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Abstract

I study the distributions of unemployment, vacancies, and wages across lo-

cal labor markets in an economy where workers and jobs are matched and

mismatched based on more explicit assumptions and aggregation principles than

in the reduced-form aggregate matching-function approach. The endogenous

matching process formulated here is flexible and has practical value for applied

work. Local and aggregate labor market adjustments to local productivity and

aggregate demand shocks reproduce empirical Beveridge and wage curve pat-

terns, offer an alternative perspective on empirical indices of mismatch unem-

ployment, and deliver an endogenous and commonly used reduced-form aggre-

gate matching function.
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1 Introduction

This paper studies how unemployment, vacancies, and wages vary across disaggregated

labor markets through the lens of a model of mismatch. Unemployment and vacancies

have been the purview of the matching-function based approach (Pissarides [52]). The

matching-function approach assumes that there are some unemployed workers looking for

work, and some vacant positions to be filled. This approach is not focused on the causes of a

worker becoming unemployed or of an unfilled position arising in the first place, but rather

on frictions that prevent workers, once unemployed, from finding a job. The matching-

function based approach is tractable, but informational and market imperfections intrinsic

to the matching process are rarely made explicit. Instead, unspecified frictions influence

equilibrium outcomes in reduced-form. The matching function, where these frictions are

embedded, is an aggregate object that depends on the total numbers of unemployed workers

and of vacant jobs.

I consider an economy where the ways workers and jobs are matched and mismatched

rely on more explicit assumptions and aggregation principles that under the reduced-form

matching approach. The spatial and informational structure is spelled out in detail, and

the distributions of unemployment, vacancies, and real wages arise from an endogenous

matching process that depends on individual decisions and their interplay with frictions

and shocks embedded in the economic environment. The economy consists of spatially

separated markets (i.e., “islands,” as in Lucas and Prescott [42]) and the equilibrium is an

assignment of workers and jobs to locations. Agents are aware of the frictions they face and

their decisions are shaped by these frictions. Workers and jobs are able to move but, once

in place, the short side of the market determines the number of workers and jobs used, as

in Lagos [36]. In equilibrium, some locations feature a shortage of jobs (unemployment)

while others feature a shortage of workers (vacancies). As in daily labor markets, workers

know what wages to expect if they are hired, but do not know if local conditions will

ensure employment. Local labor markets are perfectly competitive and clear, but only in

the ex ante sense of incomplete markets. In the absence of complete insurance against labor

demand uncertainty, surpluses become a feature of the competitive equilibrium.
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The paper raises several points in relation to the traditional matching-function based

approach. The first is a methodological point. The matching-function approach recognizes

that “frictions derive from information imperfections about potential trading partners, het-

erogeneities, the absence of perfect insurance markets, slow mobility, congestion from large

numbers, and other similar factors,” but it is often argued that “modeling each one of these

explicitly would introduce intractable complexities in macroeconomic models” (Petrongolo

and Pissarides [50], p. 390). The main contribution of the paper is to show that an endoge-

nous matching process may be formulated without making the model intractable or rigid for

applied work. The model economy is able to explain the dynamics of local unemployment,

vacancies, and wages over time, as well as their distribution across labor markets. Local and

aggregate economies, for example, trace out perfectly negative Beveridge curves and exhibit

stationary differences in unemployment, vacancies, and wages consistent with disaggregated

labor market data.

The second is a measurement point at the base of the importance of mismatch unem-

ployment. Several empirical mismatch indices have been proposed to measure mismatch.1

In these indices, the matching process and the distributions of unemployment and vacan-

cies are exogenous. Moreover, unemployed workers are required to be indifferent about

where they search for work. In some cases, mismatch is measured relative to a benchmark

with no dispersion in unemployment. The distributions of unemployment and vacancies in

the present model are endogenous and reflect efficient adjustments to aggregate and local

shocks, instead of inefficiencies. Not taking these distributions as given puts less weight on

the dispersion of unemployment as a measure of mismatch, as there are no gains tied to

the reallocation of unemployed workers. For instance, while outward shifts in the Beveridge

curve have been viewed as evidence of an increase in mismatch (Petrongolo and Pissarides

[50]), shifts in local and aggregate Beveridge curves driven by aggregate demand shocks

suggest a decline rather than higher measured mismatch.

1Jackman and Roper [31], Jackman et al. [32], and Layard et al. [39] explored the idea that the high

and persistent European unemployment rates in the 1980s were driven by mismatch. They proposed several

mismatch indices that have led to puzzling findings; see, e.g., Entorf [16] and Padoa-Schioppa [49]. Şahin

et al. [55], Herz and van Rens [27], Marinescu and Rathelot [43], and Barichon and Figura [6] refined the

measurement of mismatch and matching efficiency. Şahin et al. [55] found a secondary role for mismatch

unemployment during the Great Recession; see, however, Herz and van Rens [27] for a dissenting view.
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Finally, the model economy incorporates optimal individual decisions and explicit aggre-

gation. Since the formulation of the Lucas critique, economists have been wary of accepting

reduced-form aggregate relationships as structurally-invariant, as such relationships may

perform poorly in response to policy regime changes or shocks. When agents are aware of

the frictions they face, policy changes affect their search strategies and the matching process,

which can lead to potentially misleading results (Lagos [36]). In the matching-function based

approach, for example, unmatched resources coexist even within finely disaggregated seg-

ments of the labor market. Adding unmatched resources to treated local markets must

necessarily increase local employment and output (Kline and Moretti [34]). If resources are

mismatched, adding unmatched workers to treated locations with job shortages would be

wasteful. In the model economy, the local number of unemployment and vacancies is not

sufficient to evaluate place-based policies because changes in the matching process influence

even untreated locations.

To make mismatch models appealing for applied work, it is essential to address lim-

itations related to price adjustments and distributional aspects in existing work. Lagos

[36] considered an endogenous matching process based on exogenous prices, while wages in

Shimer [56] and Mortensen [47] rest in a two-point distribution. The different degree of

rigidity in ex ante and ex post outcomes allows local markets to adjust not only through

quantities, but also through prices. Wages here depend continuously on the number of local

workers and jobs, as in Hawkins [24], and unemployment and wages are jointly determined.

