weight-adjusted bias

for the high-mean group, in orange) and ∆l (weight-adjusted bias for the low-mean group,

in green). We visualize these parameters in the left panel of Figure 3. Again, we find that

(i) the two biases are large and symmetric, (ii) of opposite sign and therefore (iii) widely

separated. These results suggest that when faced with members of the low-mean group,

the signals subjects infer are downward biased; when faced with members of the high-mean

group they are instead upward biased. As Table I shows, for the Baseline treatment, (i) each

of these bias terms is significantly different from zero and (ii) the difference between the two,

∆h −∆l is as well.

Result 1. In the Baseline treatment, subjects’ estimates are (i) significantly biased down-

wards for the low-mean group and (ii) biased upwards for the high-mean group producing (iii)

a significant irrational discriminatory gap in assessments. The results are thus consistent

with Hypothesis H1.

In contrast to the Baseline treatment, Table I and Figure 3 shows that the bias (whether

21



measured by reduced form parameterB or structural parameter ∆) virtually disappears when

subjects are unable to contrast the two groups with one another (the OneGroup treatment).

As the error bars in Figure 3 suggest and formal tests in Table I confirm, in the OneGroup

treatment ∆h, ∆l and their difference, ∆h − ∆l are all statistically indistinguishable from

zero (as are Bh, Bl and Bh − Bl). This suggests that the bias we estimate in the Baseline

treatment is a consequence of a contrast effect between groups. The disappearance of the

bias when such contrast effects are removed is another characteristic feature of RSD and

provides support for hypothesis H2.

Result 2. In the OneGroup treatment, the bias measured in the Baseline treatment – and the

discriminatory gap in assessments it produces – disappear. The results are thus consistent

with H2: the bias measured in the Baseline treatment is an outgrowth of representativeness.

Similarly, Figure 3 and Table I show that the bias terms (again whether measured by B

or ∆) disappear when subjects observe the signal prior to learning the group (the SignalFirst

treatment). This suggests that the bias we estimate in the Baseline treatment operates by

distorting subjects’ evaluation of perceptual evidence (rather than by distorting memory

of the prior or signal). The disappearance of the bias term in the SignalFirst treatment

comes about with experience. Estimates using all 75 periods (see Appendix H for detailed

analysis) shows a sharp attenuation of the bias term in SignalFirst relative to Baseline but

not a complete disappearance. While we can’t rule out that subjects don’t suffer from other

distortions, such as distortions in memory of the signal (at the point where inferences are

made) or the prior in early rounds of SignalFirst, such distortions (unlike the distortion in

signal perception) would have to be transitory and mostly disappear with experience. The

data thus matches the third main characteristic of RSD, articulated in H3.

Result 3. In the SignalFirst treatment, the bias measured in the Baseline treatment – and

the discriminatory gap in assessments it produces – mostly disappear with experience. The

results are thus consistent with H3: for experienced subjects, the bias works almost entirely

by distorting subjects’ perception or evaluation of the signal.

Together, then, our results provide strong evidence of RSD: the bias we measure matches

the distinctive empirical fingerprint of RSD described in Section III. In addition to this

new bias, Table I also provides evidence of a classical error that also distorts assessments

in our data: base-rate neglect. In the Table we provide estimates of the weight, ω subjects

place on the prior mean µ, (relative to the signal s) for the low/green group (ωl) and the

high/orange group (ωh). To complement, the table also gives the weight a Bayesian would

place on the prior mean (ωBay
l and ωBay

h ) given the estimated variance of subjects’ perception

of the signal (ξ2). The results in Table I reveal that subjects put significantly more weight

on their subjective signals (and less weight on the prior) than a Bayesian would given the

noisiness of their evaluations. In other words, subjects act as if their perception of the signal

is more accurate than it really is.
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The right panel of Figure 3 plots the difference between ωBay−ω for each group and treat-

ment. Positive values show evidence of base-rate neglect (over-inference or under-weighting

of the prior) while negative values show evidence of conservatism (under-inference or over-

weighting of the prior). The results are universally positive and therefore show clear evidence

of base-rate neglect. Moreover, in contrast to our results on RSD in the left panel, estimates

of ωBay−ω in the right panel reveal a remarkably consistent level of base-rate neglect across

groups and treatments.

Result 4. In addition to RSD, there is significant evidence of base-rate neglect for both

groups in all four treatments. Unlike with RSD, the degree of base-rate neglect is mostly

unaffected by group or treatment.

We make three further observations that help us to interpret and contextualize these

results.

First, the NoGroup treatment (in which subjects are forced to make assessments without

being informed of the group) serves as a useful sanity check on our estimates. The fact that

RSD does not arise in NoGroup (neither Bh, Bl, ∆h or ∆l are statistically different from

zero) reassures us that the technology we use to represent signals (a grid with dots shown for

.25 seconds) is unbiased, and that the existence of the bias we observe in Baseline is indeed

driven by knowledge of group identity in a setting where there are two groups (rather than,

for instance, contrast effects that arise by comparison of signals from sequentially observed

candidates). Indeed, estimates of ω from Table I show that subjects in NoGroup ignore

the prior entirely – even without group information, subjects could significantly increase

accuracy by putting some weight on the global mean of 50.21 However, the level of base-rate

neglect (ωBay − ω) is similar to the other three treatments.

Second, Table I also reports values of the signal variance – the noisiness with which we

estimate subjects perceived the signal. We find no differences in estimated variances for the

Baseline, NoGroup, and SignalFirst treatments, and the estimated variances are similar in

magnitude to the population variance that we picked for the experiment.22 However, we find

21For the NoGroup treatment, we also estimate a linear model where subjects put weight on the signal

and on the average mean of 50. The Bayesian prediction is no longer linear in this case, for the subtle reason

that a signal provides information about the population from which a person is being drawn, and, therefore,

the optimal weight on the prior vs. the signal depends on the signal itself. However, the optimal prediction

(as shown in Online Appendix D) and the aggregate assessment strategy of our subjects in our data (as

shown in Online Appendix F) are both approximately linear.
22These findings reassure us on three features of our design: (i) the fact that population and signal

variances are of similar magnitudes imply that the optimal Bayesian weight on the signal is close to 0.5; this

is empirically valuable because it leaves plenty of room to find either over or under-reaction to the prior or

signal; (ii) the fact that variances do not differ by group suggests that subjects are paying similar attention

to the signals from both groups, which is indeed optimal in our case because population variances are the

same for both groups; and (iii) there seems to be little opportunity for subjects to put more or less effort

in reading the 0.25 second signal, since otherwise we would have observed significantly lower variance for
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one surprising result from our analysis of signal variances: a significant decrease in signal

variance in OneGroup relative to Baseline (p = 0.001 for g = l and p = 0.038 for g = h),

suggesting that when subjects are restricted to make inferences about only one group they

perceive signals about members of that group not only without bias but also with less noise.

We discuss this finding in more detail in Section VI.23

Finally, we re-conducted our estimation at the individual subject level (i.e., we estimated

the full raft of parameters for each subject individually) and obtained similar results. Figure

4 plots CDFs of individual-level ∆g estimates (in Online Appendix G we provide similar

CDFs of ωBay − ω estimates); results are qualitatively similar if we replace ∆ with B in

this exercise. Although there is significant heterogeneity in estimates across subjects, (i) ∆h

strongly first-order stochastically dominates ∆l in the Baseline treatment and (ii) the two

distributions converge significantly in SignalFirst and especially OneGroup. Equality of the

distributions can be rejected by a Kolmogorov-Smirnov test in Baseline and SignalFirst with

p = 0.000 and p = 0.019, respectively. This is not the case for OneGroup (p = 0.868) or

NoGroup (p = 0.929). Differences between ∆h and ∆l in SignalFirst, while much smaller

than in Baseline, are distinguishable from zero. This suggests that while RSD is responsible

for most of the bias in Baseline, at least for some subjects, representativeness also biases

assessments to a smaller degree even when signals are observed prior to knowledge of group

identity.24 By contrast, Figure 9 in Online Appendix shows that ωBay −ω is overwhelmingly

positive (indicating base-rate neglect) for the vast majority of subjects, varying little across

groups and treatments.25

the subjective signal in the NoGroup treatment, where group information is not provided and the signal is

therefore more valuable.
23The biggest effect of learning in our dataset is a reduction in signal variance over time. Relative to the

last-half sample studied here, estimates of ξ2 in the full sample are larger. Intuitively, subjects learn to form

less noisy (but not less biased) perceptions of the signal over time.
24In Appendix G we also include the cumulative distribution of ∆h−∆l estimated on the individual level.

For 75 percent of subjects in Baseline ∆h > ∆l. This decreases to 63 percent in SignalFirst and 49 percent

in NoGroup.
25In Appendix G, we present the counterparts of Table I and Figure 5, reporting median-values from

individual-level estimates.
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Figure 4. Estimates of Representative Signal Distortion ∆ by Group and Treatment
Green line (on the left except in OneGroup) represents estimated bias parameter for low-mean group. Orange line (on the

right except in OneGroup) represents estimated bias parameter for high-mean group. Vertical lines denote median value.

Empirical strategy is described in Table I. See Sections II and III for further discussion.

VI. The Accuracy-Discrimination Tradeoff

A key consequence of representative signal distortion (RSD) is that it produces an irra-

tional amplification of the gap in decision makers’ mean assessments between two groups.

While this bias has implications in many contexts, in this section we focus on arguably the

most important application: statistical discrimination, where contrasts between groups seem

especially salient.

