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Abstract

This paper uses a laboratory experiment to study beliefs and their rela-
tionship to action and strategy choices in finitely and indefinitely repeated
prisoners’ dilemma games. We find subjects’ elicited beliefs about the other
player’s action are generally accurate despite some systematic deviations, and
anticipate the evolution of behavior differently between the finite and indefi-
nite games. We also use the elicited beliefs over actions to recover beliefs over
supergame strategies played by the other player. We find these beliefs over
strategies correctly capture the different classes of strategies played in each
game, vary substantially across subjects, and rationalize their strategies.
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1 Introduction

Equilibrium analysis assumes players have correct beliefs about the strategies of
other players and they best respond to these beliefs. These assumptions may be
particularly demanding in repeated games, where (i) strategies can be very complex,
(ii) there can be multiplicity of equilibria, and (iii) learning is made difficult by the
large number of possible histories. This paper uses a laboratory experiment to study
the validity of these assumptions by constructing a novel data set that includes beliefs
as well as actions in repeated prisoners’ dilemma (PD) games. By making beliefs
observable, our goal is to bring to light a key force at work in determining behavior
in such games.

Our experiment on repeated PD games consists of two main treatments: the
Finite game and the Indefinite game. Theory predicts the existence of a unique
equilibrium with no cooperation in the Finite game, but the existence of a multi-
tude of equilibria ranging from no cooperation to full cooperation for sufficiently
patient players in the Indefinite game. This theoretical contrast between the two
games provides a useful backdrop for the study of beliefs and their relationship to
cooperation. Based on the literature, we select parameters so that these two games
generate similar and high levels of round-one cooperation in the laboratory. The two
treatments hence allow us to compare beliefs among subjects taking the same action
in the same round potentially along the same history, and examine whether their
strategic reasoning is similar or different across the two environments.

In a first foray into beliefs in repeated PD games, many questions are of interest.
However, given the challenges associated with implementing both repeated games
and eliciting beliefs in the laboratory, we have opted for simplicity whenever possible:
we use games with perfect monitoring where the past actions of both players are
perfectly observable, and only elicit (first-order) beliefs about stage actions.

Our analysis is on both beliefs about stage actions, or round beliefs, and beliefs
about supergame strategies, or supergame beliefs, which are recovered from round
beliefs using a novel method. Round beliefs are informative since they are a cross
section of supergame beliefs and a more primitive record of subjects’ strategic think-
ing in reaction to history of play and other features of the game. When compared
with eliciting supergame beliefs, eliciting round beliefs is cognitively less demanding
and requires no assumption about the underlying supergame strategies. It is also less
likely to alter how subjects approach the strategic interaction. The method we use to
recover supergame beliefs from round beliefs is in two steps: First, we type subjects
by assigning them to one of the supergame strategies in a predefined consideration
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set based on their stage actions. Second, we use elicited round beliefs to estimate,
for each type separately, the supergame beliefs over strategies in this set.

We identify three classes of key results. First, beliefs are, broadly speaking, ac-
curate. This is noticeable at many levels: Round by round, unconditional average
round beliefs are close to empirical action frequencies. Round beliefs are also history-
dependent. In round two, subjects display large changes in their beliefs that closely
reflect the actual change in action frequencies. For instance, in both treatments, sub-
jects who cooperate while their opponent defects in round one decrease their belief
on the likelihood that their opponent cooperates by an average of more than 40 per-
centage points. Round beliefs are also forward-looking. Beliefs towards the end of the
Finite game correctly anticipate that cooperation is substantially less likely, a pattern
not displayed in the Indefinite game. The most striking example of this is that sub-
jects in pairs that have jointly cooperated for seven rounds estimate the probability
that the other will cooperate in round eight to be below 60% in the Finite game, but
above 95% in the Indefinite game. Round beliefs are informed by past experience,
but cannot be reduced to it. For instance, in more than three quarters of cases,
subjects’ round one beliefs differ from the cooperation rate they have experienced in
earlier supergames by more than 10 percentage points. In fact, in 58 percent of cases
beliefs are not even within plus or minus 20 percentage points of the cooperation
rates experienced in earlier supergames.1 As for supergame beliefs, they correctly
anticipate the types of strategies prevalent in each environment. Specifically, their
support includes conditionally cooperative strategies in both environments. These
strategies are stationary in the Indefinite game but are non-stationary and switch to
defection in the last few rounds in the Finite game.

Second, despite the aforementioned general accuracy, beliefs also display small
but systematic deviations. Round beliefs are too optimistic towards the end of the
Finite game and too pessimistic at the beginning of the Indefinite game. While,
as mentioned above, supergame beliefs correctly capture the prevalent strategies
in both environments, such beliefs are not necessarily perfectly calibrated to the
actual frequency of strategies in the population. In the Finite game, this plays a
key role in preventing complete unravelling of cooperation. In the Indefinite game,
as particularly visible in our additional treatments where the stage game payoffs are
less conducive to cooperation, this provides an explanation for why payoffs are inside
the efficiency frontier.

1This is consistent with the finding of Nyarko and Schotter [2002] who report that beliefs are
not the average of past observations, or more precisely the γ-weighted empirical average [Cheung
and Friedman, 1997].

2



Third, beliefs are remarkably heterogeneous across subjects. This heterogeneity
is directly visible in the distribution of round one beliefs, but is also present in
the supergame beliefs. Specifically, the supergame beliefs vary substantially across
types, and this variation helps rationalize their strategy choice: for most types, their
strategy is a best response (or close to a best response) to their supergame beliefs
among the strategies in our consideration set.

How do these findings inform our understanding of behavior in these games? In
the Finite game, we observe high cooperation and partial unravelling, behavior not
predicted by theory. Much of this can be explained by beliefs that are just slightly
over-optimistic about how much others will cooperate in the last few rounds of the
game. In a game such as the one studied here (and in many similar games that have
been studied before), even a little over-optimism can substantially weaken incentives
to defect earlier, hindering unravelling of cooperation. Our estimates suggest that,
for 80% of subjects, best responding to their beliefs translates into cooperating too
much relative to the best response against the actual strategy distribution. In the
Indefinite game, on the other hand, we observe that a variety of strategies persist
in the long run. Our results connect heterogeneity in strategies to heterogeneity in
beliefs, which in turn rationalize such strategies. To organize these observations,
we provide a stylized model that borrows elements from the level-k models [Stahl
and Wilson, 1994, Nagel, 1995, Stahl and Wilson, 1995, Camerer et al., 2004, Costa-
Gomes et al., 2001] as well as the gang of four model [Kreps et al., 1982]. Our
model illustrates how the key systematic deviations—over-optimism in later rounds
of the Finite game and over-pessimism in initial rounds of the Indefinite game—can
result from a common mistake where players believe others to be less strategically
sophisticated than themselves.

The present paper contributes to a few strands of the literature. First, it con-
tributes to the literature that studies consistency of beliefs and strategies. To the
extent that this consistency has been studied experimentally, the focus has been
on one-shot games, on which there are mixed results. For example, Nyarko and
Schotter [2002] find that subjects, for the most part, best respond to their beliefs.
Other papers, most notably Costa-Gomes and Weizsäcker [2008], focusing on dif-
ferent stage games, do not find such behavior to be as prevalent. Rey-Biel [2009],
who reports a high fraction of best-response behavior, suggests that a general con-
clusion on consistency is difficult as it may depend on various features of the game.
His results, however, indicate that best-response behavior may be higher in simple
games. Review of the broader literature in Online Appendix A suggests an interest-
ing pattern: Lower rates of best response are reported when the game is not played
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multiple times or played with no feedback [Costa-Gomes and Weizsäcker, 2008, Hyn-
dman et al., 2022, Danz et al., 2012, Rey-Biel, 2009]. Conversely, Hyndman et al.
[2012a] show best response behavior to increase with experience in an experiment
with feedback. Our contribution to this literature is to study consistency of beliefs
and actions in the finitely and indefinitely repeated PD, which, as discussed earlier,
poses unique challenges.2 Despite these challenges, consistent with earlier results
from experiments with repetition and feedback, we find behavior to be close to best
response for a majority of our subjects.

Our results also speak to the rapidly growing literature on experiments with belief
elicitation. Most of the papers in that literature examine beliefs in individual deci-
sion making settings (see Danz et al. [2020] for a recent review), and those that study
beliefs in games mostly use one-shot games.3 Most closely related to the present pa-
per are the experiments that elicit beliefs in the voluntary contribution mechanisms
(VCM), which are social dilemmas [Gächter and Renner, 2010, Neugebauer et al.,
2009, Fischbacher and Gächter, 2010]. Although some of the studies on the subject
involve designs with fixed pairing and feedback as in the present experiment, to the
extent that prior experiments on beliefs have induced repeated games in the labo-
ratory, they do so assuming that incentives in static interactions remain unchanged
in repeated play. As such, these papers do not consider supergame strategies based
on dynamic incentives, or the possibility of learning over multiple supergames. We
contribute to this literature by studying beliefs in repeated games while highlighting
clearly important dynamic incentives.

We contribute to the experimental as well as theoretical literature on repeated
games in a few different ways. First, in a closely related paper, Gill and Rosokha
[2020] study indefinitely repeated (but not finitely repeated) PD games. Their sub-
jects directly choose one alternative from a list of ten supergame strategies. By
eliciting subjects’ (supergame) beliefs over how the other player chooses from the
same list in the first and last supergames, Gill and Rosokha [2020] study how su-
pergame beliefs change with experience and personality traits. Their results show
that beliefs respond to experience and are more accurate in the last supergame than
in the first. Duffy et al. [2021] find that their subjects fail to best respond against
robot players, which are known to follow the Grim trigger strategy in indefinitely
repeated PD games. Beside studying behavior in two distinct types of repeated inter-

2The large number of histories can make learning difficult in repeated games. For example, in
their final supergame, at least one third of subjects experience a history that is new to them.

3One exception is Davis et al. [2016] who elicit a crude measure of beliefs by asking subjects to
guess the action of their opponent in an indefinitely repeated PD. Data (analyzed in their appendix)
show a correlation between guesses and actions.
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actions, our point of departure from those papers is to study repeated games without
restrictions on behavior. Finally, also note that in Kreps et al. [1982], cooperation
in the finitely repeated PD games is supported by the presence of an irrational type.
Our finding that many subject types cooperate in the Finite game while attaching
positive belief weight to conditionally cooperative strategies lends empirical support
to the formulation of Kreps et al. [1982].

2 Strategies and Beliefs

The stage game is the standard prisoners’ dilemma with two actions, C (cooperation)
and D (defection). Let Ai = {C,D} be the set of (stage) actions, and let A = A1×A2

be the set of action profiles with a generic element a. The stage-game payoffs gi(a)
are given in Table 1. The horizon of the supergame (repeated game) is either finite
or infinite. For t = 1, 2, . . ., history ht of length t is a sequence of action profiles in
rounds 1, . . . , t. Let H t = At be the set of t-length histories. A player’s (behavioral)
strategy σi = (σ1

i , σ
2
i , . . .) is a mapping from the set of all possible histories to actions.

σ1
i (ai) ∈ [0, 1] denotes the probability of action ai in round 1, and for t ≥ 2 and history

ht−1, σt
i(h

t−1)(ai) ∈ [0, 1] denotes the probability of action ai in round t given history
ht−1. Let Σi denote the set of strategies of player i. In the supergame with finite
horizon T < ∞, player i’s payoff under the strategy profile is the simple average of
stage payoffs:

ui(σ) = T−1

T∑
t=1

Eσ

[
gi(a

t)
]
,

where Eσ is the expectation with respect to the probability distribution of hT =
(a1, . . . , aT ) induced by σ. In the supergame with infinite horizon, the players have
the common discount factor δ < 1, and their payoff is the average discounted sum of
stage-game payoffs:

ui(σ) = (1− δ)
∞∑
t=1

δt−1Eσ

[
gi(a

t)
]
.

We postulate that each subject i is endowed with a supergame strategy σi ∈ Σi

and a subjective belief about the supergame strategy played by the other player.4

Specifically, we suppose player i believes j’s strategy is randomly chosen from some

4This formulation follows Kalai and Lehrer [1993]. See also Nachbar [2005] for a similar frame-
work to model a player’s ability to best respond to his belief that is asymptotically correct.

5



finite subset Zj of Σj according to a probability distribution p̃i, which is referred to
as player i’s (prior) supergame belief.5 One interpretation of p̃i is that it represents i’s
prior belief over the proportion of different strategies played by the other subjects.6

Note p̃i can be updated after each round of play conditional on realized history
of play. For each t ≥ 2 and ht−1 ∈ H t−1, we denote by p̃ti = p̃i(· | ht−1) player i’s
updated supergame belief about j’s strategy in round t given ht−1. Associated with
this is player i’s round t belief µt

i(h
t−1), which describes his belief about j’s stage

action in round t. More specifically, µt
i(h

t−1) is the probability that i assigns to j’s
choice of action C given ht−1, and is related to p̃ti through

µt
i(h

t−1) =
∑
σj∈Zj

p̃ti(σj)σ
t−1
j (ht−1)(C).

The belief-elicitation task in this experiment involves beliefs over stage actions. That
is, the design elicits from each subject i, in each round t (conditional on history of
play), his belief µt

i ≡ µt
i(h

t−1). For simplicity, we often refer to µt
i as a “belief.” In

section 5, we recover the subjects’ supergame beliefs p̃i from the sequence of their
elicited beliefs µ1

i , µ
2
i , . . ..

Player i’s type refers to his supergame strategy σi. In our estimation of supergame
beliefs, we assume player i is Bayesian in the sense that his supergame belief p̃i(· |
ht−1) is updated according to Bayes rule after each history: for any t ≥ 1 and
ht = (ht−1, at),

p̃ti(σj) =
p̃t−1
i (σj)σ

t−1
j (ht−1)(atj)∑

σ̃j∈Zj
p̃t−1
i (σ̃j) σ̃

t−1
j (ht−1)(atj)

,

where beliefs in the first round are p̃1i = p̃i. Player i is subjectively rational if his
supergame strategy σi best responds to his supergame belief p̃i:

σi ∈ argmax
σ̃i∈Zi

∑
σj∈Zj

p̃i(σj)ui(σ̃i, σj).

Some of the key supergame strategies in our analysis are as follows. AC and AD
are the strategies that choose C and D, respectively, for every history. σi is Grim if
σt
i(h

t−1)(C) = 1 if ht−1 = ((C,C), . . . , (C,C)) and σt
i(h

t−1)(C) = 0 otherwise. σi is
TFT if σ1

i (C) = 1 and σt
i(h

t−1)(at−1
j ) = 1 for every ht−1 and t ≥ 2. For k = 1, 2, . . . ,

σi is Tk, a threshold strategy with threshold k, if σi follows Grim for all t < k, and
then switches to AD after round k.

5We use p̃ instead of p to denote beliefs. In later sections, we use p to denote the actual
distribution of strategies in the population.

6With random matching, i’s belief about the strategy played by his opponent in each supergame
is equal to his belief about the proportion of strategies in the population.
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3 Design

The experiment involves two main (between-subjects) treatments, which we refer
to as the Finite and Indefinite games. Three important considerations (besides the
aforementioned aim for simplicity) guides our experimental design.

1. Comparing the Finite and Indefinite games and selecting parameters such that
initial cooperation rates are high in both. Papers such as Dal Bó [2005] shows that
for many parameter combinations, in line with theory, initial cooperation is lower in
Finite games than in Indefinite games. However, as reported in Embrey et al. [2018],
there are also parameter combinations for which high cooperation is observed in the
Finite game (see also Lugovskyy et al. [2020]). This is not in line with theory and
more surprising. For that reason, using past experiments as guidance, we selected
parameters that were expected to generate high round one cooperation for both
Finite and Indefinite games. This allows us to study whether cooperation is driven by
similar considerations across these two games. Furthermore, robustness treatments
introduced in Section 7 allow for further study of the impact of changing parameters
within a game type.

2. Introducing belief elicitation while mitigating its impact on the subject’s play.
One very important concern is that asking for beliefs from the onset of the exper-
iment may alter how subjects approach the strategic interaction. To minimize this
possibility, we separate the experiment into two parts. First, subjects are presented
with “standard” repeated PD experimental instructions that do not mention beliefs.
Second, after four supergames, the experiment is paused, and instructions explain-
ing the belief-elicitation procedures are given. This two-part approach draws on Dal
Bó and Fréchette [2019] and Romero and Rosokha [2023], who do this for strategy
elicitation.7 Although this means not having beliefs in the first supergames, in our
opinion, introducing belief elicitation without impacting play is a key concern and
warrants such caution. Importantly, our method of delaying belief elicitation to later
supergames does seem to be successful in not impacting behavior (see Section 4.1).

3. Allowing subjects to gain ample experience. Prior research, both with finitely and
indefinitely repeated PD games, show the importance of experience [Embrey et al.,

7 Dal Bó and Fréchette [2019] find that choices in their experiments with strategy elicitation (in-
troduced after a period of play of the repeated PD) are similar to those without strategy elicitation.
Romero and Rosokha [2023] also find that choices are unaffected with such a design. Experiments
that immediately introduce strategy elicitation have reported different results. See for instance
the 2016 working paper version of Romero and Rosokha [2018]. In that early implementation of
strategy elicitation where the elicitation started from the beginning, they report lower cooperation
rates when doing elicitation as compared to direct choice.
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Table 1: Stage Game

In ECU Normalized

C D C D
C 51, 51 22, 63 C 1, 1 −1.416, 2
D 63, 22 39, 39 D 2, −1.416 0, 0

2018, Dal Bó and Fréchette, 2018], in that behavior evolves in important ways and
subjects need time to understand dynamic incentives. This is why the focus of this
paper is on experienced behavior (beliefs and actions) as observed towards the end
of the sessions. This desire to have subjects play as many supergames as possible is
one of the factors that increase the need for simplicity.

We now turn to the specifics of the experimental design. The left panel of Table
1 shows the stage game used in the experiment (in experimental currency units),
whereas the right panel shows its normalized version.8 Instructions use neutral lan-
guage. In the paper, we use supergame to refer to each repeated game played between
two matched players, and round to refer to each play of the stage game. In the Fi-
nite game, each supergame ends after eight rounds, T = 8. In the Indefinite game,
there is a 7

8
probability after each round that the supergame will continue for an

additional round, inducing an expected supergame length of eight rounds [Roth and
Murnighan, 1978]. To ensure the observation of at least eight rounds of play, the
indefinite treatment uses the block random design that lets subjects play for eight
rounds for sure, and then informs them of if and when the supergame actually ended;
if it has not ended, they subsequently make choices one round at a time.9

At the conclusion of each supergame, subjects are randomly re-matched to play
a new supergame. After four supergames are played, subjects are given new instruc-
tions on the belief-elicitation task. This is the first time beliefs are mentioned to the
subjects. From that point onward, each subject i is asked in every round t to state
their round t belief µt

i as an integer between 0 and 100. The task is incentivized
via the binarized scoring rule, which determines the likelihood that a subject wins
50 experimental currency units based on their response in this task and the realized

8The normalization facilitates comparison with prior studies. With normalization, we set the
mutual cooperation payoff equal to 1 and the mutual defection payoff equal to 0. The normalized
temptation payoff is hence 2 = (63 − 39)/(51 − 39) and the normalized sucker payoff is −1.41 =
(22− 39)/(51− 39).

9This method was first introduced in Fréchette and Yuksel [2017]. As in Vespa and Wilson
[2019], we only use the method for the first block.
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action choice of the matched subject.10 The belief question is presented on a sepa-
rate screen after subjects have made their action decision for that round and before
feedback is provided. We opted for this ordering to minimize the risk that the belief
questions influence the way subjects play these games. This process continues until
the first supergame to terminate after at least one hour of play has elapsed.

Although prior research on indefinite PDs has not found that risk aversion is
an important determinant of choices [Dal Bó and Fréchette, 2018], risk preferences
could, in principle, mediate the relation between beliefs and choices. For this rea-
son, we also elicited subjects’ risk preferences at the end of each session using the
bomb task [Crosetto and Filippin, 2013]. Instructions for this task were distributed
after the completion of the last supergame. For the main treatments, we conducted
eight sessions per treatment. The relatively large number of sessions per treatment
is required for the estimation of beliefs over strategies as presented in Section 5.
The supergames for the part with belief elicitation are separated into early and late
(see Table 5 in Online Appendix B for more information). We use this categoriza-
tion in the presentation of results, with most of the data analysis focusing on late
supergames. We randomly chose one supergame without belief elicitation and one su-
pergame with elicitation for payment, and paid subjects for the outcomes of all game
rounds for those two supergames. We also paid subjects for the belief-elicitation task
in one randomly selected round of one randomly selected supergame.11

4 Results

4.1 Actions

For any supergame, denote by xt
i the indicator of subject i’s choice of C in round

t, and by x̄t, the round t cooperation rate averaged over subjects. As will be clear

10Incentive compatibility of the binarized scoring rule is independent of a subject’s risk attitude
(Allen [1987], McKelvey and Page [1990], Schlag and van der Weele [2013], and Hossain and Okui
[2013]). We use the implementation outlined in Wilson and Vespa [2018].

11To address hedging concerns, we chose the supergame for the belief-elicitation task from the
supergames not used for the action task. In addition, as is typical in experiments eliciting beliefs,
the rewards for the beliefs (either 0 and 50) are smaller than those for choices (between 176 and
505 for an eight round supergame). ECUs were translated into dollars at an exchange rate of 3
cents per point. Maximal ECU earnings from the bomb task were 99. All subjects also received a
show-up fee of $8. Earnings from the experiment varied from $22.00 to $63.75 (with an average of
$35.30). All instructions (available in Online Appendix F) were read aloud. The computer interface
was implemented using zTree [Fischbacher, 2007] and subjects were recruited from UCSB students
using the ORSEE software [Greiner, 2015].
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Figure 1: Cooperation Rate over Supergames

from the context, the analysis in what follows sometimes aggregates x̄t over multiple
supergames.

Figure 1 shows cooperation rates by supergame. Starting with the Finite game
(the left panel), we observe relatively high initial (round one) cooperation rates
slightly above 80%. Focusing on rounds > 2, and dividing the sample into two cases,
xt
i following the other player’s cooperation at−1

j = C and those following other’s

defection at−1
j = D, we observe high cooperation rates following cooperation and low

cooperation rates following defection. We also observe that the difference between
those two averages, referred to as responsiveness, increases with experience. The
cooperation rate in round eight is decreasing with experience and is low by the end
(below 20%).

The right panel of Figure 1 presents the same statistics for the Indefinite game.
In this case, and as with the Finite game, round-one cooperation rates are high (start
slightly below 80% and increase to slightly above 80%). Cooperation rates following
cooperation by the other are high, whereas cooperation rates following defection are
low. Again, responsiveness increases with experience. However, in contrast to the
Finite game, cooperation rates in round eight are high and increasing with experience.
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In Online Appendix B, we provide further analysis and confirm that behavior
along key dimensions in our experiment is qualitatively consistent with prior find-
ings on these two games without belief elicitation. In summary, consistent with prior
experiments with comparable parameters, the design successfully generates similar
and high levels of round-one cooperation in both games. Also in line with prior find-
ings, subjects display responsiveness that increases with experience. Furthermore,
cooperation collapses at the end of the Finite game but persists in the Indefinite
game. Finally, it is worth noting that when regressing round one cooperation on
potentially relevant regressors, a dummy variable that takes value one when beliefs
are elicited and zero otherwise is not statistically significant (see Table 6).

Result 1 We reproduce qualitative data patterns observed in previous experiments
on Finite and Indefinite PD games, and find no indication of actions being impacted
by belief-elicitation. In particular, our results confirm cooperation is history depen-
dent in both games. Furthermore, cooperation evolves differently in both games: it
collapses at the end only in the Finite game.