For instance, under log-normal productivity shocks, the distribution of unemployment rates

becomes Pareto with a tail behavior consistent with the empirical distribution of unemploy-

ment rates across various labor market segments in the US, while frictional wages settle at

a stationary double Pareto distribution, also consistent with empirical wage distributions

(Toda [58]). Finally, while Shimer [56] and Mortensen [47] characterize an endogenous ag-

gregate matching function numerically, I derive an approximate Cobb-Douglas matching

function, a popular functional form in applied work.2

2The derivation is related to Houthakker [30] and Lagos [37], but considers uncertain states of nature.

Alternative micro-founded matching functions deal with stochastic pairwise trade arrangements based on

urn-ball or a telephone-line queuing processes; see, e.g., Albrecht et al. [3], Petrongolo and Pissarides [50],

and Stevens [57]. Coordination problems are central in the microeconomic approach proposed by Burdett
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The main abstraction is the absence of aggregate uncertainty. In incomplete market

models, equilibrium prices depend on the distribution of the local state, which becomes

an infinite-dimensional endogenous state variable under aggregate uncertainty. It may be

possible to bypass the central limit theorem through granular shocks, as in Gabaix [19];

to study eternal boom and bust episodes where aggregate shocks persist indefinitely, as in

Gouge and King [21]; to study aggregate shocks using the numerical approach of Krusell

and Smith [35]; or to switch off general equilibrium interactions, as in the block recursive

approach in Carrillo-Tudela and Visschers [10]. Before addressing aggregate uncertainty, it

is important to begin by accounting for stationary differences across local markets.

Some related literature. Recent work on mismatch has proceeded on two fronts best

represented by Shimer [56] and Şahin et al. [55]. These fronts focus on the aggregate

implications of mismatch, while I place greater emphasis on its disaggregate implications.

I focus on differential adjustments across local labor markets and the dynamic behavior of

local unemployment rates, vacancies rates, and wages.3

Shimer [56] studied an economy where workers and jobs were randomly assigned across

locations, and employment was determined by the short side of the market, as in Lagos

[36]. Shimer [56], as well as Mortensen [47], derived an aggregate matching function and

reproduced cyclical movements along an aggregate Beveridge curve. Shimer [56], however,

did not confront any disaggregated labor market data. In Shimer [56], all locations are

identical and there is no wage dispersion, as labor markets clear in an ex post sense. Ex

post market clearing is perhaps unsatisfactory for a number of reasons. First, it implies zero

wages in locations with a surplus of workers. Second, an all-or-nothing wage is sensitive to

small changes in local labor market conditions. A marginal change in the number of local

workers or jobs leads to a discontinuous change in wages in marginal locations and to no

changes in inframarginal locations. This high sensitivity played a central role in Shimer’s

[56] ability to match aggregate business cycle volatilities (Hawkins [24]).

et al. [8], while Heinesen [26] and Lambert [38] derived matching functions based on stochastic shortages.
3Distributional aspects were central in the study of sectoral reallocation by Lilien [40] and Abraham and

Katz [1]. Gallipoli and Pelloni [20], in a recent survey, noted that analyses gravitate around two views:

Lucas and Prescott’s [42] “island” approach (e.g., Rogerson [54]) and the reduced-form aggregate matching-

function approach (e.g., Hosios [29]). Carrillo-Tudela and Visschers [10], Pilossoph [51], and Chang [11] are

just a few recent papers that integrate both approaches.
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Şahin et al. [55] measured the importance of mismatch in aggregate unemployment

through indices based on a reduced-form aggregate matching function; see also Herz and van

Rens [27], Marinescu and Rathelot [43], and Barichon and Figura [6]. Local unemployment

rates are important in this strand of the literature, but they are treated as exogenous and,

for unspecified reasons, as inefficient. Inefficiencies are tied to the concavity of the aggregate

matching function and are assumed worse when the distribution of unemployment is more

unequal. Market efficiency is associated with benchmarks that, through arbitrage, reduce

labor market dispersion. As a consequence, “mismatch” could be solved if unemployed

workers are costlessly reallocated across markets. In Herz and van Rens ([27], p. 1620), for

example, job-finding probabilities should be equalized across labor markets: Regardless of

their skills, unemployed workers should be indifferent to the choice of the local labor market

of the economy in which they search for work.

There is good reason to believe that not all labor market heterogeneity is inefficient. The

dispersion in disaggregated labor market data in the model reflects, at least in part, ad-

justments to changes in aggregate demand and local productivities. Because the dispersion

of unemployment is efficient, differences between actual and ideal allocations provide no

indication of mismatch. I illustrate the importance of mismatch unemployment in a version

of the model calibrated to match frictional wage data. I find that mismatch plays a larger

role in accounting for aggregate unemployment than worker search. The reason, as pointed

out by Hornstein et al. [28], is that search and matching models generally have difficulties

generating the large frictional wage dispersion seen in the data. As in Alvarez and Shimer

[4], Carrillo-Tudela and Visschers [10], Herz and van Rens [27], Michaillat [44], Michaillat

and Saez [45], frictions other than search contribute to unemployment here.

2 Mismatch in a Static Assignment Problem

This section introduces a simple model of mismatch. Its goal is to derive the distributions of

unemployment and vacancies across local labor markets as functions of primitive frictions.

The informational and trading frictions are explicit, but the model is static. Job capital

accumulation, worker search, and persistent shocks will be added in the next section.
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2.1 Production and Market Equilibrium

Environment. There is a continuum of “islands” or locations indexed by  ∈ [0 1].

Locations represent a potential market, not necessarily a geographic location (e.g., skill,

occupation, industry, firm, or a combination of such categories). There are  workers in

the economy and () ≤  workers in location . The distribution of workers {()}∈[01] is
exogenous for now, but will be part of the equilibrium in the dynamic model.