In rational statistical discrimination, a decision maker optimally conditions her estimates

on the group identity of the individual being evaluated to maximize accuracy. An implication

of this is that any deviation from this benchmark (for example, any reduction in discrimina-

tion) has an accuracy cost. In this section, we demonstrate how RSD generates an inefficiency

in assessments that instead produces scope for simultaneous improvement in both accuracy

and discrimination.

First, we define formal measures of accuracy and discrimination. We will measure

(in)accuracy using mean squared error (MSE), which is also the measure we used to in-
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centivize subjects in the experiment.26 We will measure discrimination by looking at group

differences (GD), defined as the expected difference in assessments between members of the

high-mean and low-mean groups when they are of the same actual type.27 GD measures the

extent to which individuals from different groups who are otherwise identical are assessed

differently on average. In this sense, group difference corresponds to the standard notion of

discrimination used in economics (for instance, as captured by the concept of “equal pay for

equal work” in labor economics, mandated by the Equal Pay Act of 1963).28

Assuming that the signal variance ξ2 and the weight on the prior mean ω do not differ by

group (which, as shown in the previous section, is roughly true in the data of our experiment),

these measures simplify to:

MSE = ω2σ2 + (1− ω2)(ξ2 +
∆2

l +∆2
h

2
) (6)

and

GD = ω(µh − µl) + (1− ω)(∆h −∆l). (7)

Expressions for these measures clearly demonstrate that RSD is costly in terms of both

accuracy and discrimination, since ∆l ̸= 0, ∆h ̸= 0 and ∆h − ∆l > 0. For MSE, ∆l and

∆h have the same effect as an increase in the signal variance, and the impact of this bias

increases with the weight placed on the signal. For GD, the first component, ω(µh−ωl), is the

standard term capturing the fact that a decision maker, for the sake of accuracy, partly relies

on the prior means in forming assessments, thus leading to discriminatory outcomes. But

the second component, (1−ω)(∆h−∆l), is an irrational amplification of the discriminatory

gap due to RSD.

26Formally, MSE := 1
2E

[
(t̂h − th)

2
]
+ 1

2E
[
(t̂l − tl)

2
]
. This measure computes the expected squared

distance between assessments and actual scores, given the assumption that observations are equally likely

be from the low-mean or high-mean groups.
27Formally, GD :=

∫
E
[
t̂h − t̂l | th = tl = t

]
f(t)dt, where f is the mixture distribution of the low-mean

and high-mean groups. In practice, the distribution f will not end up mattering much because the weights

ωl, ωh are similar across groups implying the integrand to change little with t .
28In Appendix C, we discuss other measures of discrimination and specifically relate GD to measures used

in the machine learning literature. In Appendix E (Tables III to V), to contextualize treatment differences

further, we report the implied likelihood of correctly identifying the higher type among two randomly selected

individuals in each treatment.
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Figure 5. Mean Squared Error and Group Difference by Treatment
Translucent dots show bootstrapped values. Solid line is the accuracy-discrimination frontier, pBRN depicts the perfect

base-rate neglect counterfactual, OptNoDiscrimination depicts the counterfactual with highest accuracy (at zero

discrimination), Bayesian refers to the counterfactual with highest accuracy, and NoBias is the counterfactual where

assessments are debiased but there is still base-rate neglect.

Figure 5 plots the mean inaccuracy of subjects’ assessments (mean squared error) on the

y-axis against the mean level of discrimination between members of the two groups (group

difference in assessment) on the x-axis for each of our four treatments.29 Translucent dots

show bootstrapped values to visualize the degree of variation in the data.

Over this, we overlay several important theoretically-driven counterfactuals. All of these

theoretical benchmarks set biases ∆h = ∆l = 0 and are calculated using the estimated

signal variance in the Baseline treatment (in addition to the primitives implemented in the

experiment).30

29We use non-parametric estimates of MSE and GD when comparing these measures across treatments, but

use parametric estimates to construct counterfactual benchmarks. For MSE, the non-parametric estimate

simply computes the sample average of the squared distance between assessments and actual values. For

GD, the non-parametric estimate restricts attention to values of t for which we have at least 10 or more

observations for each group in the data. We then estimate the difference in predicted values conditional on

th = tl = t, and finally aggregate for different values of t using the mixed distribution of t.
30Because we cannot reject the hypothesis that the signal variances associated with the high and low mean
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• Bayesian: represents the highest accuracy level (lowest MSE) outcome achievable and

the level of discrimination (GD) associated with this outcome. The inferential strategy

producing this benchmark is described by Equations 1 and 2.

• OptNoDiscrimination: represents the highest accuracy level (lowest MSE) outcome

achievable subject to a zero discrimination constraint (i.e. GD=0).

• pBRN: represents the outcome produced by an inferential strategy that only uses the

signal (i.e. ω = 0 in Equation 1), ignoring the prior. Because this strategy suffers from

perfect base-rate neglect, it also produces zero discrimination. However, the contrast

with the OptNoDiscrimination benchmark reveals the inefficiency associated with this

strategy.31

• NoBias: represents the outcome corresponding to an inferential strategy that places

the same weight on the prior vs. the signal as estimated for the Baseline treatment.

Because ∆h and ∆l are assumed to be zero, this corresponds to a benchmark in which

we shut down RSD but keep base-rate neglect (as measured in the Baseline treatment).

Bridging the Bayesian and OptNoDiscrimination counterfactuals is the accuracy-discrimination

frontier, showing the locus of MSE-GD pairs that could be achieved by a social planner whose

objective is to minimize χGD + (1 − χ)MSE for some χ ∈ [0, 1].32 The Bayesian counter-

factual corresponds to the solution when χ = 0, the OptNoDiscrimination counterfactual

corresponds to the solution when χ = 1, and the accuracy-discrimination frontier depicts

solutions for intermediate values of χ.

The Figure shows, first, that subjects engage in statistical discrimination in our Baseline

treatment and follow the comparative statics of statistical discrimination models. Recall

that the only difference between Baseline and NoGroup is that, in the former, subjects are

told the group from which the type is drawn. Comparing Baseline vs. NoGroup in Figure

5, we see that subjects discriminate significantly more in Baseline by locating to the right

groups are the same, we use the average of the estimated variances in Table I for the Baseline. In Appendix

G we show that the results are very similar when using the median of all the individual-level variances (as

opposed to the variance estimated from the pooled data).
31Even subject to a zero discrimination constraint, accuracy of assessments can be improved by putting

some weight on the average mean, µ̄ = (µh + µl)/2, as achieved with OptNoDiscrimination.
32Formally, the frontier is obtained by minimizing χGD+ (1− χ)MSE over all linear inference strategies

that have the following structure:

t̂ = ω

(
α(

µl + µh

2
) + (1− α)µg

)
+ (1− ω)s,

where ω ∈ [0, 1] and α ∈ [0, 1]. This linear restriction gives us tractability and is consistent with our focus

on linear strategies in the behavioral model. Since the frontier depicts solutions subject to this linearity

constraint, our results on how far outcomes are from the accuracy-discrimination frontier can be interpreted

as presenting a lower bound.
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of NoGroup in the graph (p = 0.000) and that MSE in Baseline drops relative to NoGroup

(p = 0.090).33

However, Figure 5 also reveals that this discrimination is inefficient, both relative to the

Bayesian benchmark (which is the right benchmark for our subjects whose incentive is to

minimize MSE) and relative to the accuracy-discrimination frontier. The Baseline point is

to the north of the Bayesian benchmark, meaning subjects (i) discriminate at similar levels

to the Bayesian bechmark (p = 0.164), but (ii) make inefficiently inaccurate assessments

(p = 0.000). The Baseline point is also significantly far from the accuracy-discrimination

frontier, meaning, simply by correcting statistical errors, subjects could dramatically improve

accuracy without increasing discrimination at all. Or, alternatively, subjects could maintain

their observed level of accuracy but with zero discrimination, simply by making better use

of their information.

Result 5. Subjects engage in statistical discrimination and follow its comparative statics,

improving accuracy by discriminating on the basis of group. However, discrimination ob-

served in the Baseline treatment is inefficient: by eliminating mistakes in inference it would

be possible to reduce discrimination without reducing accuracy.

This inefficiency is a product of the interaction of the two key errors identified in the

previous section (RSD and base-rate neglect) which both reduce accuracy, but have opposite

effects on discrimination: while base-rate neglect tends to lower discrimination by causing

agents to put too little weight on group information, RSD pushes behavior in the opposite

direction. Figure 5 illustrates the effect of each of these two errors by plotting the coun-

terfactual NoBias benchmark, which represents the case where the weight remains as in the

Baseline but RSD is eliminated. In particular, while eliminating RSD results in a small im-

provement to accuracy, it actually decreases discrimination by half. Also, the fact that the

NoBias benchmark lies roughly halfway between the Bayesian and pBRN benchmarks, indi-

cates a significant degree of base-rate neglect in the Baseline treatment. Correcting base-rate

neglect (by changing weight ω to optimal ωBay) would result in achievement of the Bayesian

benchmark, yielding an additional 25% increase in accuracy at the expense of a more than

doubling of discrimination.34

Result 6. Inefficiency in the Baseline treatment relative to the accuracy-discrimination fron-

tier is a joint consequence of (i) base-rate neglect and (ii) RSD. Eliminating RSD decreases

discrimination by 50% at no cost to accuracy. In addition, correcting for base-rate increases

accuracy by about 25%, but doing so more than doubles the amount of discrimination.

33See Appendix E for details. As reported in Appendix H, the drop is slightly larger when we look at all

rounds (p = 0.015).
34The NoGroup point lies slightly below the pBRN benchmark because the estimated subject variance is

slightly lower (though statistically not different) for the NoGroup treatment than for Baseline, and as noted

above the Baseline variance was used to construct the pBRN benchmark.
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To whatever degree RSD arises in real discrimination contexts, our treatments, NoGroup,

SignalFirst and OneGroup (which allowed us to identify RSD in the previous section), double

as candidate behavioral interventions for improving outcomes. We therefore re-evaluate these

treatments, focusing on how these treatments improve outcomes in terms of accuracy and

discrimination given the inefficiencies we observe in the Baseline treatment.