4.2 Consistency of Actions and Beliefs

Let µ̄t =
∑n

i=1 µt
i denote the average of round t beliefs, which is aggregated over

multiple supergames and/or over particular histories in what follows.
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Figure 2: Choices and Beliefs by Round
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Putting beliefs and actions together reveals beliefs–on average–to be remarkably
accurate, often tracking cooperation rates within a range of a few percentage points.
Figure 2 shows for late supergames that the point estimate for average belief µ̄t

is close to that for the average cooperation rate x̄t in each round t and that their
confidence intervals display substantial overlap. When aggregated over all first eight
rounds, the differences between action frequencies and beliefs are small, at less than
one percentage point for Finite and two percentage points for the Indefinite game.
This difference is not statistically different from 0 for the Finite game, but it is for
the Indefinite game (although small in magnitude).12,13

However, looking at each round separately, in both games we see a statistical
difference between action frequencies and beliefs for rounds one through three. The
difference is about four percentage points for each of the three rounds of the Finite
game, whereas it is 11, 5.8, and 2.0 percentage points for the same rounds of the
Indefinite game. In rounds seven and eight, we also see statistically significant dif-
ferences between action frequencies and average beliefs for the Finite game. The
difference is 9.5 and 3.1 percentage points for rounds seven and eight, respectively.
In other rounds (rounds 4-6 of the Finite game and rounds 4-8 of the Indefinite
game), beliefs and cooperation rates are not statistically different at the 10% level.
In summary, to the extent that action frequencies and beliefs differ, the deviations
are most prominent for late rounds in the Finite game and for early rounds in the
Indefinite game.

So far in Figure 2, we considered only unconditional beliefs, but what about
the subjects’ ability to anticipate actions following specific histories? To consider
histories with a sufficient number of observations, we examine this for round two.
Figures 3 and 4 present the relevant data conditional on round-one histories (labeled
with one’s own action first followed by the opponent’s action). In both games, we
observe that beliefs quickly adjust in response to the other’s action. In all cases,
beliefs move in the correct direction from round one to round two. Furthermore,
subjects are capable of very large adjustments in beliefs, sometimes of more than 50

12We perform the test on the difference between the opponent’s action (coded as 1 for cooperate
and 0 for defect) and the reported belief. Results are robust to including all observation rounds or
only the first eight rounds.

13Throughout, when statistically significant is used without a qualifier, it refers to the 10% level.
Here and elsewhere, unless noted otherwise, statistical tests involve subject-level random effects and
session-level clustering (see Fréchette [2012] and Online Appendix A.4. of Embrey et al. [2018] for
a discussion of issues related to hypothesis testing for experimental data). In the case of beliefs, as
here, we use a tobit specification allowing for truncation. For tests of cooperation, we use a probit
specification.
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Figure 3: Beliefs Conditional on Round One Action Pair, Finite Games
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13



percentage points. Note that this provides clear evidence of subjects updating their
beliefs about the future cooperativeness of their counterpart following a history in
which defection is observed. It is also interesting that such beliefs become equally
pessimistic regardless of which player has defected. Comparing the two figures, we
see action frequencies and beliefs evolve in a similar fashion in all panels except for
the top-left panel, which shows clear differences across the two treatments. In the
Finite game, most of the initially cooperative interactions eventually break down,
and this breakdown is mirrored by beliefs. In the Indefinite game, on the other
hand, beliefs about cooperation are sustained if they survive the first round.

Our focus, so far, has been the accuracy of beliefs on average. We study the accu-
racy of beliefs at the individual level in Online Appendix B. Table 8 in this appendix
reports the accuracy of beliefs at several different precision levels. For rounds one
and two (separated by round one history), the table reports the share of subjects (i)
who correctly identify cooperation as a likely, unlikely, or uncertain event (classifica-
tion is based on whether both beliefs and average cooperation rate are higher than
66 percent, lower than 33 percent, or between 33 and 66 percent respectively); (ii)
whose beliefs are within five or ten percentage points of the average cooperation rate.
The majority of subjects have broadly accurate beliefs, namely their beliefs lie in the
same tercile (likely/unlikely/uncertain) as the observed cooperation rate. Nonethe-
less, only a minority of subjects hold beliefs that are within 10 or 5 percentage points
of the actual frequency: 14 and 7 percent (10 and 7 percent) respectively for round
one in the Finite (Indefinite) game. The accuracy of beliefs increases substantially
in round two, particularly after the most commonly observed histories.

As Figures 3 and 4 above show, supergames starting with joint cooperation are
the most common. How do beliefs evolve on a mutual cooperation path? Figure
5 shows the average cooperation rates x̄t and average beliefs µ̄t along the history
ht−1 = ((C,C), . . . , (C,C)). For example, a solid circle at round five indicates the
empirical cooperation rate after four rounds of joint cooperation (close to 100% in
both games). The most striking observation is the sharp decline in beliefs toward
the end in the Finite game. That is, subjects (correctly) anticipate the increasing
likelihood of defection from their opponent despite the fact that all choices up to
that point were cooperative for both players.14 Nonetheless, we see clear evidence
that subjects underestimate the degree to which cooperation drops from round 6 to
7: whereas beliefs are well calibrated in round 6 (within 1 percentage point of the
empirical frequency), they show over-optimism (13 percentage points higher than the

14The decline in beliefs is not driven by selection: conditioning on subjects who remain on a
cooperative path until the eighth round, beliefs decline from 89% in round 2 to 49% in round 8.
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empirical frequency) in round 7, and become better calibrated in round 8 (within
4 percentage points). In summary, these findings suggest that although subjects
anticipate the decline in cooperation, they underestimate the magnitude and foresee
only 60% of the actual drop in cooperation. In the Indefinite game, on the other
hand, beliefs and cooperation rates remain high as the supergame unfolds. We also
note that these patterns are already visible in early supergames (see Figure 18 in
Online Appendix B).

These observations suggest that the evolution of beliefs in the Finite game cannot
simply be explained by heuristic models based on past actions (within a supergame).
For example, if a subject always set his belief equal to his opponent’s action in
the previous round, he would report beliefs for round 7 (in the Finite game) that
are almost three times more over-optimistic than the ones we observe in the data.
Clearly, beliefs in the Finite game change on a cooperative path with the length of
the interaction, and hence are non-stationary.

Result 2 (1) Beliefs are accurate, on average, but show some systematic and per-
sistent deviations: they are over-optimistic in later rounds of the Finite game and
over-pessimistic in earlier rounds of the Indefinite game. (2) Beliefs respond to the
history of play. (3) However, differences exist across games even along the same his-
tory. In particular, subjects correctly anticipate cooperation will break down despite
a history of joint cooperation in the Finite game.
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We now turn to the question of whether different actions are supported by differ-
ent beliefs. We summarize key results here and refer the reader to Online Appendix
B for detailed analysis. First, we study the degree to which round-one beliefs are
predictive of round-one actions. Overall, subjects with optimistic beliefs are more
likely to cooperate in both treatments, but round-one beliefs are more predictive
of round-one actions in the Indefinite game than in the Finite game.15 Second, we
study how the distribution of beliefs differs across these games in later rounds con-
ditional on the subject’s action in that round. Once again, higher cooperation rates
are associated with more optimistic beliefs in both games, but cooperation and defec-
tion in certain rounds are associated with different beliefs for Finite versus Indefinite
games. In round eight, particularly, beliefs of the subjects who cooperate are statis-
tically different across treatments (p < 0.001), as are those of the subjects who defect
(p = 0.065). Specifically, subjects who defect in round eight of the Finite game are
more pessimistic (on average) than those who do so in the Indefinite game. Further-
more, subjects who cooperate are more optimistic in the Indefinite game than those
in the Finite game. In fact, even at the very beginning of the supergames, subjects
who defect in the Indefinite game are more pessimistic about the probability that
their opponent will cooperate than subjects in the Finite game (p < 0.001).16

Result 3 Beliefs correlate to actions, and more optimistic subjects are more likely
to cooperate. The same-round belief can generate different actions in each game.

5 Beliefs over Supergame Strategies

The preceding section finds a link between actions and beliefs, but to study whether
subjects’ behavior is a best response to their beliefs we need to move beyond beliefs
over actions and instead consider beliefs over strategies. The goal of this section is to
develop an estimation method that takes as an input beliefs over actions (the data

15The analysis of Online Appendix B includes kernel density estimates of the distribution of
round-one beliefs µ1

i separated by treatment and by the subject’s own action a1i in round-one
(Figure 19) and regression analysis (Table 9) of the determinants of cooperation. These results also
suggest that risk preferences have some limited predictive power for round-one choice in the Finite
game (with the likelihood of cooperation decreasing with risk aversion). In randomly terminated
PDs, Proto et al. [2019] does not find a significant effect of risk preference on the first choice of a
session, but Proto et al. [2022] does.

16These patterns are clearly visible in Figure 20 (Online Appendix B), which plots the CDF of
beliefs by action and treatment for each round. Table 10 in the same Appendix depicts the marginal
impact of beliefs (and round number) on the likelihood of cooperation.
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collected in the experiment) and translates this to beliefs over supergame strategies
as an output. We then use this method to study how the strategy choice relates to
beliefs. We do not make the claim that subjects reason in terms of strategies per se,
but that we can potentially represent their behavior as such.

Our estimation strategy consists of two stages:

(A) Classify subjects into types based on the actions they take.

(B) Estimate beliefs over supergame strategies separately for each type.

It is important to highlight that the two stages use different data: typing is based on
actions only and estimation of supergame strategies relies in beliefs (conditioning on
history). Thus, the estimation method does not impose any structure between typing
and estimation of beliefs over supergame strategies, allowing us to meaningfully study
variation in beliefs over supergame strategies by type. Since our primary interest
in this section is studying whether subjects’ behavior can be rationalized as a best
response to their beliefs, in stage (A) we will type subjects based on the strategy they
are most likely to be playing. However, the belief estimation method described in
(B), which is the main innovation of this section, can easily be paired with alternative
typing procedures.

Here, we outline the intuition for the approach developed in (B) using a simplified
example. Suppose we want to recover beliefs over strategies for one player (referred
to as player 1) when the data available to us are round beliefs over actions elicited in
one supergame (against player 2). For the purpose of the example, assume we know
player 1 believes that player 2 uses one of only three strategies: AD, AC, or Grim. In
round one, we observe player 1’s unconditional belief that his opponent will start by
cooperating: µ1

1 = 0.6. From this belief, we can already infer the probability player
1 associates with player 2 playing AD, because it starts by defection. That is, we
can infer p̃(AD) = 0.4 and p̃(AC) + p̃(Grim) = 0.6. However, we cannot determine
p̃(AC) or p̃(Grim) separately. To do so, we look at beliefs elicited in other rounds
of the supergame. Assume that in round one, player 1 plays D and player 2 plays
C. After observing this history, player 1 reports his round-two belief: µ2

1 = 0.1.
Because player 2 started by playing C, player 1 now knows she is not playing AD.
However, player 1’s belief about whether player 2 will cooperate in round two can
reveal information about whether he believes player 2’s strategy is more likely to
be AC or Grim. Note that after such a history of (D,C), the two strategies indeed
prescribe different actions: D for Grim and C for AC. Given µ2

1, we can recover (via
Bayes’ rule) that p̃(AC) = 0.06 and p̃(Grim) = 0.54. This method provides us with
a roadmap for how we can recover ex-ante beliefs over strategies using data on beliefs
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over stage actions elicited in each round of a supergame. In addition, we allow for
players to believe others implement their strategies with error and that subjects may
report their belief with some error.

The example above lays out the intuition behind our methodology as well as
highlighting some of the challenges it presents. We outline below how we address
these challenges.

(1) Belief estimation in the example above relies on the assumption that the relevant
strategies (over which subjects have beliefs) are known.17 How do we specify
the relevant set of strategies for our data set? By now, a significant body of
literature documents which strategies are used in repeated PD games. This
literature guides how we construct the consideration set.

(2) The example was constructed such that the data can easily separate the strate-
gies considered; but in some cases, this can require specific histories that are
not common and thus call for more data. To increase sample size, we pool data
from multiple subjects. However, assuming all subjects share the same beliefs
seems unreasonable. Instead, we group subjects according to the strategy that
best describes how they play, referred to as their type. We assume subjects of
the same type share the same beliefs.18

Below we describe the estimation strategy in detail before presenting results.

5.1 Typing of Subjects

We type subjects based on the strategy they are most likely to be playing. We do this
in two steps: (1) We estimate the distribution of strategies used at the population

17Note that this is not a challenge unique to our study but one encountered by any study that
presents analysis involving strategies or beliefs over strategies in repeated games. In the literature
studying strategies in repeated games, such an assumption is introduced either at the design stage,
for studies eliciting strategies directly, by restricting the set of strategies available to subjects
(essentially reducing the repeated game to a simultaneous move game), or a similar assumption is
made at the estimation stage by focusing the analysis on a set of strategies. One advantage of the
later approach, as adopted in this paper, is that the data can always be reanalyzed under different
assumptions on the set of strategies considered.

18To validate this assumption, we do the following exercise. We compute the spread of beliefs
defined as the difference between the 25th and 75th percentiles of beliefs averaged over rounds and
histories. We test whether the spread of beliefs is less among subjects that are of the same type
relative to all others in the population. Out of the 10 types (to be defined later) observed in the
Finite game and the eight types in the Indefinite game; only three of the 18 paired comparisons are
not in line with the assumption that the spread in beliefs is less among subjects of the same type.
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level; (2) For each subject, given their choices, we compute the posterior likelihood
of playing each strategy using population-level estimates as a prior. We classify
subjects into strategy types by identifying the highest posterior. See Section 7 for a
discussion of alternative approaches.

Population-Level Estimates of Strategies

We first use the Strategy Frequency Estimation Method (SFEM) introduced in Dal
Bó and Fréchette [2011] to estimate the distribution of strategies used. The method
first specifies the set of candidate strategies and then estimates their frequencies in a
finite-mixture model allowing for the possibility of implementation errors. We use a
two-step procedure to determine the set of strategies in our analysis. This set consists
of AD, AC, Grim, TFT, STFT, Grim2, and TF2T, as well as threshold strategies
T8, T7, and T6.19 Online Appendix B describes the two-step procedure and defines
all strategies considered in our analysis. Formally, the SFEM results provide two
outputs p and β, both at the population level: p is a probability distribution over
the set of strategies, and β is the probability that the choice corresponds to what
the strategy prescribes. The method identifies the values of p and β that maximize
the likelihood of the observed sequences of actions.

Classification of Subjects

We use the SFEM results to compute the Bayesian posterior that a subject is playing
each of the candidate supergame strategies given the sequence of their actions. Each
subject is associated with the supergame strategy that has the highest likelihood
according to this posterior.20

To demonstrate how this works, consider a simpler setup where the set Z of
candidate strategies consists only of AD and AC. Assume the SFEM yields p =
(pAD, pAC) = (0.7, 0.3) and β = 0.9. The corresponding behavioral strategies (that

allow for implementation errors) are then given by ÂD and ÂC.

Consider a subject who, over multiple supergames consisting of 24 rounds in
total, cooperates in 20 rounds and defects in four rounds. Given p and β, we can
calculate the Bayesian posterior that this subject is playing ÂD versus ÂC. In fact,

19We refer to Grim, TFT, Grim2, and TF2T as conditionaly cooperative strategies: they begin
with cooperation and switch to defection only after some histories involving defection.

20This approach allows for comparison to the many previous papers that do strategy estimation
using SFEM. For instance, Dvorak [2020] recently provides a R-package for easy implementation of
SFEM using the EM algorithm, which includes a very similar typing procedure.

19



the posterior that the subject is playing ÂD is
pÂDβ4(1−β)20

pÂDβ4(1−β)20+pÂCβ20(1−β)4
, which is

close to 0, whereas the posterior that he is playing ÂC is close to 1. Consequently,
this subject would be typed as playing AC.

5.2 Estimating Supergame Beliefs

For each type in our data, we estimate their supergame beliefs over strategies p̃, as
well as parameters β̃ and ν.21 Specifically, p̃ is a probability distribution over the
set Z̃ β̃, which has one-to-one correspondence with the set Z of candidate strategies
used in the SFEM as follows: for each σj ∈ Z, σ̃j ∈ Z̃ β̃ is a stochastic version of σj

in the sense that at each history, σ̃j chooses the same action as σj with probability
β̃, but chooses the other action by error with probability 1− β̃.

Note that p̃ and β̃ jointly pin down beliefs over stage actions given each history.
For illustration, suppose again that the set Z of candidate strategies consists only
of AD and AC so that Z̃ β̃ consists of their randomized versions ÃD and ÃC for
β̃ = 0.9. It then follows that the round-one belief µ1

i equals p̃ÃD × 0.1 + p̃ÃC × 0.9.
If the subject observes a1j = C in the first round, by Bayes’ rule, his belief in round
two will increase to(

p̃ÃD × 0.1

p̃ÃD × 0.1 + p̃ÃC × 0.9

)
0.1 +

(
p̃ÃC × 0.9

p̃ÃD × 0.1 + p̃ÃC × 0.9

)
0.9.

The third parameter ν represents potential errors in the reporting of beliefs. For-
mally, if a subject’s belief in any round t (implied by p̃ and β̃) is µt

i, we assume his
reported belief is distributed according to the logistic distribution with mean µt

i and
variance ν truncated to the unit interval. For each type, we identify the values of p̃,
β̃, and ν that maximize the likelihood of the sequence of elicited beliefs in all rounds
of late supergames.

5.3 Results

Population-level Estimates of Strategies and Classification of Subjects

Table 12 in Online Appendix C presents the estimation results of the distribution
of strategies at the population-level (in columns 2 and 5) sorted by prevalence. The

21The variables with tilde are estimates about beliefs and distinguished from the corresponding
SFEM estimates of strategies.
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results are consistent with prior evidence on strategy choice in repeated PD: Thresh-
old strategies are important in the Finite game [Embrey et al., 2018], and AD, Grim,
and TFT account for a majority of the strategies in the Indefinite game [Dal Bó and
Fréchette, 2018].22

In the Finite game, T7 and T8 account for a little over half of the strategies, and
they, along with AD, make up two thirds of the choices. Another threshold strategy,
T6, is also in the top 5 at 8%. Additionally, TFT and Grim are commonly used
strategies (at the 4th and 6th positions).

In the Indefinite game, conditionally cooperative strategies dominate, with TFT
and Grim representing more than half of the choices. The lenient versions of Grim
and TFT are also among the popular strategies, accounting together for 21% of the
choices. Together these four account for more than two thirds of the strategies. Other
prominent strategies are AC and AD, two unconditional strategies, representing 20%
of the choices. All other strategies are at most 4% each, and the threshold strate-
gies are almost completely irrelevant. Together, conditionally cooperative strategies
account for 75% of the data (by contrast, these strategies represent only 21% of the
data in the Finite game).

Table 12 also reports in the third and sixth columns the complete results of the
typing exercise. The type shares are largely similar to the population estimates from
SFEM. However, we also observe some differences. In particular, in the Indefinite
game, the fraction of subjects typed as TFT is greater than the fraction of TFT in
the population.23 Clearly, the smaller the fraction of subjects of a given type, the
less reliable their belief estimates will be.

Result 4 We reproduce results about strategy choices observed in previous finitely
and indefinitely repeated PD games. In particular, our results confirm strategic
heterogeneity exists within and across treatments. In the Finite game, subjects
mostly use threshold strategies, whereas in the Indefinite game, they mostly rely on
conditionally cooperative strategies.

22Online Appendix C also reports SFEM results for early supergames (the changes are presented
in Figure 27). Consistent with Embrey et al. [2018] those results show that threshold strategies
increase with experience in the Finite game.

23Two potential sources for such differences are possible. First, and simply mechanically, some
subjects play more supergames than others; the fraction of subjects corresponding to a type can
differ from the population (over supergames) fraction of that strategy. Second, imagine a data set
where a large fraction of subjects is estimated to play TFT, and a smaller fraction is estimated to
play Grim. However, there are subjects whose actions are equally consistent with Grim and TFT.
Our method would type those subjects according to the prior. See Section 7.1 for more on this.
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Estimates of Beliefs over Strategies

A summary of these estimation results are reported in Tables 2 and 3, with the
complete results provided in Online Appendix C. Note that some types are not
observed frequently enough to allow for estimation, which is the case whenever only
1% of subjects are of a certain type. In addition, there is sometimes insufficient
variation to separate the beliefs with respect to some of the strategies. In those
cases, we set the least popular strategies (according to SFEM) to zero and “assign”
the belief to the more popular strategy. This applies to only three of the 84 estimates
reported in Tables 2 and 3. The rows are sorted by frequency of the strategy, and
the columns are sorted by average belief (i.e., the first strategy for which we report
beliefs is the one that, on average, subjects put the most weight on).

Table 2: Beliefs over Strategies in the Finite Game

Share Estimated Beliefs - p̃

Type SFEM Typing T7 T8 Grim TFT AD TF2T Grim2 Other ν β̃

T7 0.30 0.35 0.43 0.39 0.18 0.00 0.00 0.00 0.00 0.00 0.04 1.00
T8 0.22 0.20 0.00 0.50 0.04 0.01 0.09 0.15 0.21 0.00 0.04 1.00
AD 0.12 0.12 0.75 [0.00] [0.00] 0.00 0.07 0.00 0.00 0.18 0.06 1.00
TFT 0.09 0.12 0.00 0.33 0.00 0.53 0.11 0.00 0.00 0.03 0.05 1.00
T6 0.08 0.08 0.99 0.00 [0.00] 0.00 0.00 0.00 0.00 0.00 0.03 1.00
Grim 0.08 0.02 0.00 0.22 0.17 0.16 0.34 0.01 0.00 0.10 0.07 1.00
Other 0.11 0.11 0.01 0.14 0.30 0.26 0.01 0.09 0.05 0.11

All 0.30 0.29 0.11 0.09 0.06 0.05 0.05 0.04

Estimation on late supergames out of 10 strategies: AD, AC, Grim, TFT, STFT, T8-T6, Grim2, and TF2T.
Rows, top 6 played strategies. Columns, top 7 believed strategies.
Estimates in [square brackets] are not estimated due to collinearity.
SFEM estimate for β is 0.94. Complete results in Table 15.

Tables 2 and 3 reveal important differences in beliefs between the Finite and
Indefinite games. The bottom row of each table presents (weighted) average beliefs
over strategies. In the Finite game, subjects believe others are most likely to use
threshold strategies (T7 and T8 account for 59%), whereas in the Indefinite game,
they believe others are most likely to play conditionally cooperative strategies (Grim
and TFT have together 46%). That is, at least in this respect, subjects’ beliefs are
in line with behavior in both games: subjects correctly anticipate the most popular
class of strategies to be different between the games (threshold vs. conditionally
cooperative). Furthermore, looking at the first two rows of each table, and focussing
on the two most common strategies, we see evidence of substantial heterogeneity in
beliefs between types (in the same game). For instance, T8 types in the Finite game
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Table 3: Beliefs over Strategies in the Indefinite Game

Share Estimated Beliefs - p̃

Type SFEM Typing Grim TFT TF2T AC AD Grim2 STFT Other ν β̃

TFT 0.36 0.59 0.28 0.25 0.19 0.00 0.08 0.14 0.05 0.00 0.01 1.00
Grim 0.18 0.09 0.80 0.13 0.02 0.00 0.00 0.05 0.00 0.00 0.06 1.00
Grim2 0.11 0.11 0.22 0.00 0.23 0.23 0.00 0.31 0.00 0.00 0.02 1.00
AC 0.11 0.05 0.00 0.20 0.00 0.80 0.00 0.00 0.00 0.00 0.10 1.00
TF2T 0.10 0.01 0.33 0.00 0.40 0.27 0.00 0.00 0.00 0.00 0.01 1.00
AD 0.09 0.10 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.04 1.00
Other 0.05 0.05 0.29 0.00 0.00 0.00 0.39 0.13 0.00 0.00

All 0.31 0.14 0.14 0.14 0.14 0.10 0.02 0.00

Estimation on late supergames out of 10 strategies: AD, AC, Grim, TFT, STFT, T8-T6, Grim2, andTF2T.
Rows, top 6 played strategies. Columns, top 7 believed strategies.
Estimates in [square brackets] are not estimated due to collinearity.
SFEM estimate for β is 0.94. Complete results in Table 16.

put 0 weight on T7, whereas the T7 types believe 43% of others play T7. In the
Indefinite game, TFT types believe only 28% of subjects play Grim, whereas Grim
types expect 80% to be Grim players.24

Result 5 Beliefs are different between the Finite and Indefinite games: subjects
correctly anticipate the most popular class of strategies to be different between the
games (threshold vs. conditionally cooperative).

Tables 2 and 3 also reveal heterogeneity in beliefs within each game: subjects
using different strategies hold different beliefs. In addition, Figure 29 in Online
Appendix B shows that, in both the Finite and Indefinite games, on average subjects
display a tendency to believe others are more like themselves than they actually are;
that is, they overestimate the likelihood that others are of their own type.25

24 Estimates of β̃ close to one for all types is a results of belief reports often being extreme (close
to or exactly 0 or 1), if subjects believed others implemented their strategies with error, belief
reports would move towards 0.5.