Jobs are divisible assignments of homogeneous capital. Let   0 denote aggregate

capital, which is given for now. The jobs assigned to location  are denoted by (), and

the resource constraint is Z 1

0

() = . (1)

In each location, production is determined by the short side of the market under di-

minishing returns to labor and uncertain factor requirements. If there is enough de-

mand for output in location , output ( ) will be produced according to: ( ) =

()min{() ()()}, for 0    1, where () is an observable local productivity

shock, and () ∈ R+, is an uncertain factor requirement.
As the local match outcome will be limited by the short side of the market, the jobs

assigned to location  will be filled probabilistically, according to min{1 ()()()}.
This local matching probability depends on how many jobs are available, and on the number

and efficiency of local workers. Jobs available in a given location, cannot be reshaped

instantaneously to accommodate any number of workers. As in putty-clay models, the

main margin of adjustment will be the ex ante assignment of jobs. Diminishing returns are

not essential in the static model because labor is immobile, but they avoid indeterminacies

in the dynamic model where both jobs and workers are mobile. The term () makes local

labor market conditions uncertain. Its distribution and importance are discussed later on.

Preferences for consumption are linear, and workers do not value leisure. Aggregate

demand is uncertain. The random variable () ∈ [0 1] represents aggregate demand, as
() is the number of active locations or the number of locations visited by consumers.

Consumption in location  will be positive if and only if location  is active, i.e., if  ≤ ().

While it is not possible to know for certain which locations will be active ex post, there is
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no output wasted. In active locations, workers and jobs are hired locally, and output is

produced to satisfy demand. Local consumption and output are interchangeable. Remarks

about demand uncertainty are also provided below.

Given   0 and {()}∈[01], the static assignment problem allocates job capital across

locations in order to maximize (mean) aggregate consumption,

 ≡ maxE
(Z ()

0

()min{() ()()}
)
s.t. (1). (2)

In problem (2), it is key that jobs are assigned before the resolution of uncertainty and

cannot be reassigned once () and () are realized, or conditional on their realizations.

Some remarks on the matching frictions. The assignment problem (2) is fairly straight-

forward, but it is helpful to preface the role of the market frictions. First, local productivity

shocks () are observable and serve to regularize static shortages. For now, I treat ()

as bounded from below and spatially independent. The other two shocks, () and (),

are both static and unobserved. They make it impossible to know for certain how many

workers and jobs are needed at any time in a particular location.

Consider first the factor requirement (). For a value of +  0 specified in the Appen-

dix, a convenient assumption to obtain reasonable closed-form aggregate production and

matching functions is the following:

Assumption 1. Factor requirements () are uncertain, with a stationary flat probability

density function over [0 +) and a Pareto density with index (1−)  0 over [+∞).

Uncertainty in () makes it impossible to know how many local jobs are needed. In an

active location with () workers and () jobs, there will be an ex post surplus of workers

if ()()()  1, or an ex post shortage of workers if ()()()  1.4 While the

notion that shortages exist only when one side of the market is in short supply may seem

4If () was observable, each location will receive the “correct” number of jobs, and there will be no

local imbalances. Early on, Walters [59] discussed the role of uncertain labor services associated with

unpredictable “off days” due to sickness, weather, or other accidental influences. Lucas [41] and Akerlof

[2] also made use of fixed factor requirements to study labor utilization. Lambert [38] and Michaillat [44]

examined rationing from different and complementary perspectives.
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restrictive, jobs often involve a variety of tasks that are not easily matched to the skills of

available workers, even when workers and jobs are in the same physical space.5

Assumption 1 is different, and perhaps simpler, than in Shimer [56] and Mortensen

[47] where both sides of the market are randomly assigned and there is no local margin of

adjustment. Assumption 1 focuses on one side of the market, and allows for job reallocations.

Locations will still feature ex post rationing of jobs (or workers) because uncertainty on the

worker (or firm) side is sufficient to produce local imbalances in active locations.

The particular distribution for () will deliver reasonable (i.e., Cobb-Douglas) local

and aggregate production functions. More general distribution functions would still deliver

local imbalances as a surplus of workers, for example, requires only that Pr({ : () 
()()})  0. I treat () as an aggregate variable for simplicity, but location-specific

uncertainty, as in ( ), will mostly modify the way output is aggregated without altering

the nature of local imbalances.

Consider next (). As a consequence of an uncertain aggregate demand () ∈ [0 1],
not all locations will be active. The probability that location  is active is: () ≡ Pr({ :
 ≤ ()}), so () represents the degree of demand (un)certainty in location .

Assumption 2. Aggregate demand () is uncertain, and drawn from a stationary and

continuous distribution function.

Uncertainty in the extensive margin of demand is common in industrial organization,

as factor demands and prices are often set before demand is known (Butters [9], Eden [15],

Deneckere and Peck [14]).6 Aggregate demand matters because it determines local factor

demands. Active locations will feature either a surplus of workers or a surplus of jobs, but

not both. Inactive locations will feature a surplus of workers and jobs. Unused factors (i.e.,

idle capacity) will coexist in inactive locations because a match has no value, as there is no

5When analyzing over- or under-qualified workers, the literature typically infers a worker’s qualifications

for a job from indirect data, such as the technical requirements of a job (Guvenen et al. [22]), or the

qualifications of peers in the same occupation and establishment (Fredriksson et al. [18]).
6Prescott [53], for example, studied unused factors and monopoly pricing under a stochastic demand for

hotel rooms. In Prescott [53], cheaper rooms fill first, but there may still be some vacant rooms (i.e., unused

factors) at the end of the day. In Michaillat and Saez [45], due to matching frictions, aggregate demand is

also probabilistic and some capacity remains idle; see also Ottonello [48] for a study of capital markets.
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demand to be satisfied. There is no ex post consumption in locations where   (), but

linear preferences yield no insurance value against ().

Aggregate demand propagates differentially across locations. By definition, (0) ≤ ()

so location 0 ≥  faces a more uncertain demand than location .7 The function ()

is generally unrestricted. Because the demand for local output acts as an all-or-nothing

Bernoulli random variable, I assume that (1)  12. This means that a decline in ()

leads to higher uncertainty, even in the location with the most uncertain demand.