Interpreted as a behavioral intervention, the NoGroup treatment mirrors “identity-blinded

evaluation policies,” an approach to discrimination that has been of great interest to applied

economists in the last few decades.35 In the field, these policies, among other things, remove

scope for taste-based discrimination. Here (where scope for taste-based discrimination is al-

ready removed by design), we identify the impact such policies have purely on the quality of

inference. Withholding information on group identity completely eliminates discrimination

by (i) removing scope for statistical discrimination and (ii) removing RSD. The negative

implication is only a marginal increase in inaccuracy. Our results show that, due to the

inferential mistakes measured in the Baseline treatment, the NoGroup treatment presents

a more attractive policy option than classical models would suggest: at least in our data,

it eliminates irrational discrimination and (because of errors in inference) sacrifices little in

terms of accuracy in the process.

Result 7. Withholding group identity fully eliminates discrimination with only a small cost

to accuracy.

The SignalFirst treatment presents a more subtle, and arguably more attractive inter-

vention. Simply requiring subjects to observe the signal before they learn the group leads

to a significant reduction (a significant leftward shift relative to Baseline, p = 0.002) in

discrimination without any cost to accuracy.

The plot also shows why this intervention works. The SignalFirst dot is identical to

the NoBias counterfactual in the plot, suggesting that the intervention works entirely by

eliminating RSD. Indeed, results from the estimates reported in the previous subsection

show just this. By forcing subjects to see the signal before learning group information,

SignalFirst eliminates the bias altogether. However, the intervention has no complementary

effect on the severity of base-rate neglect, which is resistant to this treatment.

Result 8. Forcing subjects to evaluate evidence prior to learning the group causes subjects

to discriminate significantly less at no cost to accuracy.

A third intervention – though one that may be more difficult to implement in practice –

is to task evaluators to specialize in assessing members of only one group, removing scope for

35This includes studies of the effect of “veiling” characteristics of workers’ from evaluators, including the

worker’s gender (Goldin and Rouse, 2000; Krause, Rinne, and Zimmermann, 2012), ethnicity (Behaghel,

Crépon, and Le Barbanchon, 2015), criminal history (Agan and Starr, 2018; Doleac and Hansen, 2020;

Sherrard, 2021), credit history (Bos, Breza, and Liberman, 2018; Ballance, Clifford, and Shoag, 2020), salary

history (Agan, Cowgill, and Gee, 2021) and gender categorization of jobs (Kuhn and Shen, 2021).
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representativeness. The OneGroup treatment implements such an intervention by assigning

each subject to evaluate only one group (high/orange or low/green) throughout the exper-

iment. Figure 5 reveals a resulting strong reduction in both inaccuracy and discrimination

(p = 0.001 for MSE and p = 0.000 for GD) in OneGroup relative to Baseline. Indeed, the

OneGroup point lies below the Bayesian accuracy-discrimination frontier that we calibrated

using the Baseline signal variance.

Once again, estimates in Table I and Figure 3 shed light on how this dramatic improve-

ment in inference is achieved. As with the SignalFirst treatment, OneGroup completely

eliminates the bias generated by RSD: removing scope for representativeness causes sub-

jects to evaluate the signal in an unbiased way. Also like SignalFirst, OneGroup has no

corresponding effect on base-rate neglect: ω − ωBay is similar. However, unlike SignalFirst,

estimates for signal variance are substantially lower in OneGroup than in Baseline (p = 0.016

for low-mean group and p = 0.051 for high-mean group), indicating that subjects are able to

extract more precise signals from the evidence provided to them. Recall that as the variance

of the signal decreases, the frontier moves downward–this explains why the OneGroup point

is below the Baseline frontier, since the latter is computed using the lower signal precision

of the Baseline treatment. The decrease in signal variance in OneGroup seems unlikely to

be due to the removal of representativeness (our initial motivation for implementing this

treatment) since variance does not decrease in the NoGroup treatment, where subjects sim-

ilarly make assessments without scope for contrasting groups. Instead, it is more likely to

be a result of the fact that in OneGroup subjects are specialized in assessing values from

one population, potentially decreasing the complexity of the task. The decrease in variance

is broadly consistent with the literature on efficient coding (e.g., Khaw, Li, and Woodford

(2021) and Frydman and Jin (2022)), which argues and provides experimental evidence that

when the prior distribution has lower variance (as in OneGroup, where subjects face one

distribution as opposed to a mixture over two distributions) then encoding of information is

such that the signal is also more precise. We provide further analysis and discussion of this

in Online Appendix K.

In summary, this kind of specialization-in-assessment is a particularly effective interven-

tion in our setting: it eliminates RSD while also improving the precision of signals. To the

extent that these results carry over to field settings, such policies might lead to improve-

ments in important applications (e.g, hiring decisions). The results suggest that (keeping all

else constant about the informational environment) specialization can lead to more accurate

assessments. But more research is needed to study how specialization can be implemented in

the field. In our experiment, we are able to entirely remove scope for representativeness via

specialization by making the subjects completely unaware of the existence of a contrasting

group or its properties. This is ideal for testing the hypothesis of RSD (as we do in the

previous section), but it is not clear that this can be implemented in the most important

discrimination contexts in the field. For instance, specializing evaluators of e.g. resumes to
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examine only members of one gender may not produce an effect like the one we measure here

because evaluators are aware that another gender exists and may have pre-existing beliefs

about how types across these groups contrast with one another, plausibly producing RSD.36

This type of intervention seems most likely to be effective in settings in which evaluators do

not have strong pre-existing beliefs about how the type (i.e., the measure being evaluated)

is differentially distributed across groups. On the other hand, the surprising boost in the

precision of signal evaluation we observe in the OneGroup treatment may well apply more

generally, meaning this intervention may nonetheless be valuable for improving statistical

discrimination.

Result 9. Tasking subjects to specialize in evaluating only one group causes subjects to

discriminate significantly less and simultaneously significantly improves the accuracy of their

assessments.

A final candidate intervention is to explicitly use our model and suitable data to directly

debias decision-makers afflicted by RSD. In particular, if a policy maker has access to data

on (i) true types and (ii) assessments, she can use estimates from a model like ours to directly

improve outcomes.37 In Online Appendix J, we describe an algorithm to do this and evaluate

its effectiveness using our data. Forming a training sample using half of our data, we estimate

(∆, ω, ξ2) and use them to adjust predictions in a testing sample consisting of the other half

of our data. In the Appendix, we show that a policy maker targeting zero discrimination (i.e.

the OptNoDiscrimination benchmark) can adjust assessments to reduce discrimination and

inaccuracy. We also show that a policy maker who simply wants to maximize accuracy (i.e.,

targeting the Bayesian benchmark) can use this debiasing to significantly improve accuracy.

VII. Alternative explanations and connections to literature

In this section we discuss how RSD is related to and distinguishable from other related

behavioral regularities in the literature.

Over-/Under-Inference. Our work relates to a long empirical literature on biases in

inference, reviewed in Benjamin (2019), that focuses on mistakes people make in aggregating

36In our paper, subjects always evaluate individuals one at a time but we vary whether one or two groups

are present. In contrast, Bohnet, Van Geen, and Bazerman (2016) conduct an experiment where subjects

evaluate male and female individuals, but they vary if individuals are evaluated separately (either a man or

a woman) or jointly (one man and one woman at the same time). They show that joint evaluation decreases

reliance on group stereotypes relative to the case where individual are evaluated separately.
37This type of data might be available, for example, to firms that can combine data on initial assessment of

workers at the hiring stage with long run productivity of workers, as revealed in internal reviews and career

trajectories. However, in many applications, there can be challenges associated with constructing a data set

of this kind for two reasons: (i) biases in initial assessments can have long lasting effects, making it difficult

to identify true type; (ii) representation of different groups or types in the data set can be impacted by initial

assessments creating selection problems. See Bohren, Hull, and Imas (2022) for discussion on related issues.
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distinct pieces of information (for example, a prior and a signal). The literature shows that

subjects regularly fail to combine information in a Bayesian way, often making mistakes

in how much weight they put on different pieces of information in updating their beliefs.

Perhaps the most salient inferential distortions described in this literature are over-inference

(base-rate neglect) and under-inference (conservatism) whereby decision makers put too

much or too little weight on the signal relative to the prior when integrating them to form

a posterior.38

RSD is distinct from these biases because it is not an error in how people aggregate

prior and signal, but instead an error in how people perceive or interpret the signal itself.

In our data, we find evidence of base-rate neglect (over-inference) – subjects put too little

weight on their prior (and consequently too much on their signal), perhaps driven by sub-

jects’ overconfidence in the quality of their subjective evaluations of the perceptual signal

(“overprecision”).39 However, we are able to show that RSD is distinct from this bias. As we

discuss in Section 3, our empirical approach allows us to separately identify RSD (measured

by the ∆ term) from over-inference and under-inference (measured by ω relative to ωBay

term) in our statistical model. Although we find strong evidence of over-inference (base-rate

neglect) in our data, we also find strong separate evidence of a bias term that obeys the

comparative static predictions of RSD. Thus, our main results are not driven by classical

inferential biases like base-rate neglect.