25This tendency can also generate large biases in beliefs for some individual types even if beliefs
are fairly accurate when aggregated over types. For instance, AD types in the Indefinite game
incorrectly believe others are highly likely to be AD types. These results relate to evidence from
psychology and economics on the tendency to believe others act similarly to us: the false consensus
effect [Ross et al., 1977]. See Blanco et al. [2014] for evidence in an experiment that elicits beliefs.
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Finite

Figure 6: Best Response for Top 6 Types in the Finite Game

Studying Best Response

Next, we explore the extent to which subjects are subjectively rational. For the
purposes of our discussion, we consider subjective rationality in the constrained sense
and examine if a subject’s strategy choice is a best response (or close to being a best
repsonse) to their supergame beliefs within the set of strategies Z in the consideration
set.26 It is important to reiterate that our analysis poses no restrictions on the link
between the strategies and beliefs: the strategy estimation is based on the subjects’
actions and is done separately from the belief estimation, which is based on their
round belief reports.

The results, presented in Figures 6 and 7, suggest most subjects’ strategy choices

26For consistency, the best-response analysis incorporates beliefs over implementation noise in
how others carry out their intended strategy (captured by 1 − β̃). However, because estimated
values for β̃ are very close to 1, incorporating β̃ does not affect the results. To calculate the
expected payoff of each strategy, we simulate play in 1,000 supergames given β̃.

24



0
.2

.4
.6

.8
1

Ex
pe

ct
ed

 p
ay

of
f p

er
 ro

un
d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as TFT

0
.2

.4
.6

.8
1

Ex
pe

ct
ed

 p
ay

of
f p

er
 ro

un
d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as Grim

0
.2

.4
.6

.8
1

Ex
pe

ct
ed

 p
ay

of
f p

er
 ro

un
d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as Grim2

0
.2

.4
.6

.8
1

Ex
pe

ct
ed

 p
ay

of
f p

er
 ro

un
d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as AC
0

.2
.4

.6
.8

1
Ex

pe
ct

ed
 p

ay
of

f p
er

 ro
un

d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as TF2T

0
.5

1
Ex

pe
ct

ed
 p

ay
of

f p
er

 ro
un

d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as AD

The strategy corresponding to the type is higlighted in dark grey.
Analysis uses normalized stage-game payoffs.

Indefinite

Figure 7: Best Response for Top 6 Types in the Indefinite Game

are either exact or approximate best responses given their supergame beliefs (see
Online Appendix B for more). The Figures show the normalized expected payoffs
(between 0, joint defection, and 1, joint cooperation) given the beliefs on the y-axis.
Each bar is for one of the 10 strategies, with the one selected by that type in a darker
shade of gray. In the Finite game, T7 and T6 types (38% of the population) exactly
best respond to their supergame beliefs, and T8, TFT, and Grim types (39% of
the population) approximately best respond to their supergame beliefs by obtaining
90%, 86%, and 89% of their best-response payoff, respectively. Of the most common
six types, the only type whose strategy is far from a best response is AD (12%). In
fact, their strategy choice is close to being the worst given the stated beliefs.27

In the Indefinite game, a similar pattern emerges. Most common types (TFT,

27Note subjects playing AD receive weakly higher payoffs in any supergame than their opponent,
and these subjects have little chance to observe what would happen along alternative histories.
This may contribute to why they fail to optimize given their beliefs.
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Grim, Grim2, TF2T, and AD—84% of subjects) almost exactly best respond to their
beliefs. One “major” type far from best responding to their belief is AC (11%), who
selects the worst strategy given their beliefs. Indeed, given their beliefs, the best-
response strategy is AD. For these subjects, however, some form of other-regarding
preferences could reconcile strategy choices and beliefs.

Result 6 Substantial heterogeneity exists in beliefs within each game: subjects us-
ing different strategies hold different beliefs. Most types are close to best responding
to their beliefs: they are subjectively rational.

Note the best-response analysis reported so far is subjective in the sense that it
is based on the expected payoffs given the subjective beliefs of each type. To provide
a contrast, we replicate the best-response analysis using objective expected payoffs
computed from the strategy distribution estimated at the population level by SFEM.
This analysis reveals that T6 is the best response to the population in the Finite
game, and Grim2 is the best response to the population in the Indefinite game. In
the Finite game, the most frequent T7 type achieves 97% of the best-response payoff
from T6. In the Indefinite game, the most frequent TFT type achieves 94% of the
best-response payoff from Grim2. However, some strategy-types are further away
from best responding to the population. For example, the AD type in the Finite
game only achieves 64% of the best-response payoff.

6 A Model of Heterogeneous Beliefs

This section presents a stylized model that generates two key results from Section 4.2
— late over-optimism in the Finite game and early over-pessimism in the Indefinite
game — within a common framework. The model builds on two assumptions that
are motivated by findings from the previous section: (i) Players have heterogeneous
beliefs about the strategic sophistication of others, and (ii) most types best-respond
to their beliefs. Specifically, the model is built on the level-k models [Stahl and
Wilson, 1994, Nagel, 1995, Stahl and Wilson, 1995, Camerer et al., 2004, Costa-
Gomes et al., 2001] as well as on the classic gang of four model [Kreps et al., 1982]
as described below.28

There exists a unit mass of players, and each player belongs to one of three
sophistication levels k ∈ {0, 1, 2}. The share of level-k in the population equals ζk,
and players are randomly matched to play the repeated PD games without observing

28Gill and Rosokha [2023], in an earlier (2020) version of their paper on indefinite PDs, propose
a different level-k type model to link variation in beliefs to levels of strategic sophistication.
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the sophistication level of the matched player. If we denote by RD a stationary
supergame strategy, which randomizes between C and D with equal probabilities
in every round independent of history, the prior supergame belief of each level is
specified as follows: Level-0 places probability one on RD; Level-1 places probability
one on the (mixed) strategy played by level-0; Level-2 places probability ζ0

ζ0+ζ1
on the

strategy played by level-0, and probability ζ1
ζ0+ζ1

on the strategy played by level-1. As
for their supergame strategies, level-0 plays a mixture of Grim and RD. Level-1 and
level-2 both play Grim in the Indefinite game, whereas level-1 plays T8 and level-2
plays T7 in the Finite game. Level-0 hence does not best respond to his belief, but
the strategies played by level-1 and level-2 are best responses to their beliefs under
permissive conditions (see Online Appendix D).29 In our model, the conditionally
cooperative strategy Grim played by level-0 corresponds to the irrational type who
plays TFT in Kreps et al. [1982] and induces level-1 and level-2 to play cooperatively
(at least initially in the Finite game).30 These strategy profiles as well as the belief
profiles between randomly matched pairs of players determine the evolution of the
mean cooperation rates x̄t and mean round beliefs µ̄t in the population.

Figure 8: Cooperation Rates in the Finite and Indefinite Games
Notes: Average cooperation rates x̄t are shown as a solid line, and average round beliefs µ̄t are given by a dashed

line. The figure is generated when (ζ0, ζ1, ζ2) = (0.2, 0.5, 0.3) and level-0 plays Grim with probability 0.6 and RD

with probability 0.4.

Figure 8 plots the evolution of the mean cooperation rates x̄t and mean round be-
liefs µ̄t for one (common) parameterization of the model in the Finite and Indefinite

29Appendix D also illustrates how the main predictions are robust to alternative specifications
of the model where (1) level-0 mixes between Grim and AD; (2) level-1 and level-2 place positive
belief weight on their own level.

30Although Grim (mixed with RD) by level-0 substantially simplifies the analysis in the present
model, we expect the qualitative conclusion to hold if Grim is replaced by TFT as in Kreps et al.
[1982].
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games. In the Finite game, higher strategic sophistication corresponds to lower coop-
erativeness in later rounds since level-1 and level-2 types play T8 and T7, respectively.
It follows that over-optimism of beliefs in later rounds is a consequence of players of
all levels underestimating the sophistication of others. By contrast, in the Indefinite
game, higher strategic sophistication corresponds to higher cooperativeness: level-0
is the only type defecting with positive probability in round one. It follows that
underestimation of the sophistication of others generates over-pessimism of beliefs in
early rounds. This is gradually corrected along the cooperative path as players up-
date their beliefs and place higher weight on Grim played by their opponents. Hence,
the model demonstrates how a player’s common but erroneous perception that others
are less strategically sophisticated than them can generate the distinctive patterns
of deviation in round beliefs both in the Finite and Indefinite games.

Our model builds on Kreps et al. [1982] in that it assumes the presence of the
type committed to a particular conditionally cooperative strategy. The fact that the
model predictions here replicate our experimental findings lends empirical support to
the insight of Kreps et al. [1982] that cooperation can result from beliefs that place
positive weight on such a type. The level-k structure of the present model captures
the heterogeneity of beliefs among subjects as well as the discrepancy between their
beliefs and strategies in a way consistent with our findings in both the Finite and
Indefinite games.31

Online Appendix D also uses the model in this section to further highlight the
empirical relevance of the presence of multiple sophistication levels. Specifically, we
generate the experimental findings of Kagel and McGee [2016] and Cooper and Kagel
[2023] who examine cooperation rates in the indefinitely and finitely repeated PD
games when each player is replaced by a team of two players. Specifically, when we
form a team by randomly matching two players and adopt the “Truth-Wins norm”
by assuming that the sophistication level of a team equals that of its member with
the higher sophistication level, the model replicates the evolution of cooperation rates
achieved by experienced subjects in Kagel and McGee [2016] and Cooper and Kagel
[2023]. Specifically, compared with individual play, the cooperation rates under team
play are higher in the Indefinite game, but more accentuated in the Finite game in
the sense that they are initially higher but go down more quickly and eventually
become lower in later rounds of the Finite game.

31It is possible to interpret the reputation model of Kreps et al. [1982] as a level-k model in which
(1) there exist two levels of sophistication: the irrational level-0 and the rational level-1, and (2)
level-1’s belief is correct and places large weight on the level-1 strategy. A critical difference then
is that the players’ beliefs in the present model are misspecified.
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7 Robustness

Section 7.1 provides analyses on the robustness of the estimation method we adopt to
recover beliefs over strategies. Section 7.2 presents results from two new treatments
that study beliefs in the Indefinite game with different stage-game payoffs.

7.1 Estimation of Supergame Strategies

In Online Appendix E.1, we report results of simulations. Those show that supergame
beliefs can be accurately recovered in data sets similar to ours by using the belief
estimation procedure described in this paper. Below, we explain how the procedure
can be generalized to be used with other methods to type subjects, allow for non-
Bayesian updating, and how such changes impact our main results.

Typing in stage (A), as performed in this paper, is potentially impacted by two
factors: (i) the consistency of actions with each strategy and (ii) the prior likelihood
of each strategy. One potential concern is that the prior likelihood of each strategy
can have a disproportionate impact, distorting typing such that subjects end up
being classified as using strategies that are popular at the population-level even
though their actions are not closely consistent with the strategy. Such a concern is
not warranted in our data set: The typing procedure assigns all but one subject to
the strategy their actions are most consistent with according to (i).32 Namely, in
our data set, incorporating (ii), the prior likelihood of each strategy into the typing
procedure impacts results mostly as a tie-breaking rule, allowing us to uniquely
classify subjects whose actions are equally consistent with multiple strategies.33

A related second potential concern is that by using a typing method that generates
unique classification, we are also estimating beliefs for subjects who are not well
identified in terms of their strategy choice (e.g., those whose actions are equally
consistent with multiple strategies). To respond to this concern, we study the extent
to which our belief estimates change if we restrict our analysis to only those subjects
who are well differentiated in terms of their strategy choice. Results from such an
exercise are presented in Online Appendix E.2. In summary, while different typing

32 The only exception is a subject in the Indefinite game who took 17 actions (out of 24) consistent
with T6, but 16 actions consistent with Grim. Because the SFEM estimate for T6 is less than 1
percent in this treatment, the Bayesian posterior that the subject is playing Grim is higher than
that of T6, and thus the subject is typed as Grim rather than T6.

33Simulations (reported in Online Appendix E.1) demonstrate that beliefs can be reliably recov-
ered when using this typing procedure as part of the estimation approach. Online Appendix E.2
provides further analysis on the ability of this procedure to differentiate between types.
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methods produce slightly different beliefs estimates, the main patterns echo those in
our main analysis.

A third potential concern with the method we propose is that it assumes Bayesian
updating. This simplifies the conceptual framework and serves as a reasonable bench-
mark. Nonetheless, the method can be generalized to incorporate non-Bayesian up-
dating. In Online Appendix E.3 we conduct such an analysis to confirm that the
main results of the paper are robust to allowing for such behavior.

7.2 Different Parameters Within the Same Game Structure

Our results so far establish that beliefs (both about actions and supergame strategies)
capture the key differences in strategic behavior between the Finite and Indefinite
games. That is, keeping the stage game constant, subjects’ beliefs change as we vary
the termination rule. This section investigates a complementary question: keeping
the game structure (termination rule) constant, how do beliefs change with the stage
game parameters?

To study this, we focus on the Indefinite game, and conduct two additional treat-
ments that preserve the same δ = 7/8, but vary how conducive stage-game param-
eters are to cooperation. Below we present results from 16 new sessions: 8 where
the temptation payoff of the stage game is increased to 73 (from an original value
of 63, referred to as the High T treatment) and 8 where the reward to joint co-
operation is decreased to 45 (from original value of 51, referred to as the Low R
treatment). Prior literature suggests cooperation to be more challenging in these
new treatments, but more so in the Low R than High T treatment.34 Further details
on the implementation of these treatments are provided in Online Appendix E.4.

Figure 9 shows average beliefs and average probability of cooperation in the
original Indefinite game and contrasts these to the new treatments. As can be seen,
cooperation rates in the High T treatment are quite similar to those from the original
game. Beliefs are slightly more pessimistic about the likelihood of cooperation in
round one (p = 0.064). However, cooperation rates mark a large decrease in the
Low R treatment relative to the original game. Consistent with this, subjects expect
cooperation to be less likely (p < 0.001 for both actions and beliefs in round one and
the first eight rounds altogether).

In both new treatments, as in the original Indefinite game, beliefs in round two,

34Previous experiments with parameters comparable to High T display large variations in coop-
eration rates (see Dal Bó and Fréchette [2018]).
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Figure 9: Choices and Beliefs by Round (Equivalent to Figure 2)

conditioning on history, show large movements from round one beliefs; these move-
ments are in the correct direction in both the High T and Low R treatments (see
Figures 49 and 50 in Online Appendix E.4). In the Low R treatment, we not only
see large adjustments downwards (as in the original game), but also substantial ad-
justment upward in the case where both subjects cooperate in round one (different
from the original game). Online Appendix E.4 establishes that other key findings
from the original game are also replicated in these new treatments.

The distribution of strategies and the beliefs over strategies further reflect how
changing the stage game parameters impacts strategic reasoning in the Indefinite
game. Figure 10 depicts the cumulative distribution of strategies and supergame
beliefs in the new treatments (High T and Low R) and contrast these with those
from the original Indefinite game (see Online Appendix E.4). Strategies are ranked
in terms of their cooperativeness. Formally, we define a strategy to be more coopera-
tive than another one if, as the probability of implementation errors goes to zero (i.e.
as β → 1), the expected payoff associated with playing the former strategy against
itself is higher than the expected payoff of playing the latter strategy against itself
(derivation provided in Online Appendix G).35 Given the cooperativeness ranking,
first order stochastic dominance between distributions can be interpreted as a treat-

35On the subset of strategies considered by Proto et al. [2020], our cooperativeness order coincides
with the inverse of their harshness ranking.
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Figure 10: Distribution of Strategies and Average Beliefs over Strategies in the
Indefinite Treatments

ment shifting behavior to be less cooperative (in the left panel) and beliefs to be more
pessimistic about others’ cooperativeness (in the right panel). Thus, Figure 10 re-
veals: (i) As behavior becomes less cooperative, beliefs also become more pessimistic
about others’ cooperativeness (as seen from the comparison of the original game to
the one with Low R).36 This could explain why beliefs are more pessimistic in that
treatment in later supergames. (ii) Beliefs in the Indefinite game (particularly with
parameter values that are not very conducive to cooperation) underestimate the co-
operativeness of others (as seen most clearly from the comparison of the distributions
for the Low R treatment on the left and right panels).

Finally, Figure 11 focuses on the most common four types in each of the new
treatments and indicates whether their strategy choice is subjectively rational given
their supergame beliefs. The darker bars depicting expected payoff associated with
the strategy corresponding to the type are either maximal or close to being so in all
eight panels, reaffirming our earlier results that subjects are close to best responding
given their supergame beliefs. Focusing on heterogeneity within each treatment,

36Beliefs are also more pessimistic in the the High T treatment although cooperation rates are
similar to the original game. This could be driven by the differences in cooperation rates between
these two treatment in early supergames as can be seen from Figure 48 in Online Appendix E.4.
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Figure 11: Best Response for Top 4 Types in New Indefinite Treatments

we observe the subjects typed as playing more cooperative strategies to have more
optimistic beliefs about the cooperativeness of the others. This is visible in the
Figure when comparing the height of the bars across types, but is more directly
observable using the estimates in Tables 29 and 30. Focussing on the TF2T and AD
types of the High T treatment, the belief estimates indicate that TF2T types believe
80% of subjects play cooperative strategies, whereas AD types only believe 56% of
subjects do so. In the Low R treatment, Grim2 players believe 50% of subjects play
cooperative strategies, versus 19% among AD types.

Overall, these results strengthen our earlier findings on heterogeneity in strategy
choice and its close connection to beliefs in the Indefinite game. Despite experience
with the environment, subjects hold very different beliefs about the strategy choice
of their opponent in the Indefinite game. Differences in beliefs, to a large extent,
support differences in strategy choice. The new treatments demonstrate this very
clearly. Subjects who play cooperative and uncooperative strategies have sufficiently
different beliefs such that strategy choice is subjectively rational (or close to being
so) in each of the cases.
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8 Conclusion

Beliefs play a central role in equilibrium theory, and increasing evidence suggests
they are also key to understanding behavior observed in repeated settings. This
study elicits beliefs in finitely and indefinitely repeated PD games with the main
goal of providing a novel data set to inform our views on how beliefs, actions, and
strategy choices are linked in this important class of games.

We separate the discussion of our findings into those from round beliefs (beliefs
over actions) and supergame beliefs (beliefs over strategies). Our first key finding
is that round beliefs are, in aggregate, remarkably accurate. In both the Finite and
Indefinite games, round beliefs averaged over all rounds are less than three percentage
points away from the empirical action frequencies in our main treatments. Round
beliefs also adjust appropriately to the history of play even when these adjustments
are not small: in some histories, they move by more than 50 percentage points
between rounds one and two. However, there are small, but systematic deviations:
over-optimism in late rounds of the Finite game and over-pessimism in early rounds of
the Indefinite game. In addition, the early over-pessimism observed in the Indefinite
game is also confirmed in two additional treatments. Another key finding is that
beliefs over stage actions are forward looking. Most notably, beliefs along the history
of mutual cooperation evolve very differently in the Finite and Indefinite games.
Persistence of cooperation in the Indefinite game and its collapse late in the Finite
game are correctly anticipated along such histories. Interestingly, the same action
choice can be observed in both games even when subjects report very different beliefs.

Our second category of findings is based on the development of a novel method
to recover supergame beliefs from the sequence of round beliefs. These supergame
beliefs correctly capture the different classes of strategies used in each environment—
threshold strategies in the Finite game and conditionally cooperative strategies in the
Indefinite game—and also display substantial heterogeneity across subjects playing
different strategies. This heterogeneity in strategies can be linked to the heterogene-
ity in supergame beliefs as most types are close to being subjectively rational: given
their beliefs, their selected strategy is optimal (or close to it) among the strategies
considered. Although beliefs are surprisingly accurate as noted above, systematic de-
viations at key junctures of the game can have important implications for behavior.
In the Finite game, subjects tend to believe others play more cooperative strategies
than their own, which can slow down unravelling. This is consistent with the find-
ings from Kagel and McGee [2016] where team-dialogues reveal subjects engage in
limited backward induction and fail to account for others reasoning in a similar way.
In the Indefinite game, as particularly evident in our additional treatments, subjects
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believe others use defective strategies more than is the case. This can explain why
payoffs observed in experiments on the indefinitely repeated PD games are often far
below the maximum symmetric equilibrium payoffs.

The procedure proposed here to recover supergame beliefs has broad applicability.
In repeated games, it can be applied to different sets of strategies and/or be combined
with alternative methods to type subjects. More generally, this procedure can be used
to recover beliefs over strategies from beliefs over actions in any sequential game. Our
aim in eliciting round beliefs is to keep belief elicitation in the laboratory simple and
non-invasive so as to minimize the impact of belief elicitation on behavior. Although
the method we use to recover supergame beliefs inevitably makes assumptions on
how round and supergame beliefs are linked, this approach is a useful starting point
and, as discussed further in the paper, can be modified when there are concerns
about the suitability of those assumptions.

Our results also provide insights into the forces that underlie some of the key
behavioral patterns observed in these games. In particular, they show that standard
preferences with optimizing behavior under slightly erroneous beliefs go a long way
to account for the observed behavior in both the Finite and Indefinite games. In the
finitely repeated PD games, small but systematic departures from accurate beliefs
(at key points in the supergame) sustain cooperation. Although beliefs are generally
accurate, for 80% of subjects in the Finite game, best responding to their subjective
beliefs (that are slightly over-optimistic) involves cooperating more than would be
objectively optimal against the actual strategy distribution in the population. In the
indefinitely repeated PD games, our results highlight the difficulty of resolving equi-
librium selection due to the persistence of heterogeneous beliefs. This is particularly
true in environments that are conducive to cooperation since subjects experience few
histories which prove those beliefs to be incorrect, leaving a variety of conditionally
cooperative strategies popular even after many repetitions. The systematic devia-
tions in both the Finite and Indefinite games can be replicated by a stylized model
with level-k agents. This model brings to light the intuition that late over-optimism
in the Finite game and early over-pessimism in the Indefinite game, which at first
glance appear at odds, can result from a common mistake where players believe
others to be less strategically sophisticated than themselves.

In summary, our results on beliefs suggest subjects understand the different con-
sequences of the finite and indefinite horizons even when their observed behavior is
identical in early rounds of the repeated games. In other words, subjects have a
refined awareness of the rules of the game and the implications of these rules for
the dynamics of cooperative behavior. They also suggest the calculus underpinning
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choices are very different across finitely and indefinitely repeated environments.
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Simon Gächter and Elke Renner. The effects of (incentivized) belief elicitation in
public goods experiments. Experimental Economics, 13(3):364–377, September
2010.

David Gill and Yaroslav Rosokha. Beliefs, learning, and personality in the indefinitely
repeated prisoner’s dilemma. Working paper, 2020.

David Gill and Yaroslav Rosokha. Beliefs, learning, and personality in the indefi-
nitely repeated prisoner’s dilemma. American Economic Journal: Microeconomics
(Forthcoming), 2023.

Ben Greiner. Subject pool recruitment procedures: organizing experiments with
orsee. Journal of the Economic Science Association, 1(1):114–125, 2015.

David M Grether. Bayes rule as a descriptive model: The representativeness heuris-
tic. The Quarterly journal of economics, 95(3):537–557, 1980.

Tanjim Hossain and Ryo Okui. The binarized scoring rule. Review of Economic
Studies, 80(3):984–1001, 2013.

Kyle Hyndman, Antoine Terracol, and Jonathan Vaksmann. Beliefs and (in) stability
in normal-form games. Experimental Economics, 25(4):1146–1172, 2022.

John H Kagel and Peter McGee. Team versus individual play in finitely repeated
prisoner dilemma games. American economic Journal: Microeconomics, 8(2):253–
76, 2016.

39



Daniel Kahneman and Amos Tversky. On the psychology of prediction. Psychological
review, 80(4):237, 1973.

Ehud Kalai and Ehud Lehrer. Rational learning leads to nash equilibrium. Econo-
metrica, 61(5):1019–1045, 1993. ISSN 00129682, 14680262.

David M. Kreps, Paul Milgrom, John Roberts, and Robert Wilson. Rational coop-
eration in the finitely repeated prisoners’ dilemma. Journal of Economic Theory,
27(2):245–252, 1982.