The static model is very parsimonious. The frictions captured by () and () induce

a probabilistic matching between workers and jobs, and consumers and producers. The

local matching between workers and jobs depends on the jobs assigned ex ante, whereas the

matching between consumers and producers is exogenous. Demand uncertainty is simplistic,

but it can be micro-founded under strong consumer complementarities. Even in reduced-

form, demand uncertainty and market incompleteness imply that local unemployment rates

will depend on the likelihood of trading in output markets.

Production and aggregation. Consumption and output are interchangeable, so expres-

sion (2) represents the aggregate production function. Given (), let () ≡ E[( )|()]
be the mean of the distribution of output ( ) or simply (mean) local output. Let

() ≡ ()() be an augmented local shock, and ∗() the assigned jobs to location .

Proposition 1 Given (), local output () ≡ E[()min{() ()()}|()] satisfies

() = ()()()(1−); (3)

the optimally assigned jobs ∗() are increasing in (); and the aggregate production func-

tion satisfies

 = 

µZ 1

0

()1(1−)()
¶1−

. (4)

Although ex post matches are limited by the short side of the market, the ex ante

local production function is Cobb-Douglas. The ex ante assignment of jobs is given by

7Differential sensitivity to aggregate demand was central in Abraham and Katz [1] to counter Lillien’s

[40] work on the effect of sectoral shocks on unemployment. As advocated by Abraham and Katz [1],

aggregate demand in the model acts differentially on unemployment rates.
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()[∗()()]−1 = , where  is the Lagrange multiplier on (1), i.e., the opportunity

cost of a job. This first-order condition implies that ∗() and () are both increasing

in (). Therefore, better locations (i.e., more productive and more certain), receive more

jobs and produce more output.8 The aggregate production function is also Cobb-Douglas.

For example, if () = , then  = (1−), with

 ≡
µZ 1

0

()1(1−)

¶1−
. (5)

In (4) and (5), a proportional increase in () increases  and  proportionally. By

convexity, a mean-preserving spread in () also increases  and .

An incomplete-market equilibrium. The assignment problem can be decentralized

in an incomplete market economy where state-contingent contracts are ruled out. Let

{() }∈[01] represent local wages and the rental price of capital, respectively.

Definition 1 In an incomplete competitive market equilibrium: (i) labor is inelastically

supplied, i.e., () = () whenever ()  0; (ii) firms maximize expected profits, i.e.,

()()()(1−) − ()() − (); and (iii) factor markets clear in an ex ante

sense: () = () for all  ∈ [0 1] and
Z 1

0

() = .

The only relevant decision for a worker is whether or not to participate in the local labor

market. Profit maximization equalizes factor prices to the expected marginal products for

job capital and labor. (There are local profits, but their distribution is not specified, as

they do not affect the workers’ or the firms’ incentives.) As decisions are made before ()

and () are known, labor markets clear from an ex ante perspective, before the identity of

the matched and unmatched workers and jobs is determined. Wages, for instance, cannot

condition on the realization of () and (). In equilibrium, the rental price of capital is

constant across locations, and all workers expect to receive the same wage within a location.

Local wages are a function of the state of a local market (() ()) and the rental price

of capital , as in

() = (1− )()(−1)()1(1−)()−1. (6)

8Demand uncertainty and local productivity differences are indistinguishable in (), but higher mo-

ments of the distribution of ( ) help identify differences in () and (), as the Appendix shows.
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Wages are increasing in () and (), with () acting as a compensating differential due

to demand uncertainty. All else equal, firms in locations with a more uncertain demand are

less likely to trade in the output market, making local factors less desirable. The reduced

demand for jobs and workers imply lower wages in more uncertain markets.9

Markets operate as casual daily labor markets. Workers know what wages to expect if

hired, but they do not know if local labor demand will be sufficiently high to ensure that

they will be hired. If contingent decisions on () and () are allowed, or if jobs can be

moved ex post, no jobs will be assigned to inactive locations, and the “correct” number of

jobs will be assigned to active locations. In these cases, there will be a surplus on one and

only one side of the market. In an ex ante perspective, workers participate in the market

expecting positive wages but “incorrectly” face adverse ex post local conditions. If local

labor markets clear ex post, workers in the short side of the market would capture the entire

surplus (Shimer [56]) and wages would be too sensitive to local conditions (Hawkins [24]).

2.2 Ex Post Labor Market Imbalances

The previous characterizations dealt with ex ante allocations and prices. If workers turn

out to be very efficient, i.e., ()()∗()  1, there will be a shortage of jobs relative to

the local needs. Conversely, if ()()∗()  1, there will be a shortage of workers.

Unemployment. Workers will be unemployed either because no consumer visited loca-

tion , i.e.,   (), or because location  is active (i.e., visited) but there is a shortage of

jobs, i.e.,  ≤ () but only [∗()()]1 workers are needed ex post :

( ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
() if   ()

()− [∗()()]1 if  ≤ () and ∗() ≤ ()()

0 if  ≤ () and ∗()  ()().

(7)

Let () ≡ E[( )|()] denote themean of the distribution of total unemployment in
9Workers and firms in location 0   may condition their decisions on the demand situation of location

. The equilibrium remains unchanged unless () is fully revealed. Uncertain and sequential trade models

interpret this property as delivering rigid prices (Butters [9], Eden [15], and Burdett et al. [8]). Price

posting, originally studied by Prescott [53], has been recently generalized by Deneckere and Peck [14].

11



location  conditional on the local productivity shock or simply (mean) local unemployment.

Proposition 2 Given (), local unemployment rates ̃() ≡ ()() satisfy

̃() = [1− ()] + ()

µ
1

1 + (1− )



()

¶
. (8)

Unemployment rates in Proposition 2 differ across locations by differences in aggregate

demand sensitivities () and local productivities (). The first term is associated with

demand-driven unemployment and the second with local job shortages.

In expression (8), better locations have lower unemployment rates as a result of less

prevalent shortages. First, more output will be produced and more labor will be used in

locations with more certain demands, i.e., locations with higher values of (). If () = 1,

there will be no demand-driven unemployment. The influence of aggregate demand on un-

employment differs from Lucas and Prescott [42], where negative demand shocks increase

unemployment through changes in the supply of labor, as more workers search for alterna-

tive locations; and from Michaillat and Saez [45], where negative demand shocks increase

unemployment through changes in the demand for labor, but only when wages are fixed.