Confirmation Bias. Our work also relates to a long literature on confirmation bias (see

Nickerson (1998) and Klayman (1995) for reviews) – a mistake whereby prior beliefs dis-

tort decision makers’ perception of new information. This line of research suggests that,

in settings (like ours) in which signals are subjective and ambiguous, people are prone to

interpret evidence in a way that favors (or is consistent) with their initial beliefs. Namely,

confirmation bias describes a tendency to ‘see what one is looking for’.40

38Base-rate neglect is one of the most frequently documented biases in updating (going back to Kahneman

and Tversky (1972a)). See Benjamin, Bodoh-Creed, and Rabin (2019) and Esponda, Vespa, and Yuksel

(2022) for recent perspectives on this bias. Conservatism (under-inference) is another commonly identified

mistake in the literature and refers to subjects putting too little weight on the signal. Recently, Mobius,

Niederle, Niehaus, and Rosenblat (2022) provide evidence of this in a context in which subjects form beliefs

about their own performance, and suggest that this bias could be due to ego utility.
39Moore and Healy (2008) argue that overprecision is a type of overconfidence that is characterized by

excessive certainty regarding the accuracy of one’s beliefs and provide experimental evidence of this phe-

nomenon. See Soll and Klayman (2004), Grubb (2009) and Grubb and Osborne (2015) for further documen-

tation and discussion of overprecision.
40Kelley (1950), Darley and Gross (1983), and Lord, Ross, and Lepper (1979) are prominent early examples

in psychology providing evidence on how people’s perceptions can be distorted by what they expect to see.

A prominent model of confirmation bias is Rabin and Schrag (1999). More recent work on this issue include

Enke (2020), Charness, Oprea, and Yuksel (2021), and Oprea and Yuksel (2022). This also connects to

a literature that studies the importance of “first impressions,” persistence of initial beliefs in the face of

feedback. As Nickerson (1998) concludes “People often form an opinion early in the process and then evaluate
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However, the bias we document is conceptually and empirically distinct from standard

varieties of confirmation bias: we do not find evidence that subjects are reluctant to update

beliefs and form assessments far from the prior mean, a fingerprint of asymmetric updating

that is typically associated with confirmation bias.41 Moreover, RSD is distinct from con-

firmation bias because it is generated not by objective characteristics of the subject’s prior

(as with confirmation bias) but by the contrast between the prior and other distributions

that are, strictly speaking, irrelevant to inference. As a result, the bias we document ap-

pears in our Baseline treatment but disappears in our OneGroup treatment – two treatments

that should not produce different behaviors in standard models of confirmation bias. As a

result, RSD is a perceptual distortion that we should expect to be particularly relevant to

the context of statistical discrimination. One natural way of characterizing RSD (and our

results) is as a novel form of confirmation bias generated by representativeness rather than

attachment to the prior: decision makers “see what they are looking for” but rather than

looking for evidence that matches the prior, they look for evidence that is representative of

a group relative to a reference group.

Representativeness and Stereotypes. Our paper is connected to a literature study-

ing how representativeness produces distorted beliefs. The representativeness heuristic (see

Tversky and Kahneman (1983) for an early formulation) is a mental shortcut that simplifies

probabilistic assessments about heterogeneous groups, and, as shown in recent literature,

can lead to the formation of stereotypes. Stereotypes are beliefs that contain a “kernel of

truth,” as they are rooted in true differences between groups, but overweight the prevalence

of ‘representative’ types in each population.42 Bordalo et al. (2016) model and empirically

that representativeness-based recall can distort the (prior) beliefs people hold about differ-

subsequently acquired information in a way that is partial to that opinion”. Similarly, a recent literature

also documents how people distort their evaluation of information to justify self-serving decisions (Gneezy,

Saccardo, Serra-Garcia, and van Veldhuizen, 2020; Saccardo and Serra-Garcia, 2022). These experiments

study investment advice in which the advisor receives a commission that depends on their recommendation.

Treatments vary the time at which advisors learn about their own incentives relative to evaluating investment

options. The papers show that advice is more self-serving when advisors learn about their incentives before

evaluating the investment options. This is a timing effect that we also find in our SignalFirst treatment, but

it is driven by a very different behavioral mechanism.
41Recently, Sarsons (2017) used data on physicians referrals of surgeons to study whether gender influences

the way new information is interpreted. The data reveals clear asymmetries in how physicians’ beliefs about

a female or male surgeon’s ability changes with new information. However, it is not possible in that data to

determine whether these asymmetries are driven by incorrect priors about men and women or by differences

in how new information is interpreted. Einhorn and Hogarth (1985) studies how contrast effects can impact

beliefs in a sequential updating setting with multiple signals. See Fryer Jr, Harms, and Jackson (2019) and

Ruzzier and Woo (2022) for more recent work studying implications of confirmation bias for polarization

and discrimination.
42For example, because people in Florida are, on average, older than those in California, one might

incorrectly overestimate the share of old people in Florida and the share of young people in California.
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ent groups.43 Our paper complements this earlier work by showing a distinct distorting

effect of representativeness. While the stereotypes described in Bordalo et al. (2016) are

distortions in prior beliefs (beliefs about the characteristics of groups), RSD is a distortion

in the perception of signals (new evidence) about individual group members.44 Building on

the framework of Bordalo et al. (2016), we show theoretically and empirically how contrasts

between two groups with different distributions can impact the perception of a distinct piece

of new information (rather than the perception of the group distributions themselves) during

the updating process.

There are two reasons to believe that the bias we measure in our experiment is driven

by RSD, rather than the type of distortion in the memory or internal representation of the

prior described by accounts like Bordalo et al. (2016). First, ex ante, we took great pains

to shut down misrepresentation of the prior as a potential channel by training subjects on

the prior distributions and reminding them of these distributions on their screen throughout

their decision making process. This salient and consistent provision of prior information

reduces the scope for priors to be misunderstood or mis-remembered. Second, ex post, while

stereotypes can produce results consistent with Hypotheses 1 and 2, they are inconsistent

with Hypothesis 3. If the bias we document was produced by distortions in subjects’ memory

or representation of the prior, these distortions should not in any obvious way be impacted by

the order in which subjects later observe the signal or learn the group. However, RSD requires

that decision makers know the group before observing the signal: otherwise there would

be no clear distinction between representative vs. unrepresentative evidence available to

systematically distort perception. The fact that the bias is observed strongly and persistently

only when the group membership is known prior to observing the signal, strongly suggests

the distortion is in the evaluation of the signal (RSD) rather than the prior (a stereotype

effect).45

43There is also a related literature on sequential contrast effects studying how inferences can be impacted

by recent (theoretically irrelevant) prior experiences. This is documented in speed dating (Bhargava and

Fisman, 2014), investor behavior (Hartzmark and Shue, 2018), and candidate evaluation (Radbruch and

Schiprowski, 2021; Kessler, Low, and Shan, 2022). In our experiment, there is similar scope for these kinds

of sequential effects in all of our treatments and so such effects, if present, should not be affected by our

treatments. The fact that the bias we measure is highly responsive to treatment and group identity suggests

instead that we are measuring a bias generated by contrasts between prior distributions.
44Bordalo, Gennaioli, and Shleifer (2018) present a model of forecast errors based on representiveness.

Agents distort their beliefs by overweighting the likelihood of future outcomes that are more representative

of recently observed news relative to past expectations. Such forecasts are excessively volatile, overreact to

news, and are subject to predictable reversals.
45Another hypothesis for how our results might result from the stereotypes modeled by Bordalo et al.

(2016) is that the SignalFirst treatment might cause subjects to focus entirely on the signal, ignoring their

biased prior beliefs. This would produce the bias we measure in Baseline but remove it in SignalFirst,

matching our data. However, our estimates in Table I strongly reject this explanation because they show

that subjects put almost identical weight on the prior in the Baseline and SignalFirst treatments.
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Behavioral Discrimination. More generally, our findings are relevant to an empirical and

experimental literature examining how behavioral biases influence discrimination.46 This

behavioral literature has almost universally focused on documenting “irrational” statistical

discrimination driven by incorrect prior beliefs about group differences.47 Recent exam-

ples include Arnold, Dobbie, and Yang (2018), who show that racial bias in bail decisions is

possibly driven by judges’ exaggerated beliefs about the relative danger of releasing black de-

fendants, and Bohren, Haggag, Imas, and Pope (2019), who outline implications of incorrect

beliefs for identification of the source of discrimination (they also document discrimination

against Americans partly based on wrong stereotypes).48 This literature has also produced

evidence that providing statistical information can decrease or eliminate statistical discrim-

ination driven by inaccurate beliefs about groups (e.g., Reuben, Sapienza, and Zingales

(2014), Bohren et al. (2019)). Mengel and Campos Mercade (2021) use an experiment to

highlight the implications of non-Bayesian updating (particularly conservatism) on discrim-

ination.49 While inaccurate prior beliefs and non-Bayesian updating are clearly important

sources of discrimination in many settings, our contribution is to instead document biases

in the perception of individual-level evidence.

Noisy Coding and Rational Inattention. Finally, our paper is related a class of mod-

els that study noisy evaluation of evidence, and how the decision environment shapes the

information extracted by agents.