Volodymyr Lugovskyy, Daniela Puzzello, and James Walker. On cooperation in
finitely and indefinitely repeated prisoner’s dilemma games. Working Paper, 2020.

Richard D McKelvey and Talbot Page. Public and private information: An experi-
mental study of information pooling. Econometrica: Journal of the Econometric
Society, pages 1321–1339, 1990.

John H Nachbar. Beliefs in repeated games. Econometrica, 73(2):459–480, 2005.

Rosemarie Nagel. Unraveling in guessing games: An experimental study. The Amer-
ican economic review, 85(5):1313–1326, 1995.

Tibor Neugebauer, Javier Perote, Ulrich Schmidt, and Malte Loos. Selfish-biased
conditional cooperation: On the decline of contributions in repeated public goods
experiments. Journal of Economic Psychology, 30(1):52 – 60, 2009.

Yaw Nyarko and Andrew Schotter. An experimental study of belief learning using
elicited beliefs. Econometrica, 70(3):971–1005, 2002.

Eugenio Proto, Aldo Rustichini, and Andis Sofianos. Intelligence personality and
gains from cooperation in repeated interactions. Journal of Political Economy,
127(3):1351–1390, 2019.

Eugenio Proto, Aldo Rustichini, and Andis Sofianos. Intelligence, errors and strategic
choices in the repeated prisoners’ dilemma. Working Paper, 2020.

Eugenio Proto, Aldo Rustichini, and Andis Sofianos. Intelligence, errors, and cooper-
ation in repeated interactions. The Review of Economic Studies, 89(5):2723–2767,
2022.

Pedro Rey-Biel. Equilibrium play and best response to (stated) beliefs in normal form
games. Games and Economic Behavior, 65(2):572 – 585, 2009. ISSN 0899-8256.

40



Julian Romero and Yaroslav Rosokha. Constructing strategies in the indefinitely
repeated prisoner’s dilemma game. European Economic Review, 104:185–219, 2018.

Julian Romero and Yaroslav Rosokha. Mixed strategies in the indefinitely repeated
prisoner’s dilemma. Working Paper, 2023.

Lee Ross, David Greene, and Pamela House. The “false consensus effect”: An ego-
centric bias in social perception and attribution processes. Journal of experimental
social psychology, 13(3):279–301, 1977.

Alvin E. Roth and J. Keith Murnighan. Equilibrium behavior and repeated play of
the prisoner’s dilemma. Journal of Mathematical Psychology, 17:189–198, 1978.
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A Related Literature

The experimental literature studying beliefs in one-shot games has focused on two
important questions. The first investigates whether beliefs are correct and, more gen-
erally, what factors or features of the game impact beliefs. The second studies the
extent to which behavior in a game best-responds to subjective beliefs. Nyarko and
Schotter [2002] are among the first to study elicited beliefs in repeated games. Study-
ing a finite repetition of a 2×2 game with a unique mixed Nash equilibrium (NE)
played in fixed and random pairing, Nyarko and Schotter [2002] find the subjects’ be-
liefs over actions are not empirical in the sense that they cannot be approximated by
the weighted average of the opponent’s past actions.37 Following this, many papers
that elicited beliefs have focussed on factors that determine beliefs. For instance,
Hyndman et al. [2010] study beliefs when a stage game with a unique mixed NE
(and two pure NE) is repeated 20 times, and find subjects’ beliefs about the other’s
action in the present round do take into account the effect of their own action choice
in the preceding rounds, and hence cannot be expressed by the weighted average
of the other player’s actions in the past. Hyndman et al. [2012b] advance this ob-
servation in an experiment in which subjects play a finite repetition of 3×3 and
4×4 normal form games with and without dominance-solvable NE. Hyndman et al.
[2012b] note some players attempt to influence the beliefs of other players through
their own actions, and thus help the process converge to an NE.38

Some of these, as well as other papers, in the experimental literature on beliefs
examine the question of whether actions are best responses to beliefs with no definite
answers. Nyarko and Schotter [2002] find the actions in each round mostly best
respond to the stated beliefs, but also find fictitious-play beliefs better predict the
opponents’ action than the stated beliefs. Costa-Gomes and Weizsäcker [2008] use 14
3×3 games to investigate the relationship between subjects’ elicited beliefs and their
strategy choice. Regardless of whether belief elicitation precedes strategy choice,
Costa-Gomes and Weizsäcker [2008] find the strategies are not best responses to the
beliefs in a half of the games, and attribute this finding to the difference in the
perception of the game in the two situations. Danz et al. [2012] use a dominance-
solvable 3×3 game repeated 20 times to study beliefs under various combinations of
feedback and matching conditions. Danz et al. [2012] find feedback of past actions
helps advance the iterative elimination process both in terms of actions and beliefs.

37Nyarko and Schotter [2002] specifically consider a generalization of fictitious play called the
γ-empirical average as proposed by Cheung and Friedman [1997].

38Hyndman et al. [2012a] have outside observers predict the actions of the subjects in Hyndman
et al. [2012b], and find a large variance in their beliefs both in terms of accuracy and updating.
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Table 4: Experiments Eliciting Beliefs in One-Shot Games

Article Pairing Repetitions Games Equilibria Feedback Best Response

Nyarko and Fixed (exp. 1) 60 One 2x2 Unique Yes 75% (exp. 1)
Schotter (2002) Random (exp. 3) Mixed NE 79% (exp. 3)
Costa-Gomes and Random None 14 3x3 Unique No 54%
Weizsäcker (2008) Pure NE
Rey-Biel (2009) Random None 10 3x3 Unique No 67%

Pure NE
Hyndman et al. Fixed 20 Four 2x2 Two Pure and Yes 74%
(2010) one Mixed NE
Danz et al. (2012) Random (RM) 20 One 3x3 Unique Yes (RM+FM) 63%

Fixed (FP) Pure NE No (NF)
Hyndman et al. Fixed 20+20 Two 3x3 Unique Pure (+ Yes Periods 1-10: 60% and 49%
(2012) Two 4x4 mixed for some) Periods 11-20: 73% and 63%
Manski and Neri Random Four 2x2 Unique Yes 89%
(2013) Mixed NE
Hyndman et al. Random None 12 3x3 One or No 60%
(2022) two Pure NE

Using a series of 3×3 games each with a unique NE, Rey-Biel [2009] find more than
two-thirds of subjects choose actions that best respond to their elicited beliefs.

Table 4 summarizes basic information about these papers (and a few more). In
particular, even though it was not necessarily the focus of all of these papers, for
each of them we can obtain the percentage of best response behavior. This reveals
one interesting pattern: studies where the game is not played multiple times or that
give no feedback [Costa-Gomes and Weizsäcker, 2008, Hyndman et al., 2022, Danz
et al., 2012, Rey-Biel, 2009] have lower rates of best response.39 Also in line with
this observation is the fact that Hyndman et al. [2012a] reports increasing rates of
best response behavior as experience increases. In that paper, for instance, a rate of
63% is much higher than random given that the games are four-by-fours. Overall,
these suggests that subjects best-respond at fairly high rates when given experience
and feedback.

The literature on voluntary-contribution games often finds conditional coopera-
tion, which refers to the fact that subjects make higher contributions if they believe
other members of their group make higher contributions. This relationship is ob-
served, for example by Gächter and Renner [2010], Fischbacher and Gächter [2010]
and Kocher et al. [2015].40 Neugebauer et al. [2009] confirm this relationship in their

39The rate for Danz et al. [2012] mixes treatments with feedback and one without.
40Costa-Gomes et al. [2014] analyze the relationship in the trust game. Smith [2013, 2015] note

the beliefs are endogenous, and hence that the effect on contribution, if interpreted as causal, is
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experiment on a finitely repeated voluntary contribution game, and further observe
that both contribution levels and beliefs about others’ contribution levels decline to-
ward the end. Chaudhuri et al. [2017] observe similar joint dynamics of contribution
and beliefs, allowing for heterogeneity across subjects and classifying them into types
according to their initial beliefs about others’ contributions.

Among those papers, Neugebauer et al. [2009], Gächter and Renner [2010], Fis-
chbacher and Gächter [2010] all play 10 periods in fixed pairing with feedback. As
such, although these papers do not focus on supergame strategies, they do provide
a point of comparison by formally creating one finitely repeated game. All three
papers report beliefs that are higher than the actual contributions. In the case of
Neugebauer et al. [2009] and Fischbacher and Gächter [2010], Figures suggest that
this is directionally true in every period (at the treatment level).

On cooperation and strategies in finitely and infinitely repeated PD, Dal Bó and
Fréchette [2018] and Embrey et al. [2018] find some key patterns by re-analyzing
data from a collection of laboratory experiments.41 First, in finitely repeated PD,
the fraction of threshold strategies increases with experience.42 By the end, thresh-
old strategies always account for the majority of the data, and use of the threshold
strategies with lower thresholds increases with experience. This contributes to a
(sometimes very) slow aggregate movement toward earlier defection.43 In the finitely
repeated PD, if the parameters are conducive to cooperation, round-one cooperation
increases with experience, whereas last-round cooperation decreases with it.44 Oth-
erwise, cooperation remains low in all rounds. In indefinitely repeated PD, on the
other hand, experience leads cooperation (in the first or last round) to almost any
level, depending on how conducive the parameters are to cooperation. Experience
also amplifies the magnitude of the effects of the parameters, although it does not
change the direction of those effects. In most experiments with perfect monitoring,
a few simple strategies account for more than 50% of the strategies used. They are
“always defect” (AD), “always cooperate” (AC), “grim trigger” (Grim), “tit-for-tat”
(TFT), and “suspicious-tit-for-tat” (STFT).45 AD, Grim, and TFT are generally the

overestimated.
41Experimental research on the subject goes as far back as Flood [1952].
42A threshold strategy (with threshold k ≥ 2) starts with C and plays like grim-trigger before

round k, but reverts to the unconditional play of D from round k on.
43Embrey et al. [2018] find that in the treatment most conducive to cooperation (replicated by

the finite treatment of this study), the modal round at which cooperation breaks down moves earlier
approximately by one round every 10 supergames.

44A longer horizon T , a higher discount factor δ, a lower temptation payoff 1 + g, or a higher
sucker payoff −ℓ all induce more cooperation.

45Grim cooperates until a defection is observed, at which point it defects forever; TFT starts
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most popular, and Grim becomes more popular with experience and appears to be
a counterpart to the threshold strategies in finite games. The implementation error
term in Grim also decreases with experience.46 Experience also increases respon-
siveness, which is measured as the difference between the probability of cooperative
action after cooperation by the other player and that after defection by the other
player. This is documented in Aoyagi et al. [2019] and confirmed by Dal Bó and
Fréchette [2018] in their analysis of the meta-data and new experiments: according
to a simple regression, experience has a significant positive impact on responsiveness
in 11 paper-treatments, whereas it is insignificant in 20 paper-treatments.47

There are many papers on repeated games in the laboratory. Two that are more
directly relevant are Kagel and McGee [2016] and Cooper and Kagel [2023] because
they both study the same PD payoff matrix, one finitely repeated for 10 rounds,
the other indefinitely repeated with a 10% random termination (hence 10 rounds
in expectation); while the rest of the procedures are the same. Both papers’ main
focus is the comparisons of individual play (the typical implementation) versus team
play (two players together in each of the row and column player’s role). The results
of the individual play treatments show (for experienced subjects): similar levels of
round one cooperation for finite and indefinite. 2) Cooperation rates that drop over
rounds of a supergame when it is finite, but not when it is indefinite. 3) Almost
no cooperation in the last round of the finite game. Both papers show that teams
initially cooperate less, but learn to cooperate more; and their behavior over rounds
is more stable. The initially lower cooperation rates for teams are consistent with
the discontinuity effect from psychology. However, the literature in psychology fails
to identify that with experience the effect is reversed, i.e. teams cooperate more than
individuals.

by cooperating and thereafter matches what the other did in the previous round; STFT starts by
defecting and thereafter matches what the other did in the previous round.

46See Dal Bó and Fréchette [2019], Tables 8 and A10.
47This analysis eliminates all data in within-subjects designs after a change in treatment and only

preserves the initial treatment. Most of the insignificant cases have a small number of observations.
One treatment sees a negatively significant impact, perhaps because of relatively low round-one
cooperation at 0.36.
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B Additional Details and Analysis on Actions and

Round Beliefs

Table 5: Session Summary

No. of Game Rounds Total no. of

No. of No. of Actions Actions and Beliefs Obs.

Treatment Session Subjects Supergames Only Early Late Rounds

Finite

1 20 12

8, 8, 8, 8 8, 8, 8

8, 8,

8, 8, 8

96
2 20 12 8, 8, 96
3 20 13 8, 8, 8, 104
4 20 11 8, 88
5 20 13 8, 8, 8, 104
6 20 13 8, 8, 8, 104
7 18 12 8, 8, 8, 96
8 20 12 8, 8, 96

Indefinite

1 20 10 9, 7, 13, 7 1, 2, 23, 4, 1, 19 112
2 20 9 8, 15, 7, 32 2, 10, 5, 1, 8 105
3 18 7 8, 2, 3, 14 25, 17, 10 90
4 16 8 9, 7, 10, 13 32, 7, 7, 6 96
5 14 12 7, 22, 7, 3 2, 5, 8, 4, 14, 9, 3, 10 119
6 18 6 1, 31, 4, 3 24, 15 94
7 18 10 5, 6, 7, 14 30, 8, 5, 4, 9, 4 109
8 20 9 11, 1, 4, 13 9, 5, 2, 4, 2 81

302 subjects in total.
Payment: $8 + choices from two supergames (pre/post) + beliefs in one.
Earnings from $22.00 to $63.75 (with an average of $35.30).
How to read: In the Finite treatment, session 1 had 20 subjects, they played a total of 12 supergames: 4
supergames of 8 rounds without belief elicitation, in the remaining 8 supergames that follow and where beliefs
are also elicited, the first three (each with 8 rounds) are labelled “Early” supergames, three (each with 8)
rounds are labelled “Late” supergames, and the two in between (supergames 8 and 9—each having 8 rounds)
fall in neither Early nor Late category. In total subjects in that treatment played 96 rounds.

We aimed for three supergames for both early and late supergame categories
when possible. When that was not possible, we aimed to have a division of total
rounds that was as balanced as possible.
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Tables 6 and 7 show no statistically significant differences in the probability of
cooperation in round one x̄1 for supergames where beliefs are elicited. The other
regressors are variables that have been considered in similar analysis.

Table 6: Correlated Random Effects Probit
Determinants of Cooperation in Round One

Finite Finite Finite Indefinite Indefinite Indefinite

Beliefs Are Elicited 0.109 0.0427 0.0654 0.891∗∗∗ 0.175 0.188
(0.119) (0.265) (0.294) (0.129) (0.219) (0.280)

Supergame 0.0106 0.0131 0.156∗∗∗ 0.187∗∗∗

(0.0323) (0.0431) (0.0475) (0.0532)

Other Cooperated in Previous Supergame 0.250∗∗∗ 0.624∗∗∗

(0.0661) (0.181)

Cooperated in Supergame 1 2.571∗∗∗ 2.830∗∗∗

(0.754) (0.649)

Risk Measure 0.0189∗∗∗ 0.00534
(0.00691) (0.00663)

Length of Previous Supergame -0.00119
(0.00807)

Constant 2.280∗∗∗ 2.253∗∗∗ -0.509 1.322∗∗∗ 0.955∗∗∗ -1.461∗∗∗

(0.569) (0.551) (0.334) (0.297) (0.338) (0.567)

Observations 1936 1936 1778 1270 1270 1126

Standard errors clustered (at the session level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

All variables refer to behavior in Round 1.

Risk Measure is equal to the number of boxes collected in the bomb task.
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Table 7: Correlated Random Effects Probit (Marginal Effects)
Determinants of Cooperation in Round One

Finite Finite Finite Indefinite Indefinite Indefinite

Beliefs Are Elicited 0.0115 0.00454 0.00660 0.108∗∗∗ 0.0208 0.0193
(0.0140) (0.0285) (0.0295) (0.0263) (0.0256) (0.0288)

Supergame 0.00113 0.00132 0.0186∗∗∗ 0.0193∗∗∗

(0.00337) (0.00439) (0.00717) (0.00497)

Other Cooperated in Previous Supergame 0.0252∗∗∗ 0.0642∗∗∗

(0.00559) (0.0188)

Cooperated in Supergame 1 0.259∗∗∗ 0.291∗∗∗

(0.0790) (0.0482)

Risk Measure 0.00191∗∗∗ 0.000549
(0.000615) (0.000676)

Length of Previous Supergame -0.000122
(0.000827)

Observations 1936 1936 1778 1270 1270 1126

Standard errors clustered (at the session level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

All variables refer to behavior in Round 1.

Risk Measure is equal to the number of boxes collected in the bomb task.
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Figure 13: The Indefinite Game

In the Indefinite game, observation rounds refer to the rounds in which the sub-
jects actually made action choices, and game rounds refer to those rounds that were
part of the supergames. We denote by T the number of observation rounds in the
Indefinite game so that T = max {8, “No. of game rounds”}. For example, if an
Indefinite game has five rounds, T = 8 because we observe the subject make eight
choices even though only the first five mattered for payoffs, whereas if a supergame
lasts 10 rounds, T = 10.
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Figure 14: Beliefs Over Supergames

The evolution of beliefs depicted in Figure 14 mirrors the patterns observed for
cooperation in Figure 1. µ̄1 are high in both games. Beliefs are responsive in both
games: µ̄t

i(∗, at−1
j = C, ∗) − µ̄t

i(∗, at−1
j = D, ∗) > 0. Beliefs µ̄T in the last round are

low in the Finite game, but are high in the Indefinite game.
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Contrasting aggregate bias in beliefs in early and late supergames
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Figure 15: Belief Errors in Early vs. Late Supergames

One natural question is whether, with experience, subjects learn to correct their
mispredictions. Figure 15 displays the error in key rounds for early versus late
supergames. As the figure shows, in many cases where more substantial error occurs
in early supergames, improvement is observed in late supergames, but not for round
seven of the Finite game and round one of the Indefinite game. Even in these
cases, however, subjects’ beliefs do move in the right direction. As seen in Figure 16
which reports average cooperation rates and average beliefs for rounds one and seven
over supergames, beliefs move in the correct direction with experience, but not fast
enough to catch up with the changes in actions. We should note, however, that the
changing behavior over the course of the session does not always imply beliefs are
systematically off. For instance, in that same figure, one can see cooperation rates
in round seven of the Indefinite game are changing with experience, but subjects
correctly anticipate this change, as reflected in their beliefs.
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Figure 16: Average Cooperation and Belief

How are beliefs informed by experience?

Although determining exactly how beliefs are formed is not the goal of this study,
understanding what allows subjects to predict actions relatively well is of clear in-
terest. One conjecture is that subjects are simply reporting back their observations
about others’ behavior from previous supergames. Alternatively, subjects may form
beliefs relying on introspection alone, or some combination of learning and introspec-
tion.48 The data suggests that although experiences matter in shaping beliefs, they
are not the sole determinant. Figure 17 shows the kernel density estimates of the
differences between beliefs and the subject-specific experienced frequencies for the
fifth (the first with belief elicitation) and last supergames of any given session. The
figure reveals that subjects’ beliefs differ substantially from the cooperation rates
they have experienced. Consider round one where learning from past experiences
is easiest (because there is no need to condition on history). In that round, beliefs
differ from experienced frequencies by 17 and 16 percentage points, respectively in
the first and last supergames (with belief elicitation) of the Finite game and 21 and
20 percentage points in the Indefinite game. This means that in many cases (58 per-

48The earlier observation about the Finite game—although behavior is changing in round seven,
beliefs track action frequencies closely—already suggests subjects cannot be basing their beliefs
only on empirical frequencies.
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Figure 17: Difference Between Stated Beliefs and Experienced Frequencies of Coop-
eration by Subject

cent) beliefs are further than plus or minus 20 percentage points of the experienced
cooperation rates.

Accuracy of beliefs on the subject-level

These results showing beliefs that are fairly accurate, both averaged over histories
and along specific histories, do not speak directly to whether many or few subjects
correctly anticipate actions at the individual level. One way to answer this question
in a simple but structured way is to look at whether subjects are accurate in at
least assessing whether cooperation by their opponent is a relatively likely or un-
likely event. Specifically, we denote cooperation (by one’s opponent) conditional on
a history to be unlikely if the empirical frequency of cooperation is less than one
third, likely if the empirical frequency is more than two thirds, and uncertain if the
empirical frequency is between these values. Then, we identify the share of observa-
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tions for which a subject’s belief is accurate relative to this categorization; that is,
we look at whether the belief lies in the same tercile (unlikely/likely/uncertain) as
the observed average cooperation rate. We do so for rounds one and two.

Table 8: Accuracy (numbers are percentages)

Finite

Early Late

Correct Within Correct Within

Tercile 10% 5% Tercile 10% 5%

Round 1 69 14 8 73 14 7
Round 2

CC 87 60 7 91 60 9
Round 1 CD 63 16 8 67 16 9
Actions DC 67 11 4 66 7 7

DD 67 0 0 67 8 8
Average 80 44 7 83 45 9

Indefinite

Early Late

Correct Within Correct Within

Tercile 10% 5% Tercile 10% 5%

Round 1 65 13 7 67 10 5
Round 2

CC 86 52 5 91 66 58
Round 1 CD 35 24 12 29 10 2
Actions DC 65 6 6 56 17 12

DD 11 0 0 79 0 0
Average 73 40 6 80 52 45

Round 1 actions are listed own action first, other’s action second: i.e. (ai, aj).

Average is weighted by the number of observations.

Note: the number of observations following DD is small, with 2% and 5%, for

finite and indefinite respectively, of observations for late supergames.

Table 8 shows that accuracy of beliefs at the individual level, as defined above,
is high both for round one (73% in the Finite game, 67% in the Indefinite game)
and round two (83% in the Finite game, 80% in the Indefinite game). The accuracy
rate is substantially above 33% (the benchmark if beliefs were random) and this is
true even in early supergames (above 65% in rounds 1 and 2 for both treatments).
However, after one history, accuracy is low: in round two of the Indefinite game along
h1 = (C,D) (cooperation by oneself and defection by the other), beliefs fall in the
correct tercile only 29% of the time. Interestingly, the opposite is not true: round-
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two beliefs along h1 = (D,C) (defection by oneself and cooperation by the other) fall
in the correct tercile 79% of the time. Table 8 also considers more demanding tests of
accuracy by reporting the fraction of times the empirical frequencies of cooperation
are within ±5 and 10 percentage points of reported beliefs. Beliefs are fairly accurate
along some histories (especially the more common ones, e.g., h1 = (C,C)), but less
so along other histories that are less common (particularly along h1 = (C,D) and
(D,C) in the Indefinite game).

Beliefs on a cooperative path in early supergames
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Figure 18: Cooperative Path (First Eight Rounds)

Are beliefs predictive of actions?

We use round to make the regressions succinct, but a specification with round indi-
cator variables gives similar estimates.
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Figure 19: Beliefs of Defectors vs. Cooperators in Round One

Table 9: Correlated Random Effects Probit (Marginal Effects)
Dependent Variable: Cooperation in Round One

Finite Indefinite

Belief 0.0938∗∗∗ 0.258∗∗∗

(0.0272) (0.0192)

Other Cooperated in Previous Supergame -0.0382 0.0274
(0.0379) (0.0340)

Supergame 0.00143 0.00798
(0.00925) (0.00572)

Length of Previous Supergame -0.00161
(0.00121)

Cooperated in Supergame 1 0.413∗∗∗ 0.0493∗∗∗

(0.0810) (0.0164)

Risk Measure 0.00163∗ -0.000351
(0.000848) (0.000561)

Observations 474 378

Standard errors clustered (at the session level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

All variables refer to behavior in Round 1.

Late supergames.

Risk Measure is equal to the number of boxes collected in the bomb task.

15



0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 1

0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 2

0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 3

0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 4

0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 5

0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 6

0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 7

0
.2

.4
.6

.8
1

C
D

F

0 .2 .4 .6 .8 1
Belief

Round 8

Late supergames.