Under flexible pricing, demand shocks are absorbed by the wage, not by unemployment.

Second, more productive locations receive more ex ante assignments of job capital ∗()

and experience fewer job shortages. Job shortages in (8) are proportional to (). As

() ≡ ()(), more productive locations will have fewer job shortages. Local job short-

ages tend to zero when  → 0, as aggregate job capital would be in infinite supply, or when

()→∞, as local jobs would be in infinite supply. In these cases, local jobs are so abun-
dant that all workers in active locations will be employed ex post. Unemployment rates are

also increasing in the rental price of capital . This rental price is endogenous and, through

general equilibrium effects, it will change in response to aggregate shocks.

Unemployment is consistent with actual labor market measurement. Unemployed work-

ers should not be employed, should be available for work, and should have made minimal

effort to find a job during a reference period. Unemployed workers are idle, but available

for work. If different realizations of () and () had prevailed, some of the unemployed

workers would be hired. Although () = 0 has been ruled out, if a location is known to
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be inactive, there will be no unemployment. With () = 0, these locations will receive no

jobs, ∗() = 0, and workers would not participate in the market. If workers anticipate ex

ante that no trading will take place, there will be no unemployment.

Vacancies. Mirroring unemployment, assigned jobs will remain vacant either because

location  is not visited, i.e.,   (), or because location  is active (i.e., visited) but

workers are in short supply, i.e.,  ≤ () but only ()() jobs are needed:

( ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∗() if   ()

∗()− ()() if  ≤ () and ∗()  ()()

0 if  ≤ () and ∗() ≤ ()().

(9)

Let () ≡ E[( )|()] denote the mean of the distribution of total vacancies in 

conditional on the local productivity shock or simply (mean) local vacancies. Vacancy rates

can be defined in several ways. Following Shimer ([56], Eq. (4)), I measure vacancy rates in

terms of the assigned jobs.

Proposition 3 Given (), local vacancy rates ̃() ≡ ()∗() satisfy

̃() = 1− 



()

()
. (10)

Proposition 3 considers demand-driven vacancies and vacancies due to worker shortages.

However, as () ≡ ()(), the model explains differences in local vacancy rates only

by differences in local productivities (). Local vacancies are not directly influenced by

demand uncertainty because differences in () are offset by the job assignment. Demand

conditions influence local vacancies indirectly, as a general equilibrium effect, through .

More productive locations have higher vacancy rates as they have more assigned jobs ∗().

Local vacancy rates would equal one if aggregate capital is in infinite supply, i.e.,  → 0, or

if local jobs are in infinite supply, i.e., ()→∞.
Vacancies are unmatched assignments of homogeneous job capital, as in existing models

of mismatch (Lagos [36], Shimer [56], Mortensen [47]), classical models of labor underutiliza-

tion (Lucas [41], Akerlof [2]), and recent models of capital unemployment (Ottonello [48]).
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Vacancies in job capital, for instance, are complementary to capital unemployment because

not all forms of physical capital matter for a job, i.e., residential housing, and because the

job side of a match does not have to rely on durable goods.10 Moreover, vacancies here

are costly due to an opportunity cost and not because of a posting or hiring cost. Even

if posting and recruiting costs are zero, firms would have no incentive to pursue unlimited

vacancies, as job capital always has alternative uses.

Beveridge and wage curves. The state of a local market is (() ()). As the aug-

mented shock is () ≡ ()(), unemployment rates ̃() in (8) will be different across

locations, even if all locations experience the same productivity shock (). Vacancy rates

̃(), however, will differ across locations due only to differences in local productivities. I

have not yet specified the distribution of local productivity shocks, but for any well-behaved

distribution of local shocks, the ex ante assignment of local jobs will fluctuate randomly

due to local productivities. An implication of Propositions 2 and 3 is that:

Proposition 4 Local productivity shocks induce a perfect negative correlation between local

unemployment rates ̃() and local vacancy rates ̃(), and a negative correlation between

local wages () and local unemployment rates ̃().

The logic behind the perfect negative correlation between ̃() and ̃() is simple. In

active locations, unemployment and vacancies are mutually exclusive, and thus negatively

dependent events. Conditional on a local shock (), if labor efficiency () is low, an active

location will experience vacancies but not unemployment, as labor will be in short supply.

If () is high, an active location will experience unemployment but not vacancies, as jobs

will be in short supply. As () fluctuates over time, these (discrete) events are regularized

in (8) and (10). As () fluctuates over time, local unemployment and vacancy rates will

trace out a perfectly negative relationship, i.e., a local Beveridge curve.11 The negative

10Ottonello [48] showed that substantial amounts of physical capital remain unmatched at any given time

and approached this issue using non-Walrasian capital markets characterized by reduced-form matching

frictions. In Ottonello [48], capital trading depends on the tightness of the capital market. He showed that

frictions and financial shocks are important to account for the slow recovery in investment following the

Great Recession, as the demand for capital first made use of existing unemployed capital before new capital

goods (i.e., investment) make it into the market.
11The correlation between local unemployment and vacancies relies on mean conditional values. As ()

and () are unobservable, it is not interesting to measure correlations in ex post outcomes. It is possible
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correlation between unemployment rates and wages follows the same logic. These reduced-

form relationships, driven by local productivity shocks being a common causal factor, are

part of a natural self-correction process in competitive markets with shortages.

2.3 Measuring Mismatch Unemployment

The distributions of unemployment and vacancy rates depend on the stochastic properties of

the augmented shock () in ways that will only be fully specified in the dynamic problem

below (Assumption 3). The aim of the following discussion is to examine the economy’s

response to simple aggregate “shocks.” Let  and  denote aggregate unemployment and

vacancies, as in

 ≡
Z 1

0

() and  ≡
Z 1

0

(),

and let ∆ denote the change in  as a function of a proportional shifter , as in ∆ ≡
(  1)−( = 1), for a generic variable .