In noisy coding models, agents observe, process or represent non-stochastic inputs to

beliefs like perceptual objects, numbers (e.g. dollar amounts or dates) or calculations with

noise (“noisy coding”), and then optimally account for this noise by forming inferences that

are shaded towards the prior mean (“decoding”). Thus, our baseline model of inference

46See Charles and Guryan (2011), Bertrand and Duflo (2017), Neumark (2018), and Bohren, Hull, and

Imas (2022) for recent reviews on the extensive literature studying discrimination, its potential causes, and

policies intended to counteract it.
47One important exception is Bartoš, Bauer, Chytilová, and Matějka (2016) which studies how allocation

of costly attention affects discrimination. Our experimental design minimizes scope for costly attention

mechanisms (because subjects observe signals for only a fraction of a second, giving them little control over

attention) and theoretically equalizes incentives to attend to information across most of our treatments.
48Fershtman and Gneezy (2001) use trust and dictator games in the laboratory to document systematic

mistrust in Israel Jewish society toward men of Eastern origin, due to mistaken ethnic stereotypes. Mobius

and Rosenblat (2006) show that subjects wrongly believe that attractive people are more productive and

that such belief differences translate into a wage beauty premium. More recently, focusing on discrimination

against women in a hiring context, Coffman, Exley, and Niederle (2021) identify beliefs about average group

differences as a key driver of discrimination, Barron, Ditlmann, Gehrig, and Schweighofer-Kodritsch (2022)

document, in addition, implicit discrimination where gender-biased decisions are rationalized by adjusting

beliefs about which signals are more predictive of performance.
49Like us, Mengel and Campos Mercade (2021) find that subjects behave as if their subjective perceptions

are more accurate than they actually are. However, because Mengel and Campos Mercade (2021) provide

subjective information about the prior rather than the signal, this results in conservatism rather than base-

rate neglect.

36



(presented in section II) can be interpreted as a noisy coding model, where decision makers

(i) receive a noisy signal (mental representation of new evidence, e.g., perception of a set

of dots) and (ii) combine this noisy signal with a prior to produce a belief.50 Relative to

this literature, our contribution is to show that people in statistical discrimination settings

conduct this updating in a non-Bayesian way. We find that inferences are not sufficiently

shaded towards the prior mean given the level of perceptual noise we measure in the data.

More importantly, we find evidence for RSD, a bias in the perception or interpretation of

evidence.

A closely related literature models the origins of signal noise, describing how it can arise as

an optimal responses to costs and constraints associated with information processing. Models

of rational inattention describe an optimization problem in which processing information

is costly and agents choose a signal structure (i.e. which exact pieces of information to

attend to) that maximize expected utility given these costs. Relatedly, efficient coding

models (inspired by findings in neuroscience) assume that the brain allocates scarce cognitive

resources so that perception is less noisy for stimuli that are payoff relevant in the decision

problem and expected to occur relatively more frequently.51

The bias we document is not predicted by either of these classes of models (efficient

coding or rational inattention) for the simple reason that both models assume agents are

Bayesian (though Bayesian with cognitive costs) while the bias we document represents a

systematic violation of Bayes’ rule that cannot be captured by standard inferential mistakes

(as discussed above). In particular, Bayesianism, by definition, rules out the key findings of

our paper (corresponding to Hypotheses 1, 2 and 3). A central property of Bayesian learning

is that beliefs are a martingale, i.e. the expected posterior must equal to the prior, implying

that the expected assessment must equal to the prior mean. In the context of our model, this

property requires that Bg and ∆g be zero. In other words, while both rational inattention

and efficient coding models certainly allow for biases conditional on the true type, these

models cannot generate aggregate biases, that is, biases that occur when we aggregate over

all types. But RSD is characterized by non-zero values of Bg and ∆g and therefore is not

a Bayesian phenomenon consistent with standard models of rational inattention or efficient

coding.52

Nonetheless, these models do make predictions about how inferences might differ across

50In the noisy coding literature, the noise originates from the manner the brain processes information,

even if information is provided in a clear format. In our paper, noise should also be expected from the fact

that subjects see the signal for only a quarter of a second.
51See Caplin, Dean, and Leahy (2022) and Maćkowiak, Matějka, and Wiederholt (2021) for recent reviews

on rational inattention. See Frydman and Jin (2022), Khaw, Li, and Woodford (2021) and Heng, Woodford,

and Polania (2020) for recent work in economics on efficient coding.
52It should also be noted that there are conceptual challenges with reformulating these models outside the

Bayesian paradigm. For example, would agents be aware that their information signals are misperceived,

and, if so, how would they discover and mitigate these misperceptions?
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our treatments in other ways. In Online Appendix K, we demonstrate this by contrasting

inferences across our treatments assuming efficient coding, and show that while it cannot

reproduce RSD, it can produce secondary patterns some of which resemble our data.53 More

broadly, our work shares with this literature an interest in the ways features of the decision

environment (in our case representativeness) influences information processing. While our

results cannot be rationalized by standard models of efficient coding or rational inattention,

it is very possible that RSD as identified in this paper is a byproduct of a similar or shared

mechanism by which the brain optimizes responses to noisy perception (imperfect evaluation

of new information) under cognitive constraints or costs. We hope future research can shed

more light on this potential connection.

VIII. Discussion

We provide experimental evidence that representativeness can severely distort the way

people evaluate new evidence – an error that we call “representative signal distortion” (RSD).

Subjects misperceive information on individual group members to be more representative of

the group the individual belongs to (relative to a reference group) than it really is. This

error produces an irrational amplification of discriminatory assessments between individuals

from different groups. Importantly, we show that this bias is highly resistant to learning,

continuing to distort inference even after dozens of periods of experience and feedback.

However, we also show that simple cognitively-driven interventions are highly effective at

removing this bias, simultaneously reducing discrimination and improving the accuracy of

individual judgements.

This error, driven as it is by representativeness, is particularly relevant to settings of

statistical discrimination, in which assessment of individual group members are necessarily

formed in the shadow of some other reference group. As such our results may have relevance

to perennial efforts to reduce discrimination in naturally occurring settings like employment,

credit markets, education, law and policing. In many such settings, decision makers must

process complex information about individuals that is open to interpretation, producing

scope for the sorts of evaluative distortions we document here. To the degree this bias

indeed arises outside of the lab, our paper offers new tools for combating discrimination

using relatively “light touch” policies that can effectively reduce discrimination without

reducing the accuracy of judgements.54

53With efficient coding perception is more accurate (around the prior mean) for types that are more

likely to be observed, creating non-linearity in how mean assessment varies with true type. The model also

predicts lower MSE in OneGroup relative to SignalFirst (and NoGroup). See Online Appendix K for further

discussion.
54Of course, the availability of the interventions used in our experiment will vary widely across field

contexts. For instance, in many contexts it will not be possible to have decision makers assess evidence

about individuals before knowing the group the individual belongs to. Likewise, decision makers will not
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When should we expect this bias to occur outside of the laboratory, amplifying dis-

crimination in the field? Ultimately, this is an empirical question – and one well-worth

investigating. However we can provide some informed speculation. For this, it is important

to emphasize two key features of our experiment: (i) it focuses on a specific perceptual task

(estimation of the number of dots observed on a screen) and (ii) it involves two abstract

groups (orange vs. green). The first feature creates scope for misperception while the second

feature makes contrasts between prior distributions of the two groups clear and salient. As

such, the magnitudes we measure for RSD evaluation (and its severity relative to other bi-

ases) should hardly be expected to be universal, but rather should be expected to depend on

how strongly the real world environment deviates from these characteristics. We conjecture

that RSD is likely to be more important in settings where (i) information on individuals

is complex or highly subjective and therefore open to selective (mis-)interpretation and (ii)

contrast between different groups are highly salient. To the degree that individual signals

derive from hard evidence (where there is no scope for misinterpretation) or contrasts be-

tween groups are not as pronounced or salient, we would expect to see attenuation or even

elimination of RSD relative to what we report here.55

Similarly, it is an empirical question how important RSD is relative to alternative drivers

of discrimination considered in the literature. Our experiment was designed to isolate RSD

and understand its nature, and we therefore purposely shut down scope for surely-important

competing drivers of discrimination like incorrect beliefs about group differences, taste-based

discrimination, or animus. Doing this allowed us to investigate the nature of this bias with

a level of clarity that would be difficult or impossible using field evidence. But in order to

understand the importance of this error relative to other drivers of discrimination, we must

move outside of the lab, into the contexts where the full suite of determinants of discrimina-

tion are allowed to appear with their natural strengths. For this kind of investigation, our

description of the psychological mechanism underlying the bias and our documentation of

treatment effects may provide important diagnostic guidance on how to identify RSD and

its relative importance in driving discrimination in the field.

University of California Santa Barbara

always have information sufficient to use our model to debias decision making. Finally, it is not clear whether

(or when) specializing decision makers to make assessments about members of only one group will replicate

the treatment effect of our OneGroup treatment – it may be that even then, knowledge of the existence of

another group will weaken or even eliminate the treatment effect we observe.
55 An important question is to what degree perceptual tasks like ours effectively represent the evidentiary

problems faced by decision makers in the field. On the one hand, we study one specific perceptual environment

and immediate skepticism is warranted about the generality of such results. On the other hand, classical

discrimination contexts like studying a resume, scanning a neighborhood for misbehavior or noticing what is

expressed during a conversation are all examples in which, as in our perceptual task, information is open to

subjective misinterpretation. Further research is clearly warranted to understand how broadly RSD applies

in such relevant field contexts.
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A. Representative Signal Distortion

I.A. Model with distortion of prior and signal

Assume f(t | g) is normally distributed with mean µg and variance σ2. The normal prior

implies the following odds ratio between any two values t1 and t2:

r(t1, t2) =
f(t1)

f(t2)
= e−

1
2σ2 ((t1−µ)2−(t1−µ)2) = e−

1
2σ2 ((t21−t22−2µ(t1−t2)) = e−

t1−t2
2σ2 ((t1+t2)−2µ) (8)

This implies that if for any (t1, t2) the odds ratio can be written as above, then the distri-

bution of t is normally distributed with mean µ and variance σ2.

Lemma 1. For any γ, f̃(t | g) := κf(t | g)
(

f(t | g)
f(t | −g)

)γ

, is normally distributed with distorted

mean µ̃g = µg + γ(µg − µ−g) and variance σ2.