Coop.--Finite Coop--Indefinite

Defect--Finite Defect--Indefinite

Figure 20: Beliefs by Action and Treatment: Rounds One through Eight

Table 10: Correlated Random Effects Probit (Marginal Effects)
Dependent Variable: Cooperation

Finite Indefinite

Belief 0.462∗∗∗ 0.395∗∗∗

(0.0176) (0.0146)

Round -0.0336∗∗∗ -0.00238
(0.00339) (0.00282)

Coop. in Round 1, Supergames 1-4 0.244∗∗∗ 0.0805∗∗∗

(0.0477) (0.0244)

Coop. in Last Round, Supergames 1-4 0.126∗∗∗ 0.111∗∗∗

(0.0164) (0.0321)

Risk Measure -0.0000121 0.000105
(0.000771) (0.000633)

Observations 3792 3628

Standard errors clustered (at the session level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

Late supergames.

Risk Measure is equal to the number of boxes collected in the bomb task.
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C Additional Details and Analysis on Estimation

of Strategies and Beliefs over Strategies

Table 11: Description of Strategies Estimated

Name of Strategy Code Description

Always Defect AD always play D.
Always Cooperate AC always play C.

Grim GRIM play C until either player plays D, then play D forever.
Tit-For-Tat TFT play C unless partner played D last round.

Suspicious Tit-For-Tat STFT play D in the first round, then TFT.
Threshold 8 T8 play Grim until round 8 (last round) then switch to AD.
Threshold 7 T7 play Grim until round 7 then switch to AD.
Threshold 6 T6 play Grim until round 6 then switch to AD.
Threshold 5 T5 play Grim until round 5 then switch to AD.
Threshold 4 T4 play Grim until round 4 then switch to AD.
Threshold 3 T3 play Grim until round 3 then switch to AD.
Threshold 2 T2 play C in round 1 then switch to AD.

Lenient Grim 2 GRIM2 play C until 2 consecutive rounds occur in which either player played D, then play D forever.
Tit-For-2 Tats TF2T play C unless partner played D in both of the last rounds.
2Tits-For-Tat 2TFT play C unless partner played D in either of the last 2 rounds.

Lenient Grim 3 GRIM3 play C until 3 consecutive rounds occur in which either player played D, then play D forever.

Details on the two-step procedure to determine the set of strategies

We use a two-step procedure to determine the set of strategies in our analysis. First
we rely on prior evidence to construct a consideration set of 16 strategies. The
consideration set includes all strategies that Fudenberg et al. [2012] report have a
statistically significant SFEM estimate in at least one indefinitely repeated game with
perfect monitoring.49 Motivated by the results of Embrey et al. [2018], who document
the prevalent use of threshold strategies with experience in finitely repeated PD
games, we also add to the consideration set all threshold strategies up to T8.50

Appendix B provides a detailed description of each of these strategies. Results on

49Our aim was to be inclusive in the first step of the selection process. In particular, our selection
criterion is such that we include all the strategies found to be important in a variety of different
papers that have estimated strategies and covered in the meta-study of Dal Bó and Fréchette [2018].
It also means that we do not include strategies that are not observed in direct elicitation studies
(Dal Bó and Fréchette [2019] and Romero and Rosokha [2023]).

50 Thus, the consideration set is AD, AC, Grim, TFT, STFT, Grim2, Grim3, TF2T, 2TFT, and
T2–T8. GrimX and TFXT are lenient versions of the corresponding strategy that punish after X
consecutive defections by the opponent, 2TFT returns to cooperation only after two consecutive
cooperate choices by the opponent.
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this consideration set are reported in Online Appendix B. However, because our
primary goal is to estimate beliefs over strategies, focusing on such a large set is
more costly than is typical with SFEM: having more strategies can make identifying
beliefs over different strategies difficult; it can also reduce the number of observations
per type in the belief estimation. For these reasons, we use results from the larger
consideration set to focus our analysis on the 10 strategies that are most important
in terms of choices as well as beliefs. This set consists of AD, AC, Grim, TFT, STFT,
Grim2, and TF2T, as well as threshold strategies T8, T7, and T6.51

Table 12: Strategy Prevalence and Typing

Finite Indefinite
Share Share

Type SFEM Typing Type SFEM Typing
T7 0.30 0.35 TFT 0.36 0.59
T8 0.22 0.20 Grim 0.18 0.09
AD 0.12 0.12 Grim2 0.11 0.11
TFT 0.09 0.12 AC 0.11 0.05
T6 0.08 0.08 TF2T 0.10 0.01

Grim 0.08 0.02 AD 0.09 0.10
TF2T 0.04 0.04 STFT 0.04 0.04
STFT 0.03 0.03 T8 0.01 0.01
AC 0.03 0.03 T7 0.00 0.00

Grim2 0.02 0.01 T6 0.00 0.00

Estimation using late supergames.
SFEM estimate for β are 0.94 for both.

51From the original set, we eliminate T2–T5, which our estimates indicate are not relevant in the
Finite game, as well as 2TFT and Grim3, which are not popular enough in the Indefinite game to
generate reliable belief estimates.
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Table 13: Estimates for the Finite Game on Late Supergames

Share Estimated Beliefs - p̃

Type SFEM Typing AD AC GRIM TFT STFT T8 T7 T6 T5 T4 T3 T2 GRIM2 TF2T 2TFT GRIM3 ν β̃

T7 0.30 0.35 0.00 0.00 0.00 0.36 0.00 0.23 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 1.00
T8 0.22 0.20 0.05 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.15 0.00 0.13 0.04 1.00
AD 0.12 0.12 0.12 0.00 [0.00] 0.00 0.13 [0.00] 0.00 [0.00] [0.00] [0.00] [0.00] 0.00 0.00 0.00 0.75 0.00 0.06 1.00
TFT 0.09 0.12 0.11 0.00 0.00 0.55 0.03 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.00
T6 0.08 0.08 0.00 0.00 [0.00] 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.00

GRIM 0.07 0.02 0.06 0.06 0.11 0.20 0.27 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 [0.00] 0.02 0.07 1.00
TF2T 0.03 0.04 0.00 0.17 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.00
GRIM3 0.03 0.03 0.00 0.00 [0.00] 0.78 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 1.00
STFT 0.02 0.02 0.00 0.00 [0.00] 0.81 0.00 [0.00] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.14 1.00
AC 0.02 0.01 - - - - - - - - - - - - - - - - - -

GRIM2 0.01 0.01 - - - - - - - - - - - - - - - - - -
T2 0.01 0.01 - - - - - - - - - - - - - - - - - -
T5 0.00 0.00 - - - - - - - - - - - - - - - - - -
T4 0.00 0.00 - - - - - - - - - - - - - - - - - -
T3 0.00 0.00 - - - - - - - - - - - - - - - - - -

2TFT 0.00 0.00 - - - - - - - - - - - - - - - - - -

ALL 0.04 0.01 0.03 0.22 0.04 0.24 0.21 0.00 0.01 0.00 0.00 0.00 0.03 0.04 0.09 0.03

Estimation on late supergames. SFEM estimate for β is 0.94.
Estimates in [square brackets] are not estimated due to collinearity.

Table 14: Estimates for the Indefinite Game on Late Supergames

Share Estimated Beliefs - p̃

Type SFEM Typing AD AC GRIM TFT STFT T8 T7 T6 T5 T4 T3 T2 GRIM2 TF2T 2TFT GRIM3 ν β̃

TFT 0.34 0.58 0.08 0.12 0.08 0.28 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.14 0.00 0.01 1.00
GRIM 0.15 0.07 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 1.00
AC 0.10 0.10 0.00 0.85 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.00
AD 0.09 0.10 0.90 0.01 0.07 0.01 0.00 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 0.01 0.00 0.00 0.01 0.04 1.00

TF2T 0.09 0.03 0.00 0.97 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 1.00
GRIM2 0.07 0.02 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.24 [0.00] 0.00 0.05 1.00
GRIM3 0.06 0.02 0.00 0.01 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.01 [0.00] 0.01 0.01 1.00
2TFT 0.05 0.01 - - - - - - - - - - - - - - - - - -
STFT 0.04 0.04 0.48 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.21 0.14 0.00 0.00 0.00 0.07 1.00
T3 0.02 0.03 0.00 0.00 0.16 0.30 0.00 [0.00] [0.00] [0.00] 0.00 0.07 0.07 0.00 0.14 0.03 0.23 0.00 0.08 1.00
T8 0.01 0.01 - - - - - - - - - - - - - - - - - -
T7 0.00 0.00 - - - - - - - - - - - - - - - - - -
T6 0.00 0.00 - - - - - - - - - - - - - - - - - -
T5 0.00 0.00 - - - - - - - - - - - - - - - - - -
T4 0.00 0.00 - - - - - - - - - - - - - - - - - -
T2 0.00 0.00 - - - - - - - - - - - - - - - - - -

ALL 0.13 0.24 0.22 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.11 0.06 0.06

Estimation on late supergames. SFEM estimate for β is 0.94.
Estimates in [square brackets] are not estimated due to collinearity.
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Complete Estimation Results for Baseline Treatments (Finite and Indef-
inite)

Table 15: Estimates for the Finite Game on Late Supergames
Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃

T7 0.30 0.35 0.00 0.00 0.18 0.00 0.00 0.39 0.43 0.00 0.00 0.00 0.04 1.00
(0.01) (0) (0.14) (0.09) (0) (0.16) (0.15) (0) (0) (0.01)

T8 0.22 0.20 0.09 0.00 0.04 0.01 0.00 0.50 0.00 0.00 0.21 0.15 0.04 1.00
(0.08) (0.06) (0.1) (0.14) (0.02) (0.12) (0.07) (0) (0.11) (0.11)

AD 0.12 0.12 0.07 0.00 [0.00] 0.00 0.18 [0.00] 0.75 [0.00] 0.00 0.00 0.06 1.00
(0.09) (0.02) (0.1) (0.09) (0.17) (0.04) (0.06)

TFT 0.09 0.12 0.11 0.00 0.00 0.53 0.03 0.33 0.00 0.00 0.00 0.00 0.05 1.00
(0.07) (0.05) (0.06) (0.22) (0.04) (0.12) (0.03) (0) (0.05) (0.13)

T6 0.08 0.08 0.00 0.00 [0.00] 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.03 1.00
(0.07) (0) (0.21) (0.02) (0.15) (0.31) (0.09) (0) (0.01)

GRIM 0.08 0.02 0.34 0.10 0.17 0.16 0.00 0.22 0.00 0.00 0.00 0.01 0.07 1.00
(0.2) (0.05) (0.34) (0.08) (0.12) (0.13) (0.09) (0.01) (0.03) (0.04)

TF2T 0.04 0.04 0.00 0.14 0.83 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.04 1.00
(0.09) (0.1) (0.35) (0.1) (0.01) (0.13) (0.11) (0.03) (0.17) (0.07)

STFT 0.03 0.03 0.00 0.00 [0.00] 0.65 0.00 [0.00] 0.00 0.00 0.00 0.35 0.11 1.00
(0.02) (0.13) (0.4) (0.02) (0.03) (0.02) (0.07) (0.38)

AC 0.03 0.03 0.04 0.00 0.16 0.30 0.03 0.46 0.00 0.00 0.00 0.00 0.07 1.00
(0.04) (0.05) (0.13) (0.16) (0.04) (0.2) (0.03) (0.03) (0.04) (0.12)

GRIM2 0.02 0.01 - - - - - - - - - - - -

ALL 0.07 0.01 0.12 0.09 0.03 0.29 0.30 0.00 0.05 0.04

Estimation on late supergames. SFEM estimate for β is 0.94.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.

Table 16: Estimates for the Indefinite Game on Late Supergames
Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃

TFT 0.36 0.59 0.08 0.00 0.28 0.25 0.05 0.00 0.00 0.00 0.14 0.19 0.01 1.00
(0.04) (0.06) (0.14) (0.13) (0.03) (0) (0) (0) (0.12) (0.12)

GRIM 0.18 0.09 0.00 0.00 0.80 0.13 0.00 0.00 0.00 0.00 0.05 0.02 0.06 1.00
(0.06) (0.09) (0.24) (0.17) (0.04) (0.03) (0.02) (0.01) (0.06) (0.11)

GRIM2 0.11 0.11 0.00 0.23 0.22 0.00 0.00 0.00 0.00 0.00 0.31 0.23 0.02 1.00
(0.03) (0.12) (0.16) (0.07) (0.02) (0) (0) (0) (0.2) (0.14)

AC 0.11 0.05 0.00 0.80 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.11 1.00
(0.04) (0.33) (0.03) (0.26) (0.05) (0.02) (0.02) (0.02) (0.14) (0.11)

TF2T 0.10 0.01 0.00 0.27 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.01 1.00
(0) (0.13) (0.2) (0.04) (0) (0.01) (0) (0) (0.04) (0.18)

AD 0.09 0.10 1.00 0.00 0.00 0.00 0.00 [0.00] [0.00] [0.00] 0.00 0.00 0.04 1.00
(0.24) (0.02) (0.1) (0.05) (0.17) (0.01) (0.01)

STFT 0.04 0.04 0.48 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.08 1.00
(0.27) (0.07) (0.24) (0.12) (0.11) (0.05) (0.04) (0.06) (0.09) (0.09)

T8 0.01 0.01 - - - - - - - - - - - -

T7 0.00 0.00 - - - - - - - - - - - -

T6 0.00 0.00 - - - - - - - - - - - -

ALL 0.14 0.14 0.32 0.14 0.02 0.00 0.00 0.00 0.10 0.14

Estimation on late supergames. SFEM estimate for β is 0.94.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.
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Table 17: Estimates for the Finite Game on Early Supergames
Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃

T8 0.30 0.36 0.01 0.00 0.40 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.05 1.00
(0.06) (0.02) (0.13) (0.07) (0.01) (0.1) (0.04) (0.01) (0.05) (0.04)

T7 0.25 0.20 0.00 0.00 [0.00] 0.00 0.00 0.75 0.25 0.00 0.00 0.00 0.03 1.00
(0.03) (0) (0.11) (0.02) (0.17) (0.12) (0.01) (0.01) (0.02)

TFT 0.17 0.15 0.19 0.00 0.50 0.00 0.03 0.26 0.00 0.00 0.02 0.00 0.05 1.00
(0.09) (0.02) (0.21) (0.15) (0.05) (0.14) (0.04) (0) (0.05) (0.07)

AD 0.12 0.13 0.25 0.00 [0.00] 0.21 0.00 0.55 [0.00] [0.00] 0.00 0.00 0.11 1.00
(0.14) (0.04) (0.16) (0.1) (0.21) (0.05) (0.09)

TF2T 0.05 0.08 0.15 0.00 0.06 0.54 0.15 0.11 0.00 0.00 0.00 0.00 0.05 1.00
(0.19) (0.05) (0.12) (0.19) (0.16) (0.09) (0.01) (0.02) (0.04) (0.06)

GRIM2 0.04 0.03 0.00 0.30 0.00 0.43 0.00 0.27 0.00 0.00 0.00 0.00 0.02 1.00
(0.02) (0.19) (0.2) (0.18) (0.04) (0.19) (0.02) (0.03) (0.1) (0.1)

STFT 0.03 0.04 0.00 0.00 [0.00] 0.42 0.00 0.00 [0.00] [0.00] 0.58 0.00 0.15 1.00
(0.09) (0.12) (0.33) (0.12) (0.1) (0.33) (0.18)

AC 0.03 0.02 0.03 0.78 [0.00] 0.16 0.00 0.03 [0.00] [0.00] 0.00 0.00 0.16 0.92
(0.26) (0.37) (0.09) (0.08) (0.07) (0.1) (0.1)

GRIM 0.01 0.00 - - - - - - - - - - - -

T6 0.00 0.00 - - - - - - - - - - - -

ALL 0.07 0.04 0.21 0.09 0.01 0.49 0.06 0.00 0.02 0.00

Estimation on early supergames. SFEM estimate for β is 0.92.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.

Table 18: Estimates for the Indefinite Game on Early Supergames
Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃

TFT 0.36 0.60 0.08 0.19 0.40 0.16 0.05 0.00 0.00 0.00 0.00 0.12 0.01 1.00
(0.03) (0.09) (0.13) (0.09) (0.03) (0) (0) (0) (0.04) (0.06)

GRIM 0.21 0.09 0.11 0.11 0.45 0.19 0.14 0.00 0.00 0.00 0.00 0.00 0.10 1.00
(0.11) (0.2) (0.22) (0.14) (0.09) (0.04) (0.11) (0.08) (0.12) (0.16)

TF2T 0.14 0.10 0.12 0.00 0.25 0.37 0.11 0.00 0.00 0.00 0.06 0.09 0.02 1.00
(0.09) (0.05) (0.12) (0.11) (0.08) (0.01) (0.01) (0.01) (0.06) (0.08)

AD 0.13 0.13 0.59 0.03 0.20 0.00 0.14 [0.00] [0.00] [0.00] 0.04 0.00 0.05 1.00
(0.22) (0.03) (0.11) (0.05) (0.14) (0.04) (0.05)

GRIM2 0.10 0.05 0.42 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.06 1.00
(0.23) (0.13) (0.2) (0.05) (0.07) (0.05) (0.02) (0.02) (0.23) (0.07)

AC 0.05 0.02 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 1.00
(0.01) (0.09) (0.01) (0.44) (0.01) (0.01) (0.01) (0.01) (0.05) (0.12)

STFT 0.02 0.01 0.00 0.02 0.15 0.16 0.53 [0.00] [0.00] [0.00] 0.10 0.03 0.05 1.00
(0.03) (0.02) (0.08) (0.08) (0.31) (0.06) (0.02)

T8 0.00 0.00 - - - - - - - - - - - -

T7 0.00 0.00 - - - - - - - - - - - -

T6 0.00 0.00 - - - - - - - - - - - -

ALL 0.19 0.09 0.33 0.20 0.09 0.00 0.00 0.00 0.04 0.06

Estimation on early supergames. SFEM estimate for β is 0.94.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.
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Table 19: Best Response Analysis

Finite Indefinite
Share Best Response Share Best Response

Type SFEM Typing BRS Rs Ro Type SFEM Typing BRS Rs Ro

T7 0.30 0.35 T7 1 0.97 TFT 0.34 0.58 TF2T/GRIM2 0.99 0.93
T8 0.22 0.20 T7 0.89 0.87 GRIM 0.15 0.07 GRIM 1 0.92
AD 0.12 0.12 T8 0.23 0.6 AC 0.10 0.10 AD 0.78 0.74
TFT 0.09 0.12 T8 0.87 0.77 AD 0.09 0.10 AD 1 0.76
T6 0.08 0.08 T6 1 1 TF2T 0.09 0.03 STFT 0.96 0.95

GRIM 0.07 0.02 T7 0.84 0.82 GRIM2 0.07 0.02 STFT 0.89 1
Other 0.12 0.11 T6 Other 0.16 0.10 TFT

All T7 All TFT

Estimation on late supergames out of 16 strategies: AD, AC, Grim, Grim2, Grim3, TFT, TF2T, 2TFT, STFT, T2-T8.

Rows represent top 6 played strategies; BRS: Best Response strategy given beliefs.

In Finite games the best response strategy to the actual distribution (SFEM) is T6; in Indefinite games it is GRIM2.

Rs: Expected payoff from strategy/Best response payoff given beliefs.

Ro: Expected payoff from strategy/Best response payoff given actual distribution (SFEM).
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C.1 Contrasting Early and Late Supergames
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Figure 21: Change in Beliefs from Early to Late Supergames
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Figure 22: Normalized Expected Payoff by Type Given Strategy Distribution in
Early and Late Supergames
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Figure 27: Strategy Changes and Belief Accuracy

The accuracy of beliefs over strategies can be studied more directly without rely-
ing on the cooperativeness order. In Figure 28 of Online Appendix B, we compute,
for each type, the Euclidean distance between beliefs and the estimated frequency of
strategies. To study whether beliefs become more accurate with experience, we also
look at how this distance changes from early to late supergames. We find that, in
aggregate, beliefs are becoming more accurate with experience in the Finite game,
whereas accuracy changes little in the Indefinite game. In both cases, the most pop-
ular strategy types (T7 in Finite and TFT in Indefinite) have the most accurate
beliefs in late supergames.52

52In the Finite game, early beliefs overestimate the likelihood of T8 and underestimate the like-
lihood of T7. Both of these errors are reduced (or eliminated) with experience. For the Indefinite
game, early beliefs overestimate the likelihood of Grim and underestimate the likelihood of TFT;
however, these errors (which are less costly than those observed in the Finite game) are not corrected
with experience.
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Figure 28: Change in Accuracy
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Table 20: Type Evolution: Finite

T7 T8 AD TFT T6 Grim TF2T AC STFT Grim2
Early Types 32 57 20 24 0 0 12 3 6 4
Number that Change 8 39 4 15 11 3 5 4
No. 1 Change (%) T6 (50%) T7 (62%) T8 (47%) TFT (27%) T7 (40%) T8 (75%)
No. 2 Change (%) T6 (15%) T7 (20%) TF2T (25%)

Sorted by late frequency.
Last two rows provided if no. 1 and 2 are unique.

Table 21: Type Evolution: Indefinite

TFT Grim Grim2 AC TF2T AD STFT T8 T6 T7
Early Types 86 13 7 3 14 19 2
Number that Change 25 11 5 3 14 10 2
No. 1 Change (%) TF2T (44%) TFT (64%) TFT (80%) TFT (79%) STFT (40%) AC (100%)
No. 2 Change (%) Grim (32%) AD (18%) Grim (20%)

Sorted by late frequency.
Last two rows provided if no. 1 and 2 are unique.

Additionally, in Figures 21-27, Tables 20-21) we study learning effects more gen-
erally. We document in detail how the distribution of strategies, types, and beliefs for
each type change from early to late supergames. We summarize the key observations
from these results here. While behavior stabilizes quickly in the Indefinite game—
with little change in distribution of strategies, types and beliefs observed from early
to late supergames—there is clear evidence of learning in the Finite game. Most
significantly, there is a shift towards less cooperative strategies: popularity of T8 de-
clines while the popularity of T7 and T6 increase. The observed shift in strategies is
anticipated by beliefs. In early supergames, the aggregate belief weight on Grim and
T8 are 21 and 49 percent, respectively. These weights decline to 11 and 29 percent,
respectively in late supergames. By contrast, the aggregate weight on T7 increases
from 6 percent to 30 percent. These results suggest, in the Finite game, subjects to
be updating their beliefs about the cooperativeness of their counterpart throughout
the session and adjusting their strategy choices in response to these changing beliefs.
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D Model of Heterogeneous Beliefs about the So-

phistication of Others

This section formally describes the level-k model adapted to the supergame environ-
ment presented in Section 6.

Let σk and p̃k denote the supergame strategy and supergame belief, respectively,
of a level-k player. Let also ζk be the proportion of level-k players in the population.
For simplicity, we assume that there are three levels of sophistication so that ζ0+ζ1+
ζ2 = 1.53 Suppose that RD is a (stationary) supergame strategy that plays C with
probability q and D with probability 1− q in each round after every history for some
q ∈ [0, 1].54 We assume that a level-0 player has a belief p̃0 that places probability
one on RD.55 For k ≥ 1, a level-k player has a belief p̃k which has support over
strategies played by players whose levels are at or below k.56

Level-1 and level-2 players best respond to their beliefs: σ1 ∈ BR(p̃1) and σ2 ∈
BR(p̃2). On the other hand, we assume that the strategy σ0 of level-0 players is such
that for ω ∈ (0, 1), σ0 randomizes between Grim and RD as follows:57

σ0 = ω ·Grim + (1− ω) · RD.

Recall that δ = 7
8
, g = 1 and ℓ = 17

12
in our parametrization.

D.1 Indefinite Games

We begin with the following observation:

53Increasing the number of sophistication levels leads essentially to the same conclusion in the
Indefinite game but advances unraveling in the Finite game.

54RD with q = 0 hence equals AD.
55Although the level-k theory does not usually specify the belief of level-0 players, it is needed

here for the computation of the average belief in the population.
56It is standard in the level-k theory to assume that a level-k player believes that only those types

below level k are present so that p̃k(σk) = 0. We allow the possibility that p̃k(σk) > 0 for k ≥ 1
to align the theory with the experimental finding that the subjects tend to place a positive belief
weight on their own strategy.

57While the level-k theory usually assumes that the level-0 strategy is a random action choice,
it is necessary to include a conditionally cooperative strategy such as Grim as a component of σ0

since otherwise AD would become the unique best response to σ0.
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Observation 1 If σ1 = σ2 = Grim, then for k = 1, 2, σk ∈ BR(p̃k) if and only if

p̃k(Grim)

p̃k(RD)

[
1− (1− δ)(1 + g)

]
≥ ui(AD,RD)− ui(Grim,RD). (1)

This condition holds if p̃1(Grim)
p̃1(RD)

is sufficiently large.