Suppose first that local productivity decreases to () for some 0    1 and for all

locations  ∈ [0 1]. All locations experience a uniform and adverse aggregate productivity

“shock.” Since ∆() = −(1 − )(), and ∆ = −(1 − ) in (5), aggregate factor

productivity and aggregate output in (4) decline. Labor market conditions, however, are

unchanged because the opportunity cost of capital absorbs the entire shock. As a conse-

quence of the Envelope Theorem applied to (2), ∆ = −(1−), thus local unemployment
and vacancies remain unchanged, because the ratio () is itself unchanged.

The neutrality of the distributions of unemployment and vacancies to proportional

changes in productivity is specific to the type of change in (), and to the fact that the

total number of jobs is constant. In the dynamic model,  will be constant and  will be

endogenous. Hence the adjustment to adverse aggregate productivity shocks will take place

along a quantity margin by movements along local and aggregate Beveridge curves.

Next consider an adverse aggregate demand “shock.”

to think of Proposition 4 as if measurement happens at discrete sampling frequencies and over a finite set

of categories, as in reality. Hence, measured unemployment and vacancies coexist in local markets.
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Proposition 5 Suppose that demand uncertainty increases to () for some 0    1

and all locations  ∈ [0 1]. Local unemployment and vacancies shift by

∆() = (1− ) [()− ()]  0, and ∆() = (1− ) [∗()− ()]  0. (11)

As locations experience differential demand sensitivities, aggregate demand shocks are

not neutral. Proposition 5 says that a shift in demand uncertainty increases unemployment

and vacancies everywhere. In fact, local and aggregate Beveridge curves shift by the same

orders of magnitude, ∆ = (1− )[−  ]  0, and ∆ = (1− )[ −  ]  0. Because

vacancies in (10) do not vary with (), the shifts in Proposition 5 are a general equilibrium

response associated with a shift in the opportunity cost of a job .

Shifts in local and aggregate Beveridge curves are typically associated with changes in

matching efficiency and mismatch. I next ask if the previous shifts in local and aggregate

Beveridge curves would be recognized as higher mismatch in existing indices. This is equiv-

alent to asking if mismatch indices reveal the cause of the changes in the distributions of

unemployment and vacancies in the model.

Mismatch indices. Empirical indices of mismatch consider cross-sectional distributions

of unemployment and vacancies, such as (8) and (10), and assume invariant reduced-form

wage and aggregate matching functions.

Indices based on the convexity of reduced-form wage functions vary with the dispersion

of local unemployment,

MM =
1

2

Z 1

0

µ
()− 



¶2
, (12)

so that, to solve the “mismatch problem,” unemployment should be equalized across loca-

tions; see Layard et al. ([39], pp. 309-313) for a derivation of MM and several variants.

Additional indices consider pairwise differences between local unemployment and vacancies,

as in

MM =
1

2

Z 1

0

¯̄̄̄
()


− ()



¯̄̄̄
, (13)

so that unemployed workers must be reallocated to access the given vacant jobs; see, e.g.,

Jackman and Roper ([31], p. 12). In (13), MM = 0 occurs when ()() =  for all
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, while MM = 1 occurs when all unemployed workers and all vacancies are in a single and

separate location. In Şahin et al. ([55], Eqs. (8)-(10)),

MM = 1−
Z 1

0

©()

µ
()



¶µ
()



¶1−
, (14)

with  ∈ (0 1) as the elasticity of a reduced-form Cobb-Douglas aggregate matching func-

tion and with ©() capturing, for example, heterogeneity in matching efficiency. In (14),

MM = 1 if unemployed workers and vacant jobs are in separate locations and MM = 0 if

unemployed workers satisfy () = [©()(() )]1(−1) with () given.

The MM-indices seek to measure imbalances in the distributions of unemployment and

vacancies across local labor markets. None of the previous indices, however, view the out-

ward shifts in the Beveridge curves as part of an increase in mismatch:

Proposition 6 As the distributions of unemployment and vacancy rates shift outward in

Proposition 5, the previous mismatch indices satisfy: ∆MM
 = (2 − 1)MM  0;

∆MM
 ≤ (−1)MM+|− |2; and∆MM

  0, where  ≡ (+(1−))  1
and  ≡ ( + (1− ))  1.

Proposition 6 says that the MM-indices decline even though local and aggregate unem-

ployment and vacancies increase everywhere. The index MM is convex in local unemploy-

ment shares () . Therefore, MM increases if the distribution of local unemployment

experiences a mean-preserving spread. Episodes of high aggregate unemployment rates are

inconsistent with mean-preserving spreads in the distribution of unemployment. The index

MM, all else equal, also associates higher mismatch with a compression in the distribution of

local unemployment shares across labor markets.12 In Proposition 5, unemployment shares

actually shift proportionally across locations, as ∆[() ] = (1 − )[1 − () ]  0.

A decline in the MM-indices, however, is not exclusive to (11). If all local unemployment

increases by a constant amount, as in () + ̃, the mismatch indices also decline, as local

unemployment shares increase, i.e., [() + ̃][ + ̃]  () for any ̃  0.

12The mismatch MM indices are not informative about changes within local markets as convexity makes

them sensitive to aggregation. As noted by Barichon and Figura ([6], p. 243) in the context of matching

efficiency, “a higher level of disaggregation (i.e., a smaller definition of a segment) will mechanically generate

a higher level of dispersion.” Proposition 6 applies to differences between, and not within, labor markets.
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Unemployment shares increase more in locations with low unemployment shares, so the

disparity in unemployment shares across locations decline. This decline masks a change in

the causes of unemployment. Demand-driven unemployment increases while the prevalence

of job shortages declines by the decline in the cost of capital. As jobs become more abundant

in active locations, vacancies increase. In Proposition 5, job and worker shortages covary

negatively, along local and aggregate Beveridge curves, but with aggregate demand changes

increasing unemployment in all locations. While the MM-indices are easy to interpret, they

are unable to identify the causes behind the changes in local and aggregate imbalances.