Proof. Without loss, focus on the likelihood ratios:

f̃(t1 | g)
f̃(t2| g)

=
(

f(v1 | g)
f(v2 | g)

)(
f(v1 | g)
f(v1 | −g)

)γ (
f(v2 | −g)
f(v2 | g)

)γ

= e
1

2σ2 (−(t1−µg)2+(t2−µg)2−γ(t1−µg)2+γ(t2−µg)2−γ(t2−µ−g)2+γ(t1−µ−g)2)

= e
1

2σ2 (t22−t21+2(t1−t2)(µg+γ(µg−µ−g))

(9)

Note that when γ = 0, we get the correct likelihood ratio corresponding to f(t1 | g)
f(t2 | g) (as in

Equation 8). For γ > 0, we get the likelihood ratio associated with a normal distribution

with the same standard deviation but a distorted mean where µ̃g = µg + γ(µg − µ−g).

Lemma 2. Assume h(s | t) and f(t | g) are normally distributed with mean t and variance ξ2

in the first case and µg and σ2 in the second case. For any γ, h̃(s | t, g) := κh(s | t)
(

y(s | g)
y(s | −g)

)γ

with y(s | g) :=
∫
h(s | t)f(t | g)dt is normally distributed with distorted mean t+ γξ2

δ2
(µg−µ−g))

where δ2 = σ2 + ξ2 and variance ξ2.

Proof. Note that s = µg + ϵ1 + ϵ2 where ϵ1 ∼ N (0, σ2) and ϵ2 ∼ N (0, ξ2). So y(s | g)
is normally distributed with mean µg and variance δ2 := σ2 + ξ2. Again, focus on the

likelihood ratios:

h̃(s1 | t,g)
h̃(s2 | t,g)

=
(

h(s1 | t)
h(s2 | t)

)(
y(s1 | g)
y(s1 | −g)

)γ (
y(s2 | −g)
y(s2 | g)

)γ

= e
1

2ξ2

(
−(s1−t)2+(s2−t)2+ γξ2

δ2
(−(s1−µg)2+(s2−µg)2−(s2−µ−g)2+(s1−µ−g)2)

)

= e
1

2ξ2

(
s22−s21+2(s1−s2)(t+

γξ2

δ2
(µg−µ−g)

) (10)
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Note that when γ = 0, we get the correct likelihood ratio corresponding to h(s1 | t)
h(s2 | t) , for

γ > 0, we get the likelihood ratio associated with a normal distribution with the same

standard deviation but a distorted mean where the mean is not t (as it should be), but

t+ γξ2

δ2
(µg − µ−g)).

In general, consider three distinct ways representativeness can distort beliefs in the up-

dating process.

Distortion 1 (Distortion of the prior): As in Bordalo et al. 2016, representativeness

may distort the prior (i.e., the memory of or characterization of each group’s distribution).

Let γ1 ≥ 0 be a measure of this distortion as described above.

Distortion 2 (Recollective Signal Distortion): If agents learn group identity after

evaluating the signal, the recollection of the signal (at the updating stage) could be impacted

by group identity. The idea is that agents might suffer from a form of “associative memory”

where they remember the image in a way that is more representative of that group. Let

γ2 ≥ 0 be a measure of this distortion as described above.

Distortion 3 (Representative Signal Distortion, referred to as RSD in the paper):

If agents know group identity before evaluating the signal, the perception of the signal might

be impacted by that knowledge. The idea is that the agent “looks for” evidence that is more

representative of the group (high signals for high-mean group, low signals for low-mean

group). Let γ3 ≥ 0 is a measure of this distortion as described above.

Assume h(s | t) and f(t | g) are normally distributed with mean t and variance ξ2 in the

first case and µg and σ2 in the second case. By Lemmas 1 and 2, the agent will update under

distorted prior f̃(t | g) which is normal with mean µ̃g = µg+γ1(µg−µ−g) and variance σ2 and

distorted subjective signal h̃(s | t) which is normal with mean t̃ = t+(γ1+γ2) ξ2

σ2+ξ2
(µg−µ−g)

and variance ξ2.56

56This computation assumes that the signal distortions (2 and 3) are unaffected by the prior distortion

(1). It is possible that the distorted prior also influences the signal distortion. This could be modelled as

prior distortion taking place first and then feeding into the how representativeness of different signals are

computed (formally, f would be replaced by f̃ in Lemma 2).
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B. Under or Over Inference

The aim of this section to formally show how classical deviations from Bayesian updating—

under inference (conservatism) or over inference (base-rate neglect)—imply deviations in

terms of weight on prior ω, but do not result in biased inference, as captured by B (or ∆).

The standard approach (since Grether (1980), recently reviewed in Benjamin (2019)) to

studying deviations from Bayesian updating uses the following framework which characterizes

distortions in the posterior likelihood ratio:

p(t = t1 | s)
p(t = t2 | s)

=

(
p(t1)

p(t2)

)α(
p(s | t = t1)

p(s | t = t2)

)β

, (11)

where optimal behavior requires α = β = 1.

Lemma 3. If s ∼ N (t, ξ2) and t ∼ N (µ, σ2), it can be shown that for any value of (α, β),

assessments consistent with Equation 11 are given by t̂ = ωµ+ (1−ω)s, where ω = αξ2

βσ2+αξ2
.

That is, ω increases with α and decreases with β, but cannot account for a bias term B.

Proof. Consider a behavioral agent who, conditional on signal s (with g representing the

distribution of s), forms a posteriors odds ratios as below for any (t1, t2).

r̂(t1, t2) =
(

f(t1)
f(t2)

)α (
g(s | t=t1)
g(s | t=t2)

)β

=
(
e−

t1−t2
2σ2 ((t1+t2)−2µ)

)α (
e
− t1−t2

2ξ2
((t1+t2)−2s)

)β

= e
−αξ2(t1−t2)

2σ2ξ2
((t1+t2)−2µ)

e
−βσ2(t1−t2)

2σ2ξ2
((t1+t2)−2s)

= e
− (αξ2+βσ2)(t1−t2)

2σ2ξ2

(
(t1+t2)−2

(
αξ2µ+βσ2s

αξ2+βσ2

))
(12)

This is equivalent to a normal distribution with mean αξ2µ+βσ2s
αξ2+βσ2 and variance σ2ξ2

αξ2+βσ2 . Note

that the optimal assessment is the mean of this distribution.
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C.Measures of Discrimination

We refer the reader to Barocas, Hardt, and Narayanan (2019), Narayanan (2018) and

Hutchinson and Mitchell (2019) for reviews of this literature. We focus on a criteria of non-

discrimination that is most relevant in our setting: Separation.57 In our inference task, this

criteria refers to the statistical properties of the joint distribution of t̃ (assessment), t (true

type) and g (group identity).

Separation: t̃ ⊥ g | t. This criterion requires assessments to be independent of the

group identity conditional on type.

Separation allows for the distribution of assessments to differ by group, but only to the extent

that such differences can be justified by actual differences in true types between the groups.

Namely, the criterion requires people from different groups with the same underlying true

type to be treated the same. This is a notion of fairness reflected for example in the slogan

“equal pay for equal work” with regards to the gender pay gap.

Note that group difference (as captured by our measure GD) being equal to zero is a

necessary (but not sufficient) condition for Separation. In this sense, GD provides us a with

a preliminary test of Separation, as well as a simple, easy-to-interpret continuous measure

of the degree to which it is violated. However, it is worth noting that, in using GD, we

implicitly focus on the first moment (differences in means) when we contrast distribution

of assessments between different groups. More complex measures of discrimination based

on the Separation criterion can be constructed by incorporating different features (such as

second, third moments, etc.) of the distribution.58

57This literature highlights two more criteria for non-discrimination that could be relevant in our set-

ting: Independence, and Sufficiency (closely liked to Calibration which is also commonly discussed in this

literature).

Independence: t̃ ⊥ g. This criterion requires assessments to be independent of the group identity.

Note that this cannot be a reasonable goal in an inference task where the distribution of types do

differ by group (as in our setting).

Sufficiency : t ⊥ g | t̃. This criterion requires types to be independent of the group identity conditional

on assessments. The criterion requires the distribution of true types to be the same for different

groups when we condition on a specific assessment. The Bayesian Benchmark to our inference task

satisfies this criterion.

58We note, however, that it is far from obvious what type of impact these other features of the distribution

should have on a measure of discrimination. Moreover, our take on this issue is highly likely to be context

dependent. We have deliberately kept our experimental design simple by abstracting away from the issue of

how assessments impact the utility of the individuals who are being evaluated. However, in most applica-

tions, we worry about discrimination foremost because of the utility loss it induces on those that are being

discriminated against. For example, a manager’s evaluation of the candidate might influence the likelihood
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D. Bayesian Benchmark in NoGroup Treatment

While the optimal inference about type t is linear in signal s—under the assumption that

s ∼ N (t, ξ2)—in the Baseline, SignalFirst and OneGroup treatments, this is not the case in

the NoGroup treatment where information on group identity is withheld from the subjects.