Consider a level-k player with belief p̃k for k = 1, 2. Since σ1 = σ2 = Grim by
assumption, p̃k places positive weight only on RD and Grim. Hence, after any history
along which either player plays D, playing AD is optimal against p̃k. In round 1, on
the other hand, playing Grim against p̃k yields

ui(Grim, p̃k) = p̃k(Grim) + p̃k(RD)ui(Grim,RD).

On the other hand, a one-step deviation to D in round 1 yields

p̃k(Grim)(1− δ)(1 + g) + p̃k(RD)ui(AD,RD).

It follows that Grim is a best response against p̃k if

p̃k(Grim) + p̃k(RD)ui(Grim,RD)

≥ p̃k(Grim)(1− δ)(1 + g) + p̃k(RD)ui(AD,RD),

which is equivalent to (1). Since 1− (1− δ)(1+ g) > 0 holds when δ = 7
8
> 1

2
= g

1+g
,

(1) holds when p̃k(Grim)
p̃k(RD)

is sufficiently large.

When (1) holds, hence, σ1 = σ2 = Grim is consistent with subjective rationality.
It follows that the proportion of strategies in the population is given by(

ωζ0 + ζ1 + ζ2
)
·Grim + (1− ω)ζ0 · RD. (2)

Denote by p̃k(h
t) level-k’s continuation belief over strategies at history ht, and let ht

∗
be the t-length cooperative history that consists exclusively of (C,C)’s:

ht
∗ =

(
(C,C), . . . , (C,C)︸ ︷︷ ︸

t rounds

)
.

A level-k player’s continuation belief at ht−1
∗ in round t is given by

p̃k(h
t−1
∗ )(Grim) =

p̃k(Grim)

p̃k(Grim) + p̃k(RD) qt−1
,

p̃k(h
t−1
∗ )(RD) =

p̃k(RD) q
t−1

p̃k(Grim) + p̃k(RD) qt−1
,
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and p̃k(h
t−1) = RD if ht−1 ̸= ht−1

∗ .58 Suppose that two players from the population
with the proportions of RD and Grim as in (2) are randomly matched. We can
compute the ex ante mean of the round belief in round t (belief wight placed on the
other player’s choice of C in round t) as:

µ̄t = ζ0q

+ ζ1

[{
ζ0ω + ζ0(1− ω)qt−1 + ζ1 + ζ2

}
×

{
p̃1(h

t−1
∗ )(Grim) + p̃1(h

t−1
∗ )(RD) q

}
+ ζ0(1− ω)(1− qt−1)q

]
+ ζ2

[{
ζ0ω + ζ0(1− ω)qt−1 + ζ1 + ζ2

}
×

{
p̃2(h

t−1
∗ )(Grim) + p̃2(h

t−1
∗ )(RD) q

}
+ ζ0(1− ω)(1− qt−1)q

]
.

On the other hand, the ex ante mean of the cooperation rates in round t are given
by

x̄t = ζ0(1− ω) q + (ζ0ω + ζ1 + ζ2)
{
ζ0ω + ζ0(1− ω)qt−1 + ζ1 + ζ2

}
.

D.2 Finite Games

We suppose that σ1 = T8 and σ2 = T7, and identify conditions which ensure that
these strategies are indeed subjectively rational. By assumption, p̃1(T7) = 0. Sup-
pose first that t ≤ 7. For k = 1, 2, the continuation belief of a level-k player at

58For any ht−1 that occurs only after one’s own deviation, Bayes rule would imply a different
specification of p̃k(h

t−1). For example, after h1 which involves the own choice of D and the other
player’s choice of C, the above specifies p̃k(h

1) = RD. However, application of Bayes rule would
suggest that p̃k(h

1) = p̃k(h
1
∗). This however is immaterial in the subsequent analysis.
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history ht−1
∗ in round t with prior belief p̃k is given by

p̃k(h
t−1
∗ )(Grim) =

p̃k(Grim)

p̃k(Grim) + p̃k(T8) + p̃k(T7) + p̃k(RD) qt−1
,

p̃k(h
t−1
∗ )(RD) =

p̃k(RD) q
t−1

p̃k(Grim) + p̃k(T8) + p̃k(T7) + p̃k(RD) qt−1
,

p̃k(h
t−1
∗ )(T8) =

p̃k(T8)

p̃k(Grim) + p̃k(T8) + p̃k(T7) + p̃k(RD) qt−1
,

p̃k(h
t−1
∗ )(T7) =

p̃k(T7)

p̃k(Grim) + p̃k(T8) + p̃k(T7) + p̃k(RD) qt−1
.

On the other hand, the continuation belief of a level-1 player at history h7
∗ in the last

round t = 8 is given by59

p̃1(h
7
∗)(Grim) =

p̃1(Grim)

p̃1(Grim) + p̃1(T8) + p̃1(RD) q7
,

p̃1(h
7
∗)(RD) =

p̃1(RD) q
7

p̃1(Grim) + p̃1(T8) + p̃1(RD) q7
,

p̃1(h
7
∗)(T8) =

p̃1(T8)

p̃1(Grim) + p̃1(T8) + p̃1(RD) q7
.

For a level-2 player who plays T7, the history h7
∗ does not arise on the path of play.

Instead, the relevant histories are given by (h6
∗, (D,C)) and (h6

∗, (D,D)): (h6
∗, (D,C))

is the history where (D,C) (own choice of D and the other’s choice of C) in round
7 follows h6

∗, and (h6
∗, (D,D)) is the history where (D,D) in round 7 follows h6

∗.
Note that at these histories, level-2 expects the other player to play C with positive
probability in round 8 only when the other player plays RD. The continuation beliefs
of a level-2 player at these histories in round 8 that the other player plays RD are
given by

p̃2(h
6
∗, (D,C))(RD) =

p̃2(RD) q
7

p̃2(Grim) + p̃2(T8) + p̃2(RD) q7
,

p̃2(h
6
∗, (D,D))(RD) =

p̃2(RD) q
6(1− q)

p̃2(T7) + p̃2(RD) q6(1− q)
.

59See Footnote 58.
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The ex ante mean of the round belief in round t for t = 1, . . . , 6 is given by

µ̄t = ζ0q

+ ζ1

[{
ζ0ω + ζ0(1− ω)qt−1 + ζ1 + ζ2

}
×

{
p̃1(h

t−1
∗ )(Grim) + p̃1(h

t−1
∗ )(T8) + p̃1(h

t−1
∗ )(RD) q

}
+ ζ0(1− ω)(1− qt−1) q

]
+ ζ2

[{
ζ0ω + ζ0(1− ω)qt−1 + ζ1 + ζ2

}
×

{
p̃2(h

t−1
∗ )(Grim) + p̃2(h

t−1
∗ )(T8) + p̃2(h

t−1
∗ )(T7) + p̃2(h

t−1
∗ )(RD) q

}
+ ζ0(1− ω)(1− qt−1) q

]
.

Likewise, the ex ante mean of the round belief in round 7 is given by

µ̄7 = ζ0q

+ ζ1

[{
ζ0ω + ζ0(1− ω)q6 + ζ1 + ζ2

}
×

{
p̃1(h

6
∗)(Grim) + p̃1(h

6
∗)(T8) + p̃1(h

6
∗)(RD) q

}
+ ζ0(1− ω)(1− q6) q

]
+ ζ2

[{
ζ0ω + ζ0(1− ω)q6 + ζ1 + ζ2

}
×

{
p̃2(h

6
∗)(Grim) + p̃2(h

6
∗)(T8) + p̃2(h

6
∗)(RD) q

}
+ ζ0(1− ω)(1− q6) q

]
,

and that in round 8 is given by

µ̄8 = ζ0q

+ ζ1

[{
ζ0ω + ζ0(1− ω)q7 + ζ1

}{
p̃1(h

7
∗)(Grim) + p̃1(h

7
∗)(RD) q

}
+
{
ζ0(1− ω)(1− q7) + ζ2

}
q
]

+ ζ2

[{
ζ0ω + ζ0(1− ω)q7 + ζ1

}
p̃2(h

6
∗, (D,C))(RD)

+
{
ζ0(1− ω)q6(1− q) + ζ2

}
p̃2(h

6
∗, (D,D))(RD)

+ ζ0(1− ω)(1− q6)
]
q.
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Observation 2 For a level-1 player, T8 ∈ BR(p̃1) if for t = 1, . . . , 7,

ui(T8, p̃1 | ht−1
∗ ) ≥

[
p̃1(h

t−1
∗ )(Grim) + p̃1(h

t−1
∗ )(T8)

]
(1 + g)

+ p̃1(h
t−1
∗ )(RD) · (9− t)q(1 + g).

(3)

These conditions hold if p̃1(T8)+p̃1(RD)
p̃1(Grim)

is sufficiently small.

It is clear that playing D as specified by T8 is a best response against p̃1 in round 8
after h7

∗. In round t ≤ 7 after ht−1
∗ , a one-step deviation to D yields

(1 + g)
[
p̃1(h

t−1
∗ )(Grim) + p̃1(h

t−1
∗ )(T8)

]
+ (9− t)q(1 + g) p̃1(h

t−1
∗ )(RD).

Hence, no such deviation is profitable if (3) holds. On the other hand, playing T8
against p̃1 yields

ui(T8, p̃1 | ht−1
∗ )

= (9− t+ g) p̃1(h
t−1
∗ )(Grim) + (8− t) p̃1(h

t−1
∗ )(T8)

+
[
q
{
1 + ui(T8,RD | ht

∗)
}
+ (1− q)

{
−ℓ+ (8− t)q(1 + g)

}]
p̃1(h

t−1
∗ )(RD).

We can show by induction that ui(T8,RD | ht
∗) ≥ −ℓ. It hence follows that

ui(T8, p̃1 | ht−1
∗ )

≥ (9− t+ g) p̃1(h
t−1
∗ )(Grim) + (8− t) p̃1(h

t−1
∗ )(T8)

+
[
q − ℓ+ (1− q)(8− t)q(1 + g)

]
p̃1(h

t−1
∗ )(RD).

Hence, (3) is implied if

(8− t) p̃1(h
t−1
∗ )(Grim) + (7− t− g) p̃1(h

t−1
∗ )(T8)

+
[
q − ℓ+ (1− q)(8− t)q(1 + g)− (9− t)q(1 + g)

]
p̃1(h

t−1
∗ )(RD)

= (8− t) p̃1(h
t−1
∗ )(Grim) + (7− t− g) p̃1(h

t−1
∗ )(T8)

+
[
−ℓ− q2(8− t)(1 + g)− qg

]
p̃1(h

t−1
∗ )(RD) ≥ 0.

Since p̃1(h
t−1
∗ )(T8)

p̃1(h
t−1
∗ )(Grim)

= p̃1(T8)
p̃1(Grim)

and p̃1(h
t−1
∗ )(RD)

p̃1(h
t−1
∗ )(Grim)

≤ p̃1(RD)
p̃1(Grim)

, this inequality holds if
p̃1(T8)+p̃1(RD)

p̃1(Grim)
is sufficiently small.
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Observation 3 For a level-2 player, T7 ∈ BR(p̃2) if

ui(T7, p̃2 | ht−1
∗ ) ≥ (1 + g)

[
p̃2(h

t−1
∗ )(Grim) + p̃2(h

t−1
∗ )(T8) + p̃2(h

t−1
∗ )(T7)

]
+ (9− t)q(1 + g) p̃2(h

t−1
∗ )(RD)

for t = 1, . . . , 6,

(4)

and

ui(T7, p̃2 | h6
∗) ≥ (2 + g) p̃2(h

6
∗)(Grim) + p̃2(h

6
∗)(T8)− ℓ p̃2(h

6
∗)(T7)

+
[
q + (1− q)(−ℓ) + q(1 + g)

]
p̃2(h

6
∗)(RD).

(5)

These conditions hold when p̃2(Grim)
p̃2(T7)+p̃2(T8)

and p̃2(T7)+p̃2(RD)
p̃2(Grim)+p̃2(T8)

are sufficiently small.

In round 7, if the history up to round 6 equals h6
∗, a one-step deviation to C at h6

∗
yields

{1 + (1 + g)} p̃2(h6
∗)(Grim) + p̃2(h

6
∗)(T8) + (−ℓ) p̃2(h

6
∗)(T7)

+
[
q + (1− q)(−ℓ) + q(1 + g)

]
p̃2(h

6
∗)(RD).

Hence, no such deviation is profitable if (5) holds. On the other hand, playing T7 at
h6
∗ yields

ui(T7, p̃2 | h6
∗) = (1 + g)

[
p̃2(h

6
∗)(Grim) + p̃2(h

6
∗)(T8)

]
+ 2q(1 + g) p̃2(h

6
∗)(RD).

After simplification, we see that (5) holds if and only if

− p̃2(h
6
∗)(Grim) + g p̃2(h

6
∗)(T8) + ℓ p̃2(h

6
∗)(T7)

+
[
qg + (1− q)ℓ

]
p̃2(h

6
∗)(RD) ≥ 0.

(6)

Since p̃2(h6
∗)(Grim)

p̃2(h6
∗)(T7)+p̃2(h6

∗)(T8)+p̃2(h6
∗)(RD)

< p̃2(Grim)
p̃2(T7)+p̃2(T8)

, it follows that (6) holds if p̃2(Grim)
p̃2(T7)+p̃2(T8)

is sufficiently small.

In round t ≤ 6, if the history up to round t− 1 is ht−1
∗ , then a one-step deviation

to D at ht−1
∗ yields

(1 + g)
[
p̃2(h

t−1
∗ )(Grim) + p̃2(h

t−1
∗ )(T8) + p̃2(h

t−1
∗ )(T7)

]
+ (9− t)q(1 + g) p̃2(h

t−1
∗ )(RD).
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It follows that no such deviation at ht−1
∗ (t ≤ 6) is profitable if (4) holds. On the

other hand, playing T7 against p̃2 at ht−1
∗ yields

ui(T7, p̃2 | ht−1
∗ )

= (8− t+ g)
[
p̃2(h

t−1
∗ )(Grim) + p̃2(h

t−1
∗ )(T8)

]
+ (7− t) p̃2(h

t−1
∗ )(T8)

+
[
q
{
1 + ui(T7, R | ht

∗)
}
+ (1− q)

{
−ℓ+ (8− t)q(1 + g)

}]
p̃2(h

t−1
∗ )(RD).

It follows that (4) holds if and only if

(7− t)
[
p̃2(h

t−1
∗ )(Grim) + p̃2(h

t−1
∗ )(T8)

]
+ (6− t− g) p̃2(h

t−1
∗ )(T7)

+
[
q
{
1 + ui(T7, R | ht

∗)
}
+ (1− q)

{
−ℓ+ (8− t)q(1 + g)

}
− (9− t)q(1 + g)

]
p̃2(h

t−1
∗ )(RD) ≥ 0.

(7)

Since p̃2(h
t−1
∗ )(T7)

p̃2(h
t−1
∗ )(Grim)+p̃2(h

t−1
∗ )(T8)

= p̃2(T7)
p̃2(Grim)+p̃2(T8)

and p̃2(h
t−1
∗ )(RD)

p̃2(h
t−1
∗ )(Grim)+p̃2(h

t−1
∗ )(T8)

= p̃2(RD)
p̃2(Grim)+p̃2(T8)

,

(7) holds if p̃2(T7)+p̃2(RD)
p̃2(Grim)+p̃2(T8)

is sufficiently small.

Under the conditions of Observations 2 and 3, hence, σ1 = T8 and σ2 = T7 are
consistent with subjective rationality. The distribution of strategies in the population
is hence given by

ζ0(1− ω) · RD+ ζ0ω ·Grim + ζ1 · T8 + ζ2 · T7. (8)

Under (8), the ex ante mean of the cooperation rates in round t ≤ 6 is given by:

x̄t = ζ0(1− ω)q + (ζ0ω + ζ1 + ζ2)
{
ζ0(1− ω)qt−1 + ζ0ω + ζ1 + ζ2

}
.

Likewise, the ex ante means of the cooperation rates in round 7 and 8 are given by

x̄7 = ζ0(1− ω)q + (ζ0ω + ζ1)
{
ζ0(1− ω)q6 + ζ0ω + ζ1 + ζ2

}
,

and

x̄8 = ζ0(1− ω)q + ζ0ω
{
ζ0(1− ω)q7 + ζ0ω + ζ1

}
.
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D.3 Numerical Illustration

We use numerical computation to illustrate the transitions of x̄t and µ̄t derived above
based on two different specifications of prior beliefs. In the first specification, the
belief p̃k of a level-k player (k = 1, 2) places positive probabilities only on those
strategies played by levels below k. The level-k belief is further assumed to be
proportional to the actual proportions of players at levels below k:

p̃1 = σ0, and p̃2 =
ζ0

ζ0 + ζ1
· σ0 +

ζ1
ζ0 + ζ1

· σ1. (9)

In the second specification, the belief p̃k of a level-k player (k = 1, 2) places positive
probability also on the strategy σk played by level-k players. The level-k belief is
assumed to be proportional to the actual proportions of players at levels k and lower:

p̃1 =
ζ0

ζ0 + ζ1
· σ0 +

ζ1
ζ0 + ζ1

· σ1, and p̃2 = ζ0 · σ0 + ζ1 · σ1 + ζ2 · σ2. (10)

Figure 8 in the text as well as Figures 30 and 31 below depict x̄t (solid line) and µ̄t

(dashed line) for two different values of q, the probability with which RD plays C in
each round. Figures 8 and 30 use the specification of prior beliefs in (9), and Figure
31 uses the specification in (10).60

These transition patterns can be interpreted as follows: First, in the Indefinite
game, the cooperation rates x̄t gradually decline over time since whenever RD plays
D, Grim switches to AD and will never return to C. As time passes by, the average
cooperation rates approach the probability that both players play Grim. On the
other hand, there are two key forces behind the movement of the round beliefs µ̄t.
First, along the cooperative path ht

∗, the round beliefs monotonically increase (to 1)
since that indicates that the strategy played by the other player is less likely to be
RD. When q = 0, RD is immediately excluded after the other player plays C. On
the other hand, the probability of the cooperative path ht

∗ decreases with t as noted
above and once ht−1 ̸= ht−1

∗ is observed, the round t beliefs of levels 1 and 2 drop
to q and stay there. The increasing pattern of µ̄t indicates that the first positive
effect is stronger than the second negative effect. To see why the beliefs are more
pessimistic initially (i.e., x̄t− µ̄t is positive but decreases with t), consider the second
specification (9) and suppose that RD never plays C (q = 0). In this case, the round
1 belief just equals the proportion of Grim in the population as perceived by level-1

60The relevant conditions in Observations 1, 2 and 3 hold in all cases so that the level-k strategy
σk is a best response to the level-k belief p̃k for k = 1, 2.
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(a) Finite (b) Indefinite

Figure 30: Cooperation rates
Notes: x̄t (solid line) and round beliefs µ̄t (dashed line) when priors are given by (9). (ζ0, ζ1, ζ2) = (0.2, 0.5, 0.3),

ω = 0.6 and q = 0.

(a) Finite (q = 0) (b) Finite (q = 0.5)

(c) Indefinite (q = 0) (d) Indefinite (q = 0.5)

Figure 31: Cooperation rates
Notes: x̄t (solid line) and round beliefs µ̄t (dashed line) when priors are given by (10). (ζ0, ζ1, ζ2) = (0.4, 0.2, 0.4)

and ω = 0.6.
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and level-2. On the other hand, the cooperation rates equal the actual proportion
of level-1 and level-2 in the population. Since level-1 is not aware of the presence of
level-2, the actual cooperation rates are higher in round 1. Conditional on the play
of C by the other player in round 1, however, the level-1 correctly updates his belief
and thinks that the other player also plays Grim. This correction helps reduce the
gap between µ̄t and x̄t from round 2 on.

Second, in the Finite game, unraveling is incomplete and the transitions of x̄t

and µ̄t are exactly the same as those in the Indefinite game up to round 6.61 The
decline of x̄t in round 8 is caused by both level-1 and level-2, whereas its decline in
round 7 is caused by level-2. Note that σ2 = T7 played by level-2 contributes to
further reduction in cooperation in round 8 since it triggers D by Grim and T8 in
round 8 by playing D in round 7. The round 7 belief µ̄7 is different between the
two specifications of prior beliefs. Under (9), there is no unraveling yet in round 7
since even level-2 does not expect any defection by T7. Under (10), on the other
hand, unraveling begins in round 7 because level-2 correctly anticipates D by T7.
The round 8 belief µ̄8 is further lowered by two forces: First, level-2 (and level-1 in
the case of (10)) expects σ1 = T8 to switch to D even along the cooperative path.
Second, since level-2, who has played D in round 7, expects that T8 and Grim will
revert to D.

D.4 Individual versus Team Play

Suppose that two individuals are randomly matched to form a team. A unit mass of
these two-player teams are then randomly matched to play the repeated PD games
against another team. Under the “Truth Wins norm,” the sophistication level of a
team equals the higher of the two sophistication levels of its members. For example,
if an individual with level k = 0 is paired with an individual with level k = 1, the
sophistication level of the resulting team equals k = 1. When the proportion of
level-k individuals in the population equals ζk (k = 0, 1, 2), the proportion ξk of the
level-k team under the truth wins norm equals

ξ0 = ζ20 , ξ1 = ζ0ζ1 + ζ21 , ξ2 = 1− (1− ζ2)
2.

As for the prior belief of a level-k team over the strategy distribution, we assume
that it is the ξ-adjusted belief of its member with the higher level of sophistication.

61This is because the only threshold strategies included in the analysis here are T7 and T8. If T6
is included as level-3, for example, the coincidence between the Finite and Indefinite games holds
only in rounds 1-5.
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For example, suppose that the two members of a team are level-1 and level-2, and
assume that they place zero belief weight on the own level. The prior belief of the
team is then level-2 based on the team strategy distribution above and given by

p̃2 =
ξ0

ξ0 + ξ1
σ0 +

ξ1
ξ0 + ξ1

σ1,

where σk is the level-k strategy.

Figures 32 and 33 show the mean cooperation rates x̄t (solid line) and mean
beliefs µ̄t (dashed line) under individual and team play when the level-k belief places
zero weight on the level-k strategy. Likewise, Figures 34 and 35 show the mean
cooperation rates x̄t (solid line) and mean beliefs µ̄t (dashed line) under individual
and team play when the level-k belief places positive weight on the level-k strategy.

Whether the belief weight on the own strategy is zero or positive, the mean
cooperation rates are higher under team play than under individual play in the
Indefinite games. In the Finite games, on the other hand, the mean cooperation
rates under team play are higher in earlier rounds, but drop more sharply toward
the end. The mean cooperation rates are indeed lower in rounds 7 and 8 under team
play than under individual play. These are consistent with the experimental evidence
found by Kagel and McGee [2016] and Cooper and Kagel [2023] in the finitely and
indefinitely repeated PD games, respectively.
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Figure 32: Indefinite Games: Individuals (left) and Teams (right)
Level-k belief places zero weight on the level-k strategy.

(ζ0, ζ1, ζ2) = (0.5, 0.3, 0.2), q = 0.5.

Figure 33: Finite Games: Individuals (left) and Teams (right)
Level-k belief places zero weight on the level-k strategy.

(ζ0, ζ1, ζ2) = (0.5, 0.3, 0.2), q = 0.5.

Figure 34: Indefinite Games: Individuals (left) and Teams (right)
Level-k belief places positive weight on the level-k strategy.

(ζ0, ζ1, ζ2) = (0.4, 0.2, 0.4), q = 0.5.
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Figure 35: Finite Games: Individuals (left) and Teams (right)
Level-k belief places positive weight on the level-k strategy.

(ζ0, ζ1, ζ2) = (0.4, 0.2, 0.4), q = 0.5.
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E Additional Analysis on Robustness

E.1 Belief Recovery Method Simulations

In the next few sections, in addition to other robustness exercises, we document
the behavior of our belief-estimation method using simulations. Here we organize
these results to facilitate reading. We first present simulations pertaining to the
main estimation that assumes Bayes updating. It is followed by simulations for the
Grether updating specifications.