The previous proposition rationalizes a puzzling finding in the early literature on mis-

match. Jackman and Roper [31] and Jackman et al. [32] found that empirical indices of

mismatch fell while unemployment rates increased and Beveridge curves shifted in Europe

during the 1980s; see also Entorf [16] and Padoa-Schioppa [49].13 One potential reason for

the lack of explanatory power of mismatch indices is that unemployment shares typically

decline during times when the aggregate Beveridge curve shifts out. In the US, unemploy-

ment shares across different segments of the labor market generally increase during times of

high aggregate unemployment (see Appendix). Echoing Abraham and Katz [1], Proposition

6 suggests that aggregate changes, rather than sectoral causes, can account for the shifts in

unemployment and vacancies during the Great Recession.

Mismatch indices treat the causes of unemployment in reduced-form and view the distri-

bution of unemployment as inefficient without specifying the source of inefficiencies. Local

labor market outcomes here are endogenous so the present exercise offers a polar extreme

where all the dispersion in unemployment, vacancies, and real wages is efficient. As there is

no incentive for reallocations relative to the (constrained) efficient benchmark, counterfac-

tual outcomes provide no indication of mismatch.14 Even in models of competitive search,

efficiency requires a non-degenerate distribution of unemployed workers across locations.

13Mismatch was suggested as an explanation for outward shifts in Beveridge curves. That Beveridge

curves shift everywhere, and in similar proportions, however, was taken as evidence against mismatch. For

example, Petrongolo and Pissarides ([50], p. 409) state that “in Britain the shifts in the regional Beveridge

curves were of the same order of magnitude as the aggregate curve, casting doubt on the power of regional

mismatch to explain the shift in the aggregate curve.” Layard et al. [39] made a similar point.
14It is possible to consider reallocations relative to a first-best, but conventional practice measure efficiency

gains relative to feasible (i.e., constrained) alternatives rather than relative to unconstrained alternatives.
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2.4 An Aggregate Matching Function

The previous propositions explain the presence of unemployment and vacancies in perfectly

competitive markets as outcomes of market incompleteness. They also account for their

coexistence when workers and jobs are located in the “wrong” locations. I next derive an

endogenous aggregate matching function based on aggregate unemployment and vacancies.

Assume that matched workers and jobs remain attached indefinitely. Unemployed work-

ers and vacant jobs are reassigned across locations in an uncoordinated and random way.

The number of unemployed workers in each location is given by 0() and the number

of vacant jobs is given by 0(). As in the basic assignment problem, assume that un-

employed workers and vacant jobs match locally. Local output is produced according to

()E[min{0() ()0()}], where () satisfies Assumption 1.
As the assignment of unemployed workers and vacant jobs is random, () plays no

role in the matching process and 0() and 0() cannot be location-specific. For feasibility,

0() =  and 0() =  for all . Hirings are also limited by the short side of the market,

so, if ()   , () =  as all unemployed workers are hired, while if () ≥  ,

only () =  − [()]1 of the available workers are hired ex post. The (mean) flow of
new worker-job matches represents the output of the aggregate matching function.

Proposition 7 The exit rate from unemployment, (  ) ≡ E[()] , has a log-linear
relationship with labor market tightness ,

(  ) = 1− (1− )

1 + (1− )

µ




¶−1
. (15)

The exit rate from unemployment is increasing in market tightness. For example,

lim→∞ (  ) = 1, so all workers exit unemployment as local markets becomes slack.

A log-linear approximation of (15) around  '  yields

ln(  ) ' ln0 − ̃ ln[ ], (16)

where 0 depends on  and , and ̃ ≡ (1− )2[1 + (1− )2]  1.

The relationship between hires and market tightness in (16) is consistent with a reduced-
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form aggregate matching function that is approximately Cobb-Douglas, i.e., (  ) '
exp{0} ̃1−̃. The Cobb-Douglas is a common reduced form in empirical studies. Ac-

cording to Petrongolo and Pissarides ([50], p. 399), none of the existing microeconomic foun-

dations for the aggregate matching function “convincingly says why the aggregate matching

function should be of the Cobb-Douglas form.” The reduced-form elasticity ̃ in (15) is

governed by the distribution of (), which also delivers constant output elasticities in

Proposition 1. For example, if  = 1, both the aggregate production function and the

aggregate matching function will exhibit constant returns to scale. There is a tight rela-

tionship between the aggregate production and matching functions here, as the aggregation

over ex ante and ex post outcomes are just two sides of the same coin.

In closing this section, it may be useful to contrast the present model of mismatch

and the matching-function approach. In both frameworks, trade is probabilistic. In the

matching-function approach, the probability of trade is a reduced-form function of aggregate

market tightness. In this paper, labor demand uncertainty is a primitive, and local market

conditions responds to informational frictions. The mismatch approach here thus reverses

the direction of causality between the probability of trade and market tightness. This

reversal makes it is possible to integrate mismatch with competitive equilibrium theory.

It may also be helpful to point out that, as a reduced-form relationship, the aggregate

matching function might be potentially problematic for policy analyses (Lagos [36]). Many

placed-based policies direct resources to areas with low labor demand often with the explicit

purpose of lowering unemployment (Kline and Moretti [34]). In the matching-function based

approach, unemployment and vacancies coexist even within finely disaggregated segments

of the labor market, and the total number of unmatched resources in treated areas is a suf-

ficient statistic for policy evaluations, as they are givens into the matching process.15 With

mismatch, the matching process is endogenous and unmatched resources are in separate

locations, so place-based policies need to take into account the entire distributions of unem-

ployment and vacancies. When evaluated via an aggregate matching-function, adding jobs

15For example, consider an exogenous inflow of jobs to some local labor markets with unemployed workers.

In the treated areas, local unemployment will decline and vacancies will increase, though not one-to-one

as jobs will move to untreated markets. An aggregate matching function could characterize the treated

areas well. However, understanding the endogenous decline in the opportunity cost of a job, which increases

vacancies and reduces unemployment in untreated labor markets, requires an endogenous matching protocol.
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to a local market must necessarily increase local employment and output. In a mismatch

perspective, adding jobs to locations with worker shortages would be wasteful.

3 Mismatch in a Dynamic Assignment Problem

I now consider job capital accumulation and a frictional worker mobility protocol where

workers direct their search and locations adjust to the inflow and outflow of workers and

jobs. Frictional labor reallocations take place as within equilibrium search models, but

I consider the job side of a match, which is important for mismatch. The closed-form

solution yields sensible stationary wage and unemployment distributions that will serve to

empirically validate the theory. I formulate the dynamic assignment problem and present

key highlights of its solution here, but leave all the derivations in the Appendix.