We can use law of iterated expectations to characterize the optimal inference as a function

of signal s in this treatment:

t̃Bay = E(t | s) = p(g = h | s)E(t | s, g = h) + p(g = l | s)E(t | s, g = l),

where p(g | s) denotes the probability that the person belongs to group g conditional on

signal s. By Bayes’ rule:

p(g | s) =

∫
1
σ
ϕ
( t−µg

σ

)
1
ξ
ϕ
(

s−t
ξ

)
dt∫

1
σ
ϕ
(
t−µh

σ

)
1
ξ
ϕ
(

s−t
ξ

)
dt+

∫
1
σ
ϕ
(
t−µl

σ

)
1
ξ
ϕ
(

s−t
ξ

)
dt

Figure 6 below depicts the Bayesian benchmark for three different values of ξ2 ∈ {50, 75, 100}.
The Figure shows that for such values (which cover the range estimated in the experiment),

the Bayesian benchmark can be approximated closely with a linear function.
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Figure 6. Bayesian Benchmark in NoGroup Treatment

they are hired for a job; a teacher’s evaluation of a student might impact the kind of college they are able

to get into, etc. How different features of the distribution of assessments translate into utility differences

between different groups will necessarily depend the specifics of the setting.
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E. Statistical Tests and Further Analysis

TABLE II. OLS estimation (Dependent Variable: Squared Error in Assessments), Rounds

38-75

(1) (2) (3) (4)

NoGroup 12.02∗ 8.667 6.929 6.446

(7.069) (6.979) (19.06) (19.92)

OneGroup -17.29∗∗∗ -16.12∗∗∗ -37.20∗∗ -37.89∗∗

(5.107) (5.141) (14.76) (15.36)

SignalFirst -3.611 -4.335 -9.337 -9.541

(6.301) (6.364) (18.09) (18.52)

Risk measure -0.217∗∗∗ 0.0804

(0.0821) (0.179)

Constant 59.16∗∗∗ 70.31∗∗∗ 82.34∗∗∗ 78.86∗∗∗

(4.308) (6.446) (14.15) (15.75)

Observations 8778 8588 9158 8968

Standard errors (clustered at the subject level) in parentheses.

∗∗∗1%, ∗∗5%, ∗10% significance.

Constant shows MSE at Baseline at risk measure of zero.

Dummies shows difference relative to Baseline.

Lower values for risk measure correspond to higher risk aversion.

Risk measure missing for 5 subjects.

(1) and (2): Subjects with MSE less than or equal to 200.

(3) and (4): All subjects.
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In Tables III to V, given estimates for (ω,∆, ξ2) we compute the likelihood with which

agent i receives a higher assessment than agent j for different values of ti − tj. We compare

cases in which (i) h vs. l: i is from the high-mean group and j is from low-mean group; (ii)

same: i and j are from the same group; (i) l vs. h: i is from the low-mean group and j is

from high-mean group.

To simplify the analysis, given that differences in ω and ξ2 are limited between the groups

(see Table I), we set ωh = ωl and ξ2h = ξ2l and use average estimated value of the two groups

in our computations. By Equation 3, for agent i to receive a higher assessment than agent

j, the following must hold:

(1− ω)∆gi + ωµgi + (1− ω)ti + (1− ω)εi > (1− ω)∆gj + ωµgj + (1− ω)tj + (1− ω)εj.

The likelihood of this happening is equal to Φ
(

(∆gi−∆gj )+
ω

1−ω
(µgi−µgj )+(ti−tj))√
2ξ

)
. Note that

this is increasing in ∆gi −∆gj .

TABLE III. Likelihood of Higher Assessment when ti − tj = 0.

h vs. l same l vs. h

Baseline .74 .50 .26

NoGroup .51 .50 .49

SignalFirst .67 .50 .33

OneGroup .58 .50 .42

TABLE IV. Likelihood of Higher Assessment when ti − tj = 5.

h vs. l same l vs. h

Baseline .85 .66 .40

NoGroup .67 .66 .65

SignalFirst .80 .66 .49

OneGroup .75 .69 .61

TABLE V. Likelihood of Higher Assessment when tj − tj = 10.

h vs. l same l vs. h

Baseline .92 .79 .56

NoGroup .80 .79 .79

SignalFirst .89 .83 .64

OneGroup .88 .79 .78
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F. Testing linearity

In Figure 7, we compare best linear fit with best fractional polynomial fit to demonstrate

that the linearity assumption is with little loss in the relevant region of the value distribution.

In Figure 8 we use the binscatter methods developed in Cattaneo, Crump, Farrell, and

Feng (2019). The estimated values show nonparametric estimates for assessment conditional

on value for each bin, also displaying confidence bands. We also use the binscatter-based

hypothesis testing procedures developed by Cattaneo, Crump, Farrell, and Feng (2019) and

find that a linear function form cannot be rejected in the Baseline treatment for either the

high-mean or low-mean group (p = 0.542 and p = 0.188, respectively).
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Figure 7. Best Linear Fit vs. Best Fractional Polynomial Fit Notes: Size of the dots represent

relative frequency (by group and treatment) of observing each true type. Solid lines depict best linear fit by group and

treatment. Dashed lines depict best fractional polynomial fit.
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Figure 8. Best Linear Fit and Binned Scatter Plots Notes: Dots show binned scatter plots depicting

nonparamatric estimates of guess given true type in each bin. Green and Orange lines depict best linear fit by group and

treatment. Black lines depict 95% confidence intervals. The shaded area depicts 95% confidence bands. All are computed with

Stata package using binscatter methods developed in Cattaneo, Crump, Farrell, and Feng (2019).
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G. Individual-Level Analysis

TABLE VI. Model Estimates (Median Values)

Baseline NoGroup SignalFirst OneGroup

Regression estimates:

ωl 0.209 -0.009 0.150 0.095

ωh 0.204 0.057 0.146 0.172

Bl -2.265 0.266 -0.122 0.243

Bh 2.191 0.265 1.084 -0.176

Estimates derived from ω and B:

∆l -2.47 0.27 -0.66 0.30

∆h 2.53 0.50 1.04 -0.18

ξ2l 46 37 38 34

ξ2h 48 46 46 42

ωBay
l 0.31 0.16 0.27 0.26

ωBay
h 0.32 0.19 0.31 0.29

Tests:

H0: ωl = ωh 0.628 0.385 0.824 0.232

H0: Bl = Bh 0.000 0.929 0.053 0.868

H0: ∆l = ∆h 0.000 0.929 0.019 0.868

H0: ωl = ωBay
l 0.000 0.000 0.000 0.000

H0: ωh = ωBay
h 0.000 0.000 0.000 0.006

Rows on tests report p-value associated with test of each hypothesis.

Test are on distributions of individual values (Kolmogorov-Smirnov).

Notes: Empirical strategy is described in Table I (but here implemented on the individual level). See Sections

II and III for further discussion.
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Figure 9. Estimates of Bayesian Weight vs. Weight on Prior by Group and Treatment Notes:

Green (Orange) solid line represents difference between Bayesian weight on prior ωBay and estimated weight on prior ω for

low-mean (high-mean) group. Vertical lines denote median values. Empirical strategy is described in Table I. See Sections II

and III for further discussion.
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H. Learning

TABLE VII. OLS estimation (Dependent Variable: Squared Error in Assessments), All

Rounds

(1) (2) (3) (4)

NoGroup 14.88∗∗ 10.60∗ 8.432 6.766

(6.045) (5.887) (17.35) (18.14)

OneGroup -16.43∗∗∗ -15.34∗∗∗ -34.38∗∗ -34.99∗∗

(4.774) (4.768) (14.01) (14.54)

SignalFirst -1.131 -2.420 -7.115 -7.967

(6.135) (6.161) (16.89) (17.27)

Risk measure -0.251∗∗∗ 0.0205

(0.0763) (0.165)

Constant 63.08∗∗∗ 76.24∗∗∗ 84.91∗∗∗ 84.77∗∗∗

(3.973) (6.017) (13.21) (14.69)

Observations 17325 16950 18075 17700

Standard errors (clustered at the subject level) in parentheses.

∗∗∗1%, ∗∗5%, ∗10% significance.

Constant shows MSE at Baseline at risk measure of zero.

Dummies shows difference relative to Baseline.

Lower values for risk measure correspond to higher risk aversion.

Risk measure missing for 5 subjects.

(1) and (2): Subjects with MSE less than or equal to 200.

(3) and (4): All subjects.

15



TABLE VIII. Model Estimates (All Rounds)

Baseline NoGroup SignalFirst OneGroup

Regression estimates:

ωl 0.184∗∗∗ -0.00299 0.188∗∗∗ 0.0824∗∗∗

(0.0308) (0.0298) (0.0271) (0.0217)

ωh 0.175∗∗∗ -0.0189 0.143∗∗∗ 0.115∗∗∗

(0.0311) (0.0285) (0.0245) (0.0313)

Bl -2.110∗∗∗ -0.495 -0.875∗∗∗ 0.266

(0.322) (0.475) (0.316) (0.304)

Bh 1.519∗∗∗ -0.217 0.500 -0.413

(0.342) (0.351) (0.380) (0.289)

Estimates derived from ω and B:

∆l -2.59∗∗∗ -0.49 -1.08∗∗∗ 0.29

∆h 1.84∗∗∗ -0.21 0.59 - 0.47

ξ2l 79∗∗∗ 73∗∗∗ 85∗∗∗ 53∗∗∗

ξ2h 89∗∗∗ 79∗∗∗ 84∗∗∗ 60∗∗∗

ωBay
l 0.44∗∗∗ 0.27∗∗∗ 0.46∗∗∗ 0.35∗∗∗

ωBay
h 0.47∗∗∗ 0.29∗∗∗ 0.46∗∗∗ 0.38∗∗∗

Tests:

H0: ωl = ωh 0.758 0.639 0.089 0.391

H0: Bl = Bh 0.000 0.406 0.011 0.111

H0: ∆l = ∆h 0.000 0.198 0.006 0.042

H0: ωl = ωBay
l 0.000 0.000 0.000 0.000

H0: ωh = ωBay
h 0.000 0.000 0.000 0.000

Notes: For each treatment and group g ∈ {l, h}, we estimate Bg and ωg using OLS on the following

specification: yg,i = Bg + ωgxg,i + εg,i, where i denotes each distinct observation, yg,i ≡ t̂g,i − tg,i, and

xg,i ≡ µg − tg,i. This specification is derived by subtracting tg,i from both sides of equation (4). Given

estimates for Bg and ωg, we back out ∆g using equation (5) and estimate ξ2g by identifying the error

associated with the signal using εi,g = (1 − ωg)ϵi,g and then taking the sample average of ϵ2i,g. Given ξ2g ,

ωBay
g is derived from equation (2). See Sections II and III for further discussion. Standard errors (clustered

at the subject level) are reported in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance. Rows on tests report

p-value associated with test of each hypothesis. Statistical assessments on estimates derived from ω and B

use bootstrapping.
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Table IX reports changes in (ωg, Bg) from early (1-37) to late (38-75) rounds. The table

reveals, for example, ωh in the Baseline was 0.192 in the early rounds and decreased by

0.0346 in the late rounds.