First, we show that the method recovers the correct beliefs in a simple stylized
example of a population that consists of only AD (25%) , Grim (40%) and TFT types
(35%). We simulate data—including both actions and round-by-round beliefs—based
on the model of belief formation described in the paper assuming the following su-
pergame beliefs for the different types. AD types believe others are playing AD with
40% probability, Grim with 10% probability, and TFT with 50% probability. Grim
types believe others are playing AD with 10% probability, Grim with 30% prob-
ability, and TFT with 60% probability. TFT believe others are playing AD with
20% probability, Grim with 50% probability, and TFT with 30% probability.For this
simulation, and all other simulations with this “three types” setup, with regards to
simulating action choices, we set β = 0.9365, the average estimated value for this
parameter in the experiment (using values from the Finite and Indefinite games).
Also for all simulations of this type, with regards to simulating belief reports, we set
β̃ = 1.00 and ν = 0.05, which are the median estimated values for these parameters
from the experiment (including all types in the Finite and Indefinite games). The
simulations are performed on supergames of eight rounds.62 Table 22 summarizes
the parameters of these simulations, as well as others presented in this appendix.

Figure 36 plots how well the belief recovery method estimates the beliefs of each
simulated type. Note that this involves all three steps of our method: 1.(a) Esti-
mating SFEM on the simulated data. 1.(b) Typing each simulated subject using
the population level SFEM estimates as a prior and the subjects specific choices to
determine the posterior. 2. Finally, for each strategy type, estimating beliefs over
strategies given the simulated round-by-round beliefs. As such, it allows for errors at
each of these steps, including incorrectly typing subjects. The figure highlights the
impact of sample size by displaying results for simulations using two sessions, four
sessions, and eight sessions. As can be seen, median parameter estimates are close

62Finite versus indefinite does not matter for the recovery technique except insofar as it affects the
number of rounds. Eight rounds is the minimum we have, and thus a lower bound on performance.

44



Table 22: Simulations

Figure Panel Sessions Termination Types DGP Grether Grether Estimator
Updating ν c d Updating

Top 2 Finite 3 Bayes logistc Bayes
36 Middle 4 Finite 3 Bayes logistc Bayes

Top 8 Finite 3 Bayes logistc Bayes
37 8 Finite 10 Bayes logistc Bayes
38 8 Indefinite 10 Bayes logistc Bayes
39 8 Finite 3 Bayes normal Bayes
44 8 Finite 3 Grether logistic 0.75 Bayes
45 Top 8 Finite 3 Bayes logistic Grether
45 Bottom 8 Finite 3 Grether logistic 0.75 Grether

100 Experiments per simulations (except in Figures 37 and 38).
18 subjects per session, each with 3 supergames per subject (except in Figures 37 and 38).
In all cases ν is truncated version.

to the true value in all cases. Furthermore, in a relatively simple setting such as this
one, even with only two sessions, estimates are typically close to the true value.

Next we consider a similar exercise, but for conditions similar to the ones in our
data set. Namely, the data generating process is assumed to correspond to the one
we report in Tables 15 and 16. The sample size is assumed to be the same as the one
we have collected in the experiment. 150 simulated data sets are produced for each
treatment.63 Figures 37 and 38 show that the input parameters are recovered quite
well for the most common types. One notable exception is the supergame beliefs of
the AC in the Indefinite game, which are not recovered as well as other types (AC
as a SFEM estimate of 11% of the population). However, it is useful to note the
nature of the discrepancy in this case: input values are such that the AC type puts
80% probability on others playing AC; the recovered values are such that some of
this weight is shifted to TF2T. Thus, the discrepancy between the input and output
values are among the most cooperative two strategies.

Figure 39 reports results from estimates that would result if the error in belief
reporting ν is incorrectly specified in our estimation. Specifically, the data generating
process assumes that reporting errors are distributed as a truncated normal, although
our estimation assumed a truncated logistic. Other parameters of the simulations

63In the data from the experiment, in a few cases, beliefs over two strategies of a given type
cannot be distinguished because no history is observed that would allow identification. When a
simulated sample allow identification that is not in our original sample, we drop that sample.
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are set as in the eight session simulation of Figure 36. Our estimates of beliefs are
still very good in this case.

In the Robustness Section of the paper, we argue that given the β̃ estimated in our
experiments, our results cannot be meaningfully affected by non-Bayesian updating
that distorts signals in the form of c ̸= 1 in the Grether updating formula. Figure
44 provides evidence of this by simulating data where agents are non-Bayesian, and
in particular they have parameters c = 0.75 and d = 1 in the Grether formulation.
However, our estimation assumes they update according to Bayes. Other parameters
of the simulations are set as in the eight session simulation of Figure 36. These results
align with the intuition provided in the text, namely that given the β̃ we observe,
our results are robust to such non-Bayesian updating.

Figure 45 presents estimation results for the Grether style non-Bayesian belief
recovery. In one case parameter d is assumed to be one, i.e. the simulated subjects
are actually Bayesians. In the other case, d = 0.75, and the simulated subjects suffer
from base-rate-neglect. Other parameters of the simulations are set as in the eight
session simulation of Figure 36. As can be seen, the estimate of d move in the correct
direction between the two simulations and the median estimates are close to the true
value. The belief estimates are overall reasonable, although they become less precise.
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Figure 36: Estimation results using simulations
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Figure 37: Estimation results using simulations
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Figure 38: Estimation results using simulations
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Figure 39: Estimation results using simulations with incorrect noise specification
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E.2 Robustness with Respect to Typing
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Figure 40: Distribution of Posteriors in the Finite and Indefinite Game

Belief Estimates Under Alternative Simplified Typing

This section reports the belief-estimation results under a simplified alternative ap-
proach as described in Section 7.1. The method only considers (i) the consistency of
actions with each strategy. To focus on subjects who are are clearly playing different
strategies only a small set of strategies is considered. Namely, the most popular de-
fective strategy (AD) and the most popular cooperative strategies (T7 for the Finite
game and TFT for the Indefinite game). A subject is classified as playing one of
these strategies if the consistency of their actions with that strategy is 90% or more
and consistency of their actions with the other strategies is less than 90%. This
classification labels 27% as T7, 18% as AD, and 9% as TFT for the Finite game.
The numbers are 5%, and 60% for AD and TFT respectively for the Indefinite game
(we do not include T7 since it only accounts for 1% of subjects).
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Figure 41: Estimated Beliefs Based on Simplified Typing for AD, T7 and TFT

51



0
.5

1
Ex

pe
ct

ed
 p

ay
of

f p
er

 ro
un

d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as AD

0
.5

1
Ex

pe
ct

ed
 p

ay
of

f p
er

 ro
un

d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as TFT

0
.5

1
Ex

pe
ct

ed
 p

ay
of

f p
er

 ro
un

d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as T7

The strategy corresponding to the type is higlighted in dark grey.
Analysis uses normalized stage-game payoffs.

Finite

0
.5

1
Ex

pe
ct

ed
 p

ay
of

f p
er

 ro
un

d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as AD

0
.5

1
Ex

pe
ct

ed
 p

ay
of

f p
er

 ro
un

d

AD AC

G
R

IM

TF
T

ST
FT T8 T7 T6

G
R

IM
2

TF
2T

Typed as TFT

The strategy corresponding to the type is higlighted in dark grey.
Analysis uses normalized stage-game payoffs.

Indefinite

Figure 42: Normalized Expected Payoff by Type Given Estimated Beliefs Late Su-
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E.3 Robustness with Respect to Non-Bayesian Updating

The goal of if this section is to study the extent to which the Bayesian assumption
impacts our main results, we re-estimate beliefs allowing for non-Bayesian updating.

There are many ways in which our estimation method can be enriched to allow
for deviations from the Bayesian benchmark. Grether [1980] provides a conceptual
framework which differentiates between two types of non-Bayesian behavior: The
first, denoted with parameter c, captures responsiveness to signals; and the second,
denoted with parameter d, captures responsiveness to the prior.64 In our setting, the
prior corresponds to a subject’s beliefs in round one about their opponent’s strategy
and the signals correspond to the actions taken by their opponent, which impacts the
subject’s updated beliefs in subsequent rounds. Our belief recovery procedure (as
implemented in Section 5) already allows for errors. Indeed, β̃ captures (potentially
incorrect) beliefs about how noisy actions are given strategy choice and therefore
impacts how responsive updated beliefs are to observed actions, compressing belief
reports toward 0.5; while the reporting error ν moves round beliefs up and down
around the true value. However, these variables cannot be directly mapped into
Grether’s c and d parameters.65 In our specific application, unlike in the typical
bookbag-and-poker-chip inference experiment, the signals are perceived as very in-
formative, i.e. β̃ is very close to one. An implication is that the Grether parameter
c has little effect on updated beliefs.66 For that reason, in what is presented below,
we focus on a special case of the Grether framework with only one free parameter
(d).67

64The Grether framework has become the standard approach to study non-Bayesian updating
in empirical work (see Benjamin [2019]). Formally, given two states A and B and a signal S, the
posterior π is given by:

π(A|S) = p(S|A)cp(A)d

p(S|A)cp(A)d + p(S|B)cp(B)d
. (11)

Hence, c = d = 1 corresponds to Bayesian updating, whereas c < 1 corresponds to underinference
(sometimes also referred to as conservatism) while d < 1 to base rate neglect.

65To see this note that c and d directly capture deviations in updating and thus, by definition,
can only impact beliefs after round one. By contrast, β̃ and ν have implications also for round one.

66This is because p(S|A) in Equation 11 is either 0 or 1 (or very close to that). Figure 44 of the
Online Appendix E.3 repeats the simulation of Figure 36 (with eight sessions) and shows that if the
data generating process is actually one with c = 0.8 and d = 1, then estimates are almost identical
to when c = 1.

67Base-rate neglect (captured by d < 1) is one of the most frequently documented biases in updat-
ing (going back to Kahneman and Tversky [1973]). See Benjamin, Bodoh-Creed, and Rabin [2019]
and Esponda, Vespa, and Yuksel [2022] for recent perspectives on this bias. More broadly, an active
literature in experimental and behavioral economics investigates the factors (parameters, context,
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Bars represent estimates allowing for Non-Bayesian updating.
Black diamonds represent belief estimates reported in the paper assumning Bayesianism.
Percentages represent SFEM share.

Figure 43: Beliefs over Strategies with Non-Bayesian Updating

These results are summarized for the four most common types in Figure 43,
which also reports results from our original belief estimation for comparison.68 At a
qualitative level, allowing for non-Bayesian updating doesn’t change our main results.
When there are differences, beliefs move between similarly cooperative strategies.69

complexity) that predict the types of non-Bayesian behavior observed. Benjamin [2019] reviews
the literature, in particular bookbag-and-poker-chip experiments, and finds varying results, but d
is on average below 1. In recent papers, Augenblick et al. [2023] and Ba et al. [2023] identify that
results from standard bookbag-and-poker-chip experiments can be reversed by changing elements
of the paradigm (such as the number of states).

68Tables 23 and 24 present the complete results.
69Consider, for example, the AD type in the Finite game. The Grether parameter d is estimated

to be low at 0.6 indicating base-rate neglect. Allowing for non-Bayesian updating mostly shifts
beliefs from STFT to AD for this type. Similarly, in the Indefinite game, the d parameter is fairly
low for type GRIM2 at 0.78. Allowing for non-Bayesian updating mostly shifts beliefs from AC,
TF2T and Grim to Grim2 for this type. Nonetheless, overall, the estimates are fairly similar.
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Importantly, the changes do not affect the interpretation of the results.70

We note that our study, which focuses on beliefs in repeated games with per-
fect monitoring, does not provide the best setting to study deviations from Bayesian
updating. But, in general, the belief recovery method can be generalized as demon-
strated above to allow for such behavior. An environment with imperfect monitoring,
for instance, where observed actions only carry limited information about the under-
lying strategies would be a richer setting to study non-Bayesian updating of beliefs
in repeated games.

70It is still the case that beliefs over strategies capture the main differences between treatments:
subjects mostly expect threshold strategies in the Finite game and conditionally cooperative strate-
gies in the Indefinite game. In addition, the small changes in belief estimates do not change the
finding that behavior is subjectively rational for most of the subjects. This can be seen in Figures
46 and 47 in that reproduce Figures 6 and 7 using the new estimates that allow for non-Bayesian
updating.
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Figure 44: Simulation-Estimation Results with Grether Parameter c < 1
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Figure 45: Simulation-Estimation Results with Grether Parameter d = 1 and d =
0.75
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Additional Grether parameter is represented as d in estimation results. See discussion
above (Online Appendix E.3) for description of the parameter.

Table 23: Estimates for the Finite Game on Late Supergames

Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃ d

AD 0.12 0.12 0.20 0.00 [0.00] 0.00 0.07 [0.00] 0.73 [0.00] 0.00 0.00 0.06 1.00 0.60
(0.13) (0.02) (0.16) (0.14) (0.23) (0.05) (0.04)

AC 0.03 0.03 0.06 0.00 0.19 0.30 0.02 0.44 0.00 0.00 0.00 0.00 0.06 1.00 1.02
(0.06) (0.1) (0.14) (0.21) (0.08) (0.19) (0.04) (0.06) (0.05) (0.09)

GRIM 0.08 0.02 0.33 0.10 0.02 0.15 0.00 0.40 0.00 0.00 0.00 0.00 0.07 1.00 0.85
(0.27) (0.11) (0.33) (0.07) (0.08) (0.12) (0.09) (0.01) (0.03) (0.13)

TFT 0.09 0.12 0.11 0.00 0.00 0.41 0.04 0.38 0.00 0.00 0.00 0.05 0.05 1.00 1.28
(0.1) (0.09) (0.16) (0.29) (0.04) (0.13) (0.06) (0.01) (0.14) (0.14)

STFT 0.03 0.03 0.00 0.00 [0.00] 0.82 0.00 [0.00] 0.00 0.00 0.00 0.18 0.07 1.00 0.39
(0.02) (0.16) (0.42) (0.02) (0.07) (0.02) (0.09) (0.36)

T8 0.22 0.20 0.07 0.00 0.01 0.00 0.00 0.53 0.00 0.00 0.27 0.12 0.04 1.00 0.99
(0.12) (0.2) (0.09) (0.16) (0.04) (0.19) (0.07) (0.03) (0.08) (0.13)

T7 0.30 0.35 0.00 0.00 0.18 0.00 0.00 0.39 0.42 0.00 0.00 0.00 0.04 1.00 1.00
(0.02) (0) (0.11) (0.17) (0.01) (0.15) (0.14) (0) (0.01) (0)

T6 0.08 0.08 0.00 0.00 [0.00] 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.03 1.00 1.19
(0.1) (0.03) (0.27) (0.08) (0.22) (0.33) (0.13) (0.04) (0.07)

GRIM2 0.02 0.01 - - - - - - - - - - - - -

TF2T 0.04 0.04 0.00 0.14 0.83 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.04 1.00 1.00
(0.1) (0.18) (0.25) (0.21) (0.05) (0.15) (0.16) (0.07) (0.17) (0.07)

ALL 0.08 0.01 0.10 0.08 0.01 0.32 0.30 0.00 0.06 0.04

Estimation on late supergames. SFEM estimate for β is 0.94.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.

Table 24: Estimates for the Indefinite Game on Late Supergames

Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃ d

AD 0.09 0.10 1.00 0.00 0.00 0.00 0.00 [0.00] [0.00] [0.00] 0.00 0.00 0.04 1.00 0.94
(0.24) (0.04) (0.14) (0.06) (0.19) (0.01) (0.02)

AC 0.11 0.05 0.00 0.78 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00 0.92
(0.42) (0.17) (0.31) (0.16) (0.06) (0.05) (0.05) (0.04) (0.08) (0.55)

GRIM 0.18 0.09 0.00 0.00 0.79 0.14 0.00 0.00 0.00 0.00 0.05 0.02 0.06 1.00 1.00
(0.15) (0.06) (0.36) (0.39) (0.04) (0.06) (0.05) (0.03) (0.1) (0.15)

TFT 0.36 0.59 0.09 0.00 0.34 0.21 0.04 0.00 0.00 0.00 0.10 0.22 0.01 1.00 0.94
(0.08) (0.19) (0.14) (0.24) (0.04) (0) (0) (0) (0.15) (0.14)

STFT 0.04 0.04 0.48 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.07 1.00 0.70
(0.24) (0.14) (0.05) (0.17) (0.09) (0.04) (0.04) (0.04) (0.04) (0.16)

T8 0.01 0.01 - - - - - - - - - - - - -

T7 0.00 0.00 - - - - - - - - - - - - -

T6 0.00 0.00 - - - - - - - - - - - - -

GRIM2 0.11 0.11 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.03 0.02 1.00 0.78
(0.23) (0.16) (0.18) (0.05) (0.03) (0.01) (0.01) (0.01) (0.24) (0.29)

TF2T 0.10 0.01 0.00 0.27 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.01 1.00 0.95
(0.35) (0.06) (0.12) (0.08) (0.05) (0.05) (0.04) (0.05) (0.05) (0.17)

ALL 0.14 0.12 0.32 0.13 0.01 0.00 0.00 0.00 0.15 0.13

Estimation on late supergames. SFEM estimate for β is 0.94.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.
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Finite with Non-Bayesian Updating

Figure 46: Normalized Expected Payoff by Type Given Estimated Beliefs (Allowing
for Non-Bayesian Updating) in Late Supergames
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Indefinite with Non-Bayesian Updating

Figure 47: Normalized Expected Payoff by Type Given Estimated Beliefs (Allowing
for Non-Bayesian Updating) in Late Supergames
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E.4 New Indefinite Treatments

Table 25: Stage Game in New Treatments

High T Low R
C D C D

C 51, 51 22, 73 C 45, 45 22, 63
D 73, 22 39, 39 D 63, 22 39, 39

Table 26 replicates Table 5 for the new sessions. See discussion in main text
around Table 5 for further information on how to read the Table. Everything was kept
constant as in the original Indefinite game sessions except the changes in the stage
game payoffs. Due to technical issues, we had to restrict session size to 16 subjects.
We used the same seeds (to determine realization of supergame lengths) from the
original Indefinite game, but the exact number of supergames played in each session
showed variation relative to the original sessions, which required an adjustment of
which supergames are included among the early and late supergames.71

Table 26: Session Summary of New Treatments

No. of Game Rounds Total no. of

No. of No. of Actions Actions and Beliefs Obs.

Treatment Session Subjects Supergames Only Early Late Rounds

High T

1 16 7 9, 7, 13, 7 1, 23 77
2 16 8 8, 15, 7, 32 2, 10, 5, 1 97
3 16 8 8, 2, 3, 14 25, 17, 10, 13 103
4 16 8 9, 7, 10, 13 32, 7, 7, 6 96
5 16 12 7, 22, 7, 3 2, 5, 8, 4, 14, 9, 3, 10 119
6 16 8 1, 31, 4, 3 24, 15, 25, 3 127
7 16 11 5, 6, 7, 14 30, 8, 5, 4, 9, 4,33 142
8 14 11 11, 1, 4, 13 9, 5, 2, 4, 2, 2, 11 100

Low R

1 16 8 9, 7, 13, 7 1, 2, 23, 4 85
2 16 8 8, 15, 7, 32 2, 10, 5, 1 97
3 16 7 8, 2, 3, 14 25, 17, 10 90
4 16 6 9, 7, 10, 13 32, 7 80
5 16 10 7, 22, 7, 3 2, 5, 8, 4, 14, 9 101
6 16 6 1, 31, 4, 3 24, 15 94
7 16 10 5, 6, 7, 14 30, 8, 5, 4, 9, 4 109
8 16 12 11, 1, 4, 13 9, 5, 2 4, 2, 2, 11, 3 108

71As before, we aimed for three supergames for both early and late when possible. When that
was not possible, we aimed to have a division of total rounds that was as balanced as possible.
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Table 27: Correlated Random Effects Probit
Determinants of Cooperation in Round One

Low R Low R Low R High T High T High T

Beliefs Are Elicited 0.369∗∗∗ 0.267 0.286 0.936∗∗∗ 0.133 0.155
(0.119) (0.173) (0.208) (0.144) (0.192) (0.204)

Supergame 0.0225 0.0261 0.180∗∗∗ 0.165∗∗∗

(0.0151) (0.0275) (0.0486) (0.0493)

Other Cooperated in Previous Supergame 0.00136 0.505∗∗∗

(0.147) (0.167)

Cooperated in Supergame 1 2.247∗∗∗ 1.766∗∗∗

(0.264) (0.328)

Risk Measure -0.0112 0.0230∗∗∗

(0.00762) (0.00536)

Length of Previous Supergame 0.00382
(0.00814)

Constant -0.442∗∗ -0.498∗∗ -0.910∗ 0.501∗∗∗ 0.0689 -2.104∗∗∗

(0.203) (0.214) (0.469) (0.188) (0.236) (0.265)

Observations 1072 1072 944 1146 1146 1020

Standard errors clustered (at the session level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

All variables refer to behavior in Round 1.

Risk Measure is equal to the number of boxes collected in the bomb task.
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Table 28: Correlated Random Effects Probit (Marginal Effects)
Determinants of Cooperation in Round One

Low R Low R Low R High T High T High T

Beliefs Are Elicited 0.0747∗∗∗ 0.0540 0.0501 0.175∗∗∗ 0.0239 0.0242
(0.0228) (0.0340) (0.0344) (0.0326) (0.0354) (0.0325)

Supergame 0.00455 0.00457 0.0324∗∗∗ 0.0257∗∗∗

(0.00311) (0.00501) (0.00870) (0.00639)

Other Cooperated in Previous Supergame 0.000238 0.0788∗∗∗

(0.0257) (0.0237)

Cooperated in Supergame 1 0.393∗∗∗ 0.276∗∗∗

(0.0323) (0.0505)

Risk Measure -0.00196 0.00359∗∗∗

(0.00134) (0.000753)

Length of Previous Supergame 0.000596
(0.00130)

Observations 1072 1072 944 1146 1146 1020

Standard errors clustered (at the session level) in parentheses. ∗∗∗1%, ∗∗5%, ∗10% significance.

All variables refer to behavior in Round 1.

Risk Measure is equal to the number of boxes collected in the bomb task.
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Table 29: Estimates for High T on Late Supergames

Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃

AD 0.11 0.13 0.40 0.14 0.26 0.00 0.04 [0.00] [0.00] [0.00] 0.08 0.08 0.05 1.00
(0.19) (0.1) (0.15) (0.1) (0.06) (0.08) (0.08)

AC 0.06 0.03 0.40 0.05 0.27 0.24 0.00 0.00 0.00 0.00 0.02 0.02 0.06 1.00
(0.19) (0.15) (0.24) (0.21) (0.09) (0.02) (0.02) (0.02) (0.05) (0.03)

GRIM 0.24 0.13 0.22 0.00 0.50 0.23 0.06 0.00 0.00 0.00 0.00 0.00 0.02 1.00
(0.08) (0.03) (0.16) (0.15) (0.04) (0.02) (0.01) (0.01) (0.03) (0.05)

TFT 0.29 0.46 0.26 0.00 0.41 0.19 0.00 0.00 0.00 0.00 0.00 0.13 0.02 1.00
(0.08) (0.03) (0.12) (0.09) (0.02) (0) (0) (0) (0.04) (0.06)

STFT 0.02 0.02 0.44 0.00 0.00 0.00 0.56 [0.00] [0.00] [0.00] 0.00 0.00 0.07 1.00
(0.22) (0.05) (0.03) (0.03) (0.28) (0.07) (0.07)

T8 0.00 0.00 - - - - - - - - - - - -

T7 0.00 0.00 - - - - - - - - - - - -

T6 0.01 0.01 - - - - - - - - - - - -

GRIM2 0.09 0.03 0.00 0.10 0.13 0.10 0.00 0.00 0.14 0.26 0.09 0.19 0.09 1.00
(0.06) (0.16) (0.11) (0.05) (0.07) (0.06) (0.08) (0.11) (0.07) (0.11)

TF2T 0.18 0.18 0.10 0.00 0.42 0.24 0.10 0.00 0.00 0.00 0.00 0.13 0.06 1.00
(0.09) (0.09) (0.25) (0.23) (0.1) (0.03) (0) (0) (0.03) (0.18)

ALL 0.23 0.03 0.37 0.18 0.05 0.00 0.01 0.02 0.02 0.09

Estimation on late supergames. SFEM estimate for β is 0.92.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.