3.1 Worker Search and Job Capital Accumulation

Time is continuous, indexed by  ∈ [0∞), and discounted at a rate   0. Factor require-

ments () and aggregate demand () satisfy Assumptions 1 and 2 for all  ≥ 0. Regarding
(), I now assume that

Assumption 3. Local productivity shocks () evolve as a spatially independent geomet-

ric Brownian motion.

Local productivity evolves as () = () + (), for a Brownian motion

, with drift  and diffusion 2 . As aggregate demand shocks are stationary, demand

(un)certainty differs across locations, but it is fixed over time, i.e., () = 0() for all .

Local conditions are hence summarized by the augmented shock () ≡ 0()() evolving

over time as

() = ()+ (). (17)

Assumption 3 matters for the frictional reallocation of labor, and for the dispersion of

unemployment rates and wages. On its own, however, Assumption 3 yields an uninteresting

(degenerate) outcome because the mean and variance of the unregulated stochastic process
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(17) grow unbounded as  → ∞. Worker search will regulate local shocks to ensure a
stationary distribution of the local state.

The state of a location is given by (() ()), and its probability density at  is

(() ()) or simply (). A non-standard issue in (17) is that differences in demand

uncertainty are subsumed in the initial values 0(). Instead of a deterministic initial

condition where local shocks 0() equal a single value, the economy has probabilistic initial

conditions associated with the differential sensitivity to aggregate demand shocks.

Worker search. The number of workers in location  at time  is (). Workers can

now search for work across locations knowing (), but with no information about ()

and (). The output cost of moving is given by   0. Searchers cannot work while in

transit, so the opportunity cost of search is the foregone wage.

The fraction of workers who move out of location  is 0 ≤ () ≤ 1. Search is partially
directed in the sense that a fraction 0 ≤   1 of searchers arrives to random locations

and the remaining fraction, 1 − , direct their arrival to chosen locations. The rate at

which workers arrive in  is ̄+(1−)(), with ̄ representing random arrivals and ()

representing directed arrivals or simply arrivals. A fraction ̄  0 of workers is separated

from each location at each date. The local labor force, ()(1− ()), is endogenous and

evolves as

() = [(1− )()− ()− ̄](), (18)

with ̄ ≡ ̄ − ̄ as the exogenous net separation rate. Pure directed and random search

are special cases, but they have difficulties delivering a sensible distribution of wages. For

feasibility, the number of searchers must equal the total number of arrivals.

Job capital accumulation. Given , the resource feasibility constraint for job capital

is of the same form as in (1), Z 1

0

()() = , (19)

for all  ≥ 0, but job capital changes through investment  and depreciation ,

 = ( − ), (20)
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where  is the depreciation rate. For future reference, the Lagrange multiplier on (19) is

given by , which represents the opportunity cost of capital at date  ≥ 0.

3.2 Dynamic Allocations

Given a set of initial conditions, and (17)-(20), the goal of the dynamic assignment problem

is to accumulate aggregate job capital and to spatially allocate workers and jobs to maximize

the present value of aggregate consumption, i.e., output net of mobility costs and investment:

maxE

Z ∞

0

∙Z 1

0

{()− ()}()− 

¸
exp{−}. (21)

A stationary solution to the dynamic assignment problem is a spatial allocation of work-

ers and jobs, an invariant cross-sectional density of the local state ∗(), a constant oppor-

tunity cost of a job ∗, and a constant aggregate job capital stock ∗.

The spatial allocation of workers and jobs, and the accumulation of aggregate job cap-

ital can be treated as separate problems. By the absence of aggregate uncertainty, cap-

ital accumulation is deterministic and the stationary value of the opportunity cost of

capital satisfies ∗ =  + . Moreover, the spatial allocation of workers and jobs can

be done in two steps. The first step nets out capital choices through an indirect pro-

duction function that places the spatial allocation of capital in the background. That

is, (() (); ) ≡ max(){()()
()

(1−) − ()}, simply (), satisfies

() = (1− )()
1(1−) ()

(−1)
()

.

The function () depends on . This dependence is problematic under aggregate

uncertainty, but unproblematic in a stationary environment where  → ∗. The function

() also features diminishing returns to labor for   1 and its expected marginal product

equals the competitive market wage, as in expression (6). As the expected marginal product

of labor coincides with (), a competitive (incomplete) market decentralization is implicit.

The coefficient on the augmented shock () exceeds one, as there is a complementarity

between labor and capital in each local market: better locations receive more workers and

more jobs, with the expected marginal product of labor also increasing with the assigned

jobs. Amplification by 1(1 − ) matters because it increases the incentives to search.
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For example, wage dispersion 2 is given by 2(1 − )2. Job assignments, however, help

equalize wages even in the absence of worker search. Abstracting from the job side of a

match can therefore distort the contribution of worker search to frictional wage inequality.

Frictional wage dispersion. The main feature of the worker assignment is that inaction is

optimal over a large range of wages. As search is costly, it is optimal to follow an (S,s) rule

where workers leave the local market only when the local wage reaches a search threshold

−. There is also an arrival threshold given by +  −, which compensates searchers for

the lost time and missed wage appreciation during the search process. Both thresholds are

specified in the Appendix.

Wages determine the spatial allocation of labor and serve as a sufficient statistic to

describe a location’s state (() ()), as noted by Alvarez and Shimer [4].16 That is, the

cross-sectional density of the local state can be written as (() ()) = (̃()), where

(̃()) is the density of log-wages at date  ≥ 0, i.e., ̃() ≡ ln(()). The spatial

distribution of jobs ∗(̃()) and ∗ can be subsequently derived using ∗(̃()).

The stationary closed-form log-wage density can be approximated by a double exponen-

tial,

∗(̃()) ' min{exp{1[̃()− ̃+] exp{2[̃()− ̃+]}}, (22)

where the roots satisfy 1  0  2;  is a constant of integration; and ̃
+ ≡ log+. This