TABLE IX. Change in Model Estimates by Treatment

Baseline NoGroup SignalFirst OneGroup

ωh 0.192∗∗∗ -0.0580 0.135∗∗∗ 0.0655∗∗

(0.0392) (0.0386) (0.0353) (0.0305)

ωl 0.168∗∗∗ -0.0267 0.188∗∗∗ 0.0746∗∗∗

(0.0326) (0.0366) (0.0397) (0.0288)

Bh 1.222∗∗∗ -0.363 0.750∗ -0.632

(0.332) (0.380) (0.445) (0.532)

Bl -2.529∗∗∗ -0.702 -1.462∗∗∗ 0.120

(0.436) (0.563) (0.369) (0.336)

Change in ωh in Rounds >37 -0.0346 0.0776 0.0165 0.0981∗∗∗

(0.0434) (0.0513) (0.0428) (0.0372)

Change in ωl in Rounds >37 0.0310 0.0460 -0.00414 0.0152

(0.0418) (0.0404) (0.0445) (0.0252)

Change in Bh in Rounds >37 0.613∗ 0.264 -0.504 0.476

(0.348) (0.605) (0.380) (0.705)

Change in Bl in Rounds >37 0.787∗∗ 0.413 1.134∗∗∗ 0.288

(0.321) (0.748) (0.379) (0.311)

Observations 4050 4350 4425 4500

Bootstrapped standard errors (clustered at the subject level) in parentheses.

∗∗∗1%, ∗∗5%, ∗10% significance.

Subjects with MSE less than or equal to 200.
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I. Additional Figures
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Yellow bars depict empirical histogram. Green line shows normal fit.

Figure 13. Distribution of Estimated Signal Error by Treatment
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Figure 14. Average Actual and Bayesian Assessment by True Type in Each Treatment
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J. Using Model Estimates to Improve Outcomes

Our model suggests that an outside observer can construct a simple algorithm to correct

for the errors we find: representative signal distortion and base-rate neglect. Identification

and estimation of these errors allows the observer to improve outcomes at the prediction stage

by (i) debiasing assessments, and (ii) readjusting weight on the signal vs prior information.

Here, we illustrate how this can be done with our own data. We divide our data (focusing

on the Baseline treatment) into two: a training and a testing set. The training set is used to

estimate key parameters of the model (∆g, ωg, ξ
2
g). These estimates are then used to “adjust”

predictions in the testing set. By separating the data on which we estimate parameters and

apply adjustments, we can test the performance of the model out of sample. As a proof of

concept, we focus on two types of adjustments that are intended to: (i) maximize accuracy

subject to zero discrimination, i.e. OptNoDiscrimination benchmark; (ii) maximize accuracy

subject to no constraint, i.e., Bayesian benchmark. The adjustments are done using the

following steps.

1. Given (∆g, ωg, ξ
2
g), for each observation in the testing set, estimate a (debiased) sub-

jective signal.

• Each assessment t̂ can be represented as follows: t̂ = (1−ωg)∆g+ωgµ+(1−ωg)su,

where su is an unbiased signal.

2. The signal variance estimate ξ2g implies an optimal weight ωg for each of the two

benchmarks.

• For the OptNoDiscrimination benchmark, ωOnd =
ξ2g

ξ2g+2σ2
59

• For the Bayesian benchmark (as described in Section II), ωBay =
ξ2g

ξ2g+σ2 .

3. Compute adjusted prediction using estimates for signal su and weights ωOnd
g or ωBay

g .

• Adjusted Bayesian prediction t̂Bay = ωBay
g µg + (1− ωBay

g )su.

• Adjusted OptNoDiscrimination prediction t̂Ond = ωOnd
g

(
µl+µh

2

)
+ (1− ωOnd

g )su.

Table X reports results from 500 random repetitions of the procedure described above.

We make two observations. First, adjusted predictions in the OptNoDiscrimination column

are welfare increasing, generating lower inaccuracy and discrimination relative to the data.

Second, adjusted predictions in the Bayesian column display higher discrimination, but much

lower inaccuracy as expected from our earlier analysis. These results demonstrate that our

model might be useful for correcting for biases like representative signal distortion and base-

rate neglect in applications in which the relevant data is available.
59Consistent with our linearity restriction in Section III, ωg is chosen to minimize expected squared error

of predictions t̂ = (1− ωg)s+ ωg

(
µl+µh

2

)
.
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TABLE X. Actual vs. Adjusted Predictions

Data OptNoDiscrimination Bayesian

GD 7.98 > (p = 0.000) 0.81 < (p = 0.002) 9.40

MSE 59 > (p = 0.088) 56 > (p = 0.000) 44

Values represent mean estimates from 500 repetitions of the procedure.

Inequalities compare counterfactuals (OptNoDiscrimination and Bayesian) to data.

Reported p-values represent frequency of repetitions in which the inequality was violated.
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K. Efficient Coding

The goal of this section is the explore treatment differences implied by efficient coding.

As noted in Section VII, these predicted differences turn out to be orthogonal to our main

results on representative signal distortion (RSD). We follow Frydman and Jin (2022), who

build on work by Khaw et al. (2021) and Heng et al. (2020), in modeling efficient coding.

The agent faces an information processing constraint. Specifically, the agent encodes the

true type t using a finite number of n “neurons,” where the output state of each neuron

takes the value of 0 or 1. The output states of these n neurons are assumed to be mutually

independent, and each neuron takes the value 1 with probability θt and 0 with the remaining

probability 1 − θt. The encoded value of t is therefore represented by an output vector of

0s and 1s, with length n. Given that the neurons are mutually independent, a sufficient

statistic for the output vector is the sum across the n output values, which can be denoted

by R. Thus, the noisy signal R can take on integer values from 0 to n. Function f below

describes the likelihood of observing R conditional on true type t:

f(R | t) =
(
n

R

)
(θt)

R(1− θt)
n−R.

Focusing on the discrete distribution in our experiment where t ∈ {1, ..., 100}, we nu-

merically (using Matlab) estimate θ = (θ1, ..., θ100) which minimizes expected square error

in assessment (the incentive given to our subjects). To do this, we follow these steps.

• Fixing θ, the prior (discrete normal distribution) and f determine the posterior distri-

bution of t for any signal R.

• Assessment conditional on each signal R is the expected type t given this posterior

distribution.

• Signal distribution f , prior type distribution and assessment conditional on each signal

give us expected square error.

• We search over different values of θ to minimize expected squared error.

Figure 15 and 16 depicts the solution to this separately for OneGroup, SignalFirst and

NoGroup assuming n = 10 and n = 20, respectively. The solutions differ by treatment

because in OneGroup the agent uses a different prior to optimize θ, in SignalFirst the agent

uses the same prior as NoGroup when optimizing θ but faces a different decision problem (in

which group identity is revealed at the inference stage). We do not have a separate solution

for Baseline for several reasons. Baseline is theoretically equivalent to OneGroup. But it

might be behaviorally difficult to adjust perception strategy from round to round. This

might imply behavior in Baseline to be somewhere in between OneGroup and SignalFirst.
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Key predictions from efficient coding can be summarized as follows:

(1) On average, assessments are unbiased. As noted in Section VII, this is a consequence

of Bayesian inference.

(2) On average, assessments are most accurate (least expected squared error) in OneGroup

and least accurate in NoGroup. This is because in OneGroup both perception and

inference are conditioned on group identity. In NoGroup, the agent cannot condition

on group identity in either stage.

(3) Inferences become more accurate as cognitive constraints are relaxed (as n increases).

(4) In OneGroup, assessments are highly accurate around the group mean, but not so away

from the group mean. This is because perception is optimized to be more accurate for

types that are more likely to be observed.

We conclude by discussing our experimental findings in light of these predictions. First,

the main contribution of this paper pertaining to results on RSD are in violation of (1).

Namely, in our Baseline treatment, assessments are on average positively biased by the high-

mean group and negatively biased for the low-mean group. Thus, efficient coding cannot

produce the bias we attribute to RSD. As discussed in Section VI, we find evidence consistent

with (2). Our experimental design does not allow us to test (3) since we did not try to identify

subjects with high or low cognitive constraints; we also did not vary the difficulty level of (or

the time permitted to) perceiving the image that depicts true type. As discussed in detail

in Online Appendix F, we cannot reject in our setting that mean assessment is linear in true

type. Thus, our results do not provide evidence for the type of non-linearity implied by (4).
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Figure 15. Mean Assessment by Type with Efficient Coding (n = 10)
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Figure 16. Mean Assessment by Type with Efficient Coding (n = 20)
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L. Instructions for Baseline Treatment
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Comprehension questions

Subjects had to answer these questions correctly to be able to begin the experiment.
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