Table 30: Estimates for Low R on Late Supergames

Share Estimated Beliefs - p̃

SFEM TYPING AD AC GRIM TFT STFT T8 T7 T6 GRIM2 TF2T ν β̃

AD 0.29 0.32 0.56 0.00 0.14 0.00 0.25 [0.00] [0.00] [0.00] 0.02 0.03 0.06 1.00
(0.22) (0) (0.09) (0.03) (0.23) (0.03) (0.04)

AC 0.02 0.03 0.89 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.02 1.00
(0.38) (0.02) (0.02) (0.04) (0.09) (0.02) (0.02) (0.02) (0.02) (0.04)

GRIM 0.18 0.16 0.48 0.00 0.50 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.06 1.00
(0.18) (0.05) (0.19) (0.07) (0.04) (0.03) (0.02) (0.02) (0.04) (0.09)

TFT 0.12 0.06 0.57 0.00 0.16 0.00 0.00 [0.00] 0.28 0.00 0.00 0.00 0.13 1.00
(0.27) (0.09) (0.12) (0.05) (0.07) (0.16) (0.11) (0.07) (0.13)

STFT 0.17 0.15 0.38 0.01 0.02 0.05 0.55 [0.00] [0.00] [0.00] 0.00 0.00 0.07 1.00
(0.18) (0.01) (0.02) (0.02) (0.19) (0.02) (0.02)

T8 0.00 0.00 - - - - - - - - - - - -

T7 0.00 0.00 - - - - - - - - - - - -

T6 0.00 0.00 - - - - - - - - - - - -

GRIM2 0.18 0.26 0.31 0.00 0.31 0.00 0.19 0.00 0.00 0.00 0.00 0.19 0.02 1.00
(0.04) (0.01) (0.05) (0.02) (0.03) (0) (0) (0) (0.06) (0.06)

TF2T 0.04 0.02 0.93 0.00 0.00 0.00 0.00 [0.00] 0.00 0.00 0.07 0.00 0.39 1.00
(0.45) (0.02) (0.05) (0.07) (0.26) (0.04) (0.03) (0.13) (0.06)

ALL 0.49 0.00 0.21 0.01 0.20 0.00 0.03 0.00 0.01 0.04

Estimation on late supergames. SFEM estimate for β is 0.89.
Estimates in [square brackets] are not estimated due to collinearity.
Estimates in (brackets) show bootstrapped standard deviation.
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Figure 53: Normalized Expected Payoff by Type Given Strategy Distribution in Late
Supergames
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Figure 54: Overestimation in Beliefs of the Prevalence of One’s Own Startegyt
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F8	

IN
STRU

CTIO
N
S	

	You	are	about	to	participate	in	an	experim
ent	on	decision-m

aking.	W
hat	you	earn	

depends	partly	on	your	decisions,	partly	on	the	decisions	of	others,	and	partly	on	
chance.	Please	turn	off	cell	phones	and	sim

ilar	devices	now
.	Please	do	not	talk	or	in	

any	w
ay	try	to	com

m
unicate	w

ith	other	participants.		

W
e	w

ill	start	w
ith	a	brief	instruction	period.	If	you	have	any	questions	during	this	

period,	raise	your	hand	and	your	question	w
ill	be	answ

ered	so	everyone	can	hear.	

This	experim
ent	has	three	parts;	these	instructions	are	for	the	first	part.	Once	this	

part	is	over,	instructions	for	the	next	part	w
ill	be	given	to	you.	Your	decisions	in	this	

part	have	no	influence	on	the	other	parts.	

General	Instructions	
	

1. 
In	this	experim

ent	you	w
ill	be	repeatedly	m

atched	w
ith	a	random

ly	selected	
person	in	the	room

.		During	each	m
atch,	you	w

ill	be	asked	to	m
ake	decisions	

over	a	sequence	of	rounds.	
	2. 

The	points	you	can	obtain	in	each	round	of	a	m
atch	depend	on	your	choice	

and	the	choice	of	the	person	you	are	paired	w
ith.	The	table	below

	represents	
all	the	possible	outcom

es:	
	

Your		
Choice	

O
ther’s	Choice	

1	
2	

1	
51,	51	

22	63	

2	
63,	22	

39,	39	

	The	table	show
s	the	points	associated	w

ith	each	com
bination	of	your	choice	

and	choice	of	the	person	you	are	paired	w
ith.	The	first	entry	in	each	cell	

represents	the	points	you	obtain	for	that	round,	w
hile	the	second	entry	(in	

italics)	represents	the	points	obtained	by	the	person	you	are	paired	w
ith.	

	That	is,	in	each	round	of	a	m
atch,	if:	

- 
(1,1):	Your	choice	is	1	and	the	other’s	choice	is	1,	you	each	m

ake	51.	
- 

(1,2):	Your	choice	is	1	and	the	other’s	choice	is	2,	you	m
ake	22	w

hile	
the	other	m

akes	63.	
- 

(2,1):	Your	choice	is	2	and	the	other’s	choice	is	1,	you	m
ake	63	w

hile	
the	other	m

akes	22.	
- 

(2,2):	Your	choice	is	2	and	the	other’s	choice	is	2,	you	each	m
ake	39.	

	

3. 
At	the	end	of	each	round,	you	w

ill	see	your	choice	(1	or	2)	and	the	choice	of	
the	person	you	w

ere	paired	w
ith	(1	or	2).		
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4. 
Each	m

atch	w
ill	last	for	8	rounds.		

	
5. 

Once	a	m
atch	ends,	you	w

ill	be	paired	random
ly	w

ith	som
eone	for	a	new

	
m
atch.	You	w

ill	not	be	able	to	identify	w
ho	you've	interacted	w

ith	in	previous	
or	future	m

atches.		
	

6. 
Each	part	of	the	experim

ent	w
ill	generate	points	that	count	tow

ards	your	
final	payoff.	In	this	part,	one	m

atch	w
ill	be	random

ly	selected	to	count	
tow

ards	your	final	payoff.	Points	earned	in	this	m
atch	w

ill	be	converted	to	
dollars	at	a	rate	of	3	cents	per	point.	You	w

ill	receive	an	additional	$8	show
	

up	fee	for	your	participation.	You	w
ill	only	be	inform

ed	of	your	payoffs	at	the	
end	of	the	experim

ent.	
	7. 

This	part	w
ill	last	for	four	m

atches.		
	

				Are	there	any	questions?	
	Before	w

e	start,	let	m
e	rem

ind	you	that:	
	

• 
Each	m

atch	w
ill	last	for	8	rounds.	You	w

ill	interact	w
ith	the	sam

e	person	for	
the	entire	m

atch.	
	

• 
Your	choice	and	the	choice	of	the	person	you	are	paired	w

ith	w
ill	be	show

n	
to	both	of	you	at	the	end	of	the	round.	

	
• 

Points	obtained	in	each	round	depend	on	these	choices.		
	

• 
After	a	m

atch	is	finished,	you	w
ill	be	random

ly	paired	w
ith	som

eone	for	a	
new

	m
atch.	
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68



F8	

General	Instructions	for	Part	2	
	The	basic	structure	of	this	part	is	very	sim

ilar	to	part	1.	How
	the	m

atch	proceeds	
and	how

	you	are	paired	w
ith	others	w

ill	rem
ain	the	sam

e.		
	How

ever,	in	this	part,	you	w
ill	have	one	m

ore	task.	In	each	round	of	a	m
atch,	after	

you	m
ake	a	choice,	w

e	w
ill	ask	you	to	subm

it	your	belief	about	the	choice	of	the	
person	you	are	paired	w

ith.		

To	indicate	your	beliefs,	you	w
ill	use	a	slider.	W

here	you	m
ove	the	slider	w

ill	
represent	your	best	assessm

ent	of	the	likelihood	(expressed	as	chance	out	of	100)	
that	the	person	you	are	paired	w

ith	chose	1	or	2.		

Tw
o	different	m

atches	from
	this	part	w

ill	be	random
ly	selected	to	count	tow

ards	
paym

ent.	For	one	of	these,	you	w
ill	receive	the	points	associated	w

ith	your	choices	
as	in	part	1.	For	the	other,	the	com

puter	w
ill	random

ly	choose	one	round	from
	that	

m
atch	for	paym

ent	for	beliefs.	The	belief	that	you	report	in	that	round	w
ill	

determ
ine	your	chance	of	w

inning	a	prize	of	50	points.	

To	determ
ine	your	paym

ent,	the	com
puter	w

ill	random
ly	draw

	tw
o	num

bers.	For	
each	draw

,	all	num
bers	betw

een	0	and	100	(including	decim
al	num

bers)	are	equally	
likely	to	be	selected.	Draw

s	are	independent	in	the	sense	that	the	outcom
e	of	the	

first	draw
	in	no	w

ay	affects	the	outcom
e	of	the	second	draw

.		

If	the	person	you	are	paired	w
ith	chose	1	in	that	round	and	the	num

ber	you	
indicated	as	the	likelihood	that	the	other	chose	1	is	larger	than	either	of	the	tw

o	
draw

s,	you	w
ill	w

in	the	prize.		

If	the	person	you	are	paired	w
ith	chose	2	in	that	round	and	the	num

ber	you	
indicated	as	the	likelihood	that	the	other	chose	2	is	larger	than	either	of	the	tw

o	
draw

s,	you	w
ill	w

in	the	prize.		

The	rules	that	determ
ine	your	chance	of	w

inning	this	prize	w
ere	purposefully	

designed	so	that	you	have	the	greatest	chance	of	w
inning	the	prize	w

hen	you	
answ

er	the	question	w
ith	your	true	assessm

ent	on	how
	likely	the	person	you	are	

paired	w
ith	chose	1	or	2.	

The	first	m
atch	to	end	after	60	m

inutes	of	play	(including	the	first	part)	w
ill	m

ark	
the	end	of	the	experim

ent.	
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General	Instructions	for	Part	3	
	On	the	screen,	you	see	a	field	com

posed	of	100	boxes,	as	show
n	below

	(the	num
bers	

on	each	box	w
ill	not	be	visible):		

	
1 

2 
3 

4 
5 

6 
7 

8 
9 

10 
11 

12 
13 

14 
15 

16 
17 

18 
19 

20 
21 

22 
23 

24 
25 

26 
27 

28 
29 

30 
31 

32 
33 

34 
35 

36 
37 

38 
39 

40 
41 

42 
43 

44 
45 

46 
47 

48 
49 

50 
51 

52 
53 

54 
55 

56 
57 

58 
59 

60 
61 

62 
63 

64 
65 

66 
67 

68 
69 

70 
71 

72 
73 

74 
75 

76 
77 

78 
79 

80 
81 

82 
83 

84 
85 

86 
87 

88 
89 

90 
91 

92 
93 

94 
95 

96 
97 

98 
99 

100 
	There	is	also	a	Start	button—

please	do	not	click	on	this	button	until	w
e	finish	

reading	the	instructions.	Once	the	Start	button	is	clicked,	the	experim
ent	begins.	

Every	tw
o	seconds,	a	box	w

ill	be	collected,	beginning	w
ith	Box	#1	(top	left)	and	

ending	w
ith	Box	#100	(bottom

	right).	

You	earn	3	cents	for	every	box	that	is	collected.		Once	collected,	the	box	changes	
from

	dark	grey	to	light	grey,	and	your	earnings	are	updated	accordingly.	At	any	
m
om

ent,	on	the	inform
ation	box,	you	can	see	the	num

ber	of	boxes	collected	so	far	
and	the	am

ount	earned	up	to	that	point.	

Such	earnings	are	only	potential,	how
ever,	because	behind	one	of	these	boxes	a	

bom
b	is	hidden	that	destroys	everything	that	has	been	collected	in	this	part	of	the	

experim
ent.	You	do	not	know

	the	location	of	the	bom
b.	M

oreover,	even	if	you	collect	
the	bom

b,	you	w
ill	not	know

	it	until	the	end	of	the	experim
ent.	Your	task	is	to	

choose	w
hen	to	stop	the	collecting	process.	You	stop	the	process	by	hitting	‘Stop’	at	

any	tim
e.	

Payoffs:	If	at	the	m
om

ent	you	hit	‘Stop’	none	of	the	boxes	you	have	collected	contain	
the	bom

b,	you	w
ill	receive	the	am

ount	of	m
oney	you	have	accum

ulated.	If	at	the	
m
om

ent	you	hit	‘Stop’	you	happen	to	have	collected	the	box	w
ith	the	bom

b,	then	you	
w
ill	earn	$0.	Rem

em
ber	that	you	w

ill	not	be	told	if	a	box	that	you	have	collected	has	
or	does	not	have	the	bom

b	until	after	you	hit	the	‘Stop’	button.	So	the	earnings	you	
see	on	the	screen	are	only	potential	earnings,	and	you	w

ill	earn	those	earnings	only	
if	none	of	the	boxes	you	have	collected	had	the	bom

b.	

Location	of	the	Bom
b:	The	interface	w

ill	random
ly	choose	a	num

ber	betw
een	1	

and	100.	All	num
bers	are	equally	likely.	The	interface	w

ill	then	place	the	bom
b	in	

the	box	w
ith	the	random

ly	chosen	num
ber.	
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G Proof of the Cooperativeness Order

When each strategy is denoted by a finite automaton, we assume that an implementa-
tion error is made in the choice of an action in each state, and not in transition from
the current state to the next. We also assume that the errors are independent and
identically distributed between the players and across rounds. Denote by ε ∈ [0, 1

2
]

the probability of such an error.72 For the analytical comparison of cooperative lev-
els, we assume that ε is small. In some cases considered below, this implies that we
treat ε2 as negligible. In other cases, however, we need to consider the difference in
the order of ε2 and treat ε3 as negligible. Let p = (1− ε)2, q = ε(1− ε) and r = ε2.
The normalized stage payoffs with implementation errors are given by

gCC = p+ q(1 + g − ℓ), gCD = p(−ℓ) + q + r(1 + g),
gCD = p(1 + g) + q + r(−ℓ), gDD = q(1 + g − ℓ) + r,

where g = 1 and ℓ = 17/12 ≈ 1.416 in our implementation. Define

g =


gCC

gCD

gDC

gDD

 .

We consider a Markov process induced by a pair of the same strategy implemented
with errors ε. Let Θ be the set of states of this Markov process. For each strategy
that can be expressed as an S-state automaton, Θ can have up to S × S elements.
The Markov process is defined over the set ∆Θ of distributions over those states. Let
ω1 ∈ ∆Θ be the row vector representing the initial distribution and A = (ast)s,t∈Θ be
the transition matrix: ast is the probability that the next state is t when the current
state is s. The distribution ω2 over round 2 states is given by ω2 = ω1A, and the
distribution ωt over round t states is given by ωt = ω1At−1. With the distribution ω
over states, the expected stage payoff to a player is given by ωg. In the case of the
finite games, the average payoff over eight rounds can be computed as

1

8

8∑
t=1

ωtg =
1

8
ω1

(
I + A1 + · · ·+ A7

)
g. (12)

72Hence, ε = 1− β for the parameter β in SFEM.
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In the case of the indefinite games, the average discounted payoff can be computed
as

(1− δ)
∞∑
t=1

ωtδt−1 g = (1− δ)ω1
(
I + δA1 + · · ·+ δtAt + · · ·

)
g

= (1− δ)ω1(I − δA)−1 g,

(13)

where δ = 7/8 in our implementation. If we denote by vθ the average discounted
payoff in the indefinite games along the Markov process with the initial state θ (i.e.,
the initial distribution ω1 places probability one on state θ), and by v = (vθ)θ∈Θ the
corresponding column vector, then (13) implies the recursive equation

v = (1− δ) (I − δA)−1 g ⇔ v = (1− δ) g + δAv. (14)

G.0.1 Indefinite games with small implementation errors

1. TFT and STFT: These strategies have two states 0 and 1. Both strate-
gies play C in state 0, and D in state 1. Because the implementation er-
rors occur independently between the two players, state transitions do not
synchronize between them. Accordingly, the Markov process has four states
Θ = {(0, 0), (0, 1), (1, 0), (1, 1)}. The initial distribution is ω1 = (1, 0, 0, 0)
if both play TFT and ω1 = (0, 0, 0, 1) if both play STFT. We hence have
vTFT = v00 and vSTFT = v11. The transition matrix is given by

A =


p q q r
q r p q
q p r q
r q q p

 .

Ignoring the terms of order ε2, we can write (14) as
v00
v01
v10
v11

 = (1− δ)


gCC

gCD

gDC

gDD

+ δ


1− 2ε ε ε 0

ε 0 1− 2ε ε
ε 1− 2ε 0 ε
0 ε ε 1− 2ε



v00
v01
v10
v11

 . (15)

It follows from the second and third rows of (15) that[
v01
v10

]
= (1− δ)

[
gCD

gDC

]
+ δ

[
v10
v01

]
+ δε

[
v00 + v11 − 2v10
v00 + v11 − 2v01

]
= (1− δ)

[
gCD

gDC

]
+ δ

[
v10
v01

]
+O(ε),
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where O(ε) is the term of order ε. Hence,[
1 −δ
−δ 1

] [
v01
v10

]
= (1− δ)

[
gCD

gDC

]
+O(ε).

Solving this, we get [
v01
v10

]
=

1

1 + δ

[
1 δ
δ 1

] [
gCD

gDC

]
+O(ε).

Substituting this into the first and fourth rows of (15), we obtain[
v00
v11

]
= (1− δ)

[
gCC

gDD

]
+ δ(1− 2ε)

[
v00
v11

]
+ δε(1 + δ)

[
v01 + v10
v01 + v10

]
= (1− δ)

[
gCC

gDD

]
+ δ(1− 2ε)

[
v00
v11

]
+ δε

[
gCD + gDC

gCD + gDC

]
+O(ε2).

This can be rewritten as[
1− δ + 2δε 0

0 1− δ + 2δε

] [
v00
v11

]
= (1− δ)

[
gCC

gDD

]
+ δε

[
gCD + gDC

gCD + gDC

]
+O(ε2).

Ignoring the terms involving ε2, we hence obtain[
vTFT

vSTFT

]
=

[
v00
v11

]
=

1

1− δ + 2δε

[
(1− δ) gCC + δε(gCD + gDC)
(1− δ) gDD + δε(gCD + gDC)

]
.

2. Grim: The strategy has two states 0 and 1 where it chooses C and D, re-
spectively. State transitions are synchronized between the two players when
they both play Grim so that the Markov process has only two states Θ =
{(0, 0), (1, 1)}. We have ω1 = (1, 0) so that vGrim = v00. The transition matrix
is given by

A =

[
p 1− p
0 1

]
.

Ignoring the terms of order ε2, we can write (14) as[
v00
v11

]
= (1− δ)

[
gCC

gDD

]
+ δ

[
1− 2ε 2ε

0 1

] [
v00
v11

]
This yields

vGrim = v00 =
(1− δ)gCC + 2δεgDD

1− δ + 2δε
.
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3. Grim2: The strategy has three states 0, 1 and 2, where it chooses C, C, and
D, respectively. State transitions are synchronized between the two players so
that the Markov process has three states Θ = {(0, 0), (1, 1), (2, 2)}. We have
ω1 = (1, 0, 0) so that vGrim2 = v00. The transition matrix is given by

A =

p 1− p 0
p 0 1− p
0 0 1

 .

We can write (14) asv00v11
v22

 = (1− δ)

gCC

gCC

gDD

+ δ

(1− ε)2 ε(2− ε) 0
(1− ε)2 0 ε(2− ε)

0 0 1

v00v11
v22

 .

Solving this, we obtain

vGrim2 = v00 =
(1− δ){1 + δε(2− ε)}gCC + 4δ2ε2gDD

(1− δ){1 + δε(2− ε)}+ 4δ2ε2
.

4. TF2T: The strategy has three states 0, 1 and 2, where the action choices
are C, C, and D, respectively. Since state transitions are not synchronized,
the Markov process has 3 × 3 = 9 states Θ = {(0, 0), . . . , (2, 2)}. We have
ω1 = (1, 0, . . . , 0) so that vTF2T = v00. The transition matrix is given by

A =



p q 0 q r 0 0 0 0
p 0 q q 0 r 0 0 0
q 0 r p 0 q 0 0 0
p q 0 0 0 0 q r 0
p 0 q 0 0 0 q 0 r
q 0 r 0 0 0 p 0 q
q p 0 0 0 0 r q 0
q 0 p 0 0 0 r 0 q
r 0 q 0 0 0 q 0 p


.

Using (14), we have

v11 = (1− δ)gCC + δv00 +O(ε)

v02 = (1− δ)gCD + δv10 +O(ε)

v20 = (1− δ)gDC + δv01 +O(ε).

(16)
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Substituting these into the recursive equations for v01 and v10, we obtain[
v01
v10

]
= (1− δ)

[
gCC

gCC

]
+ δ(1− 2ε)

[
v00
v00

]
+ δ(1− δ)ε

[
gCD

gDC

]
+ δε

[
0 1 + δ

1 + δ 0

] [
v01
v10

]
+O(ε2),

which yields[
v01
v10

]
=

1− δ

1− δ2ε2(1 + δ)2

[
1 δε(1 + δ)

δε(1 + δ) 1

] [
gCC + δεgCD

gCC + δεgDC

]
+

δ(1− 2ε)v00
1− δ2ε2(1 + δ)2

[
1 δε(1 + δ)

δε(1 + δ) 1

] [
1
1

]
+O(ε2).

It then follows that

v01 + v10 =
(1− δ){1 + δε(1 + δ)}

1− δ2ε2(1 + δ)2
{2gCC + δε(gCD + gDC)}

+
2δ(1− 2ε){1 + δε(1 + δ)}

1− δ2ε2(1 + δ)2
v00 +O(ε2)

=
(1− δ)

1− δε(1 + δ)
{2gCC + δε(gCD + gDC)}

+
2δ(1− 2ε)

1− δε(1 + δ)
v00 +O(ε2).

(17)

On the other hand, the recursive equation for v00 yields

v00 =
(1− δ)gCC + δε(1− ε)(v01 + v10) + δε2v11

1− δ(1− ε)2
. (18)

Substituting (16) and (17) into (18) and ignoring the terms of order ε3, we
obtain

vTF2T = v00 =
{1 + δ(1− δ)ε− δε2}gCC + δ2ε2(gCD + gDC)

1 + δ(1− δ)ε− δ(1− 2δ)ε2
.

As for the strategies AC, AD, and T6-T8, it can be readily verified that their coop-
erativeness is given as follows.

5. AD: vAD = gDD.
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6. AC: vAC = gCC .

7. T8: vT8 = (1− δ7) gCC + δ7 gDD +O(ε).

8. T7: vT7 = (1− δ6) gCC + δ6 gDD +O(ε).

9. T6: vT6 = (1− δ5) gCC + δ5 gDD +O(ε).

Combining the above cases, we can rank the ten strategies from the least cooperative
to the most cooperative in the indefinite games as follows:

AD ≪ STFT ≪ T6 ≪ T7 ≪ T8

≪ Grim ≪ TFT ≪ Grim2 < TF2T < AC,

where ≪, ≪ and < represent domination in the orders of ε0(= 1), ε, and ε2,
respectively.

G.0.2 General implementation errors

When the probability ε ∈ [0, 1
2
] of implementation errors is not necessarily small,

the cooperativeness of the strategies TFT, STFT, Grim, Grim2, and TF2T can be
computed numerically using (12) for the finite games and by (13) for the indefinite
games, whereas the cooperativeness of AC and AD equals gCC and gDD, respectively,
as above. Consider now the strategy Tk (k = 6, 7, 8). In the indefinite games, its
cooperativeness can be computed as

vTk = (1− δ)
1− (δp)k−1

1− δp
gCC + δ

{
(1− p)

1− (δp)k−2

1− δp
+ (δp)k−2

}
gDD.

In the finite games, suppose that t < k and let vt denote the sum of stage payoffs
in rounds t, t + 1, . . . , 8 when Tk still specifies action C in round t. We have the
following recursive equations:

vk−1 = gCC + (9− k)gDD,

vk−2 = gCC + pvk−1 + (1− p)(10− k)gDD,

...

v2 = gCC + pv3 + (1− p) · 6gDD,

v1 = gCC + pv2 + (1− p) · 7gDD.

The cooperativeness of Tk then equals vTk = v1
8
.
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Simon Gächter and Elke Renner. The effects of (incentivized) belief elicitation in public goods
experiments. Experimental Economics, 13(3):364–377, September 2010.

Kyle Hyndman, Antoine Terracol, and Jonathan Vaksmann. Strategic interactions and belief for-
mation: an experiment. Applied Economics Letters, 17(17):1681–1685, 2010.

76
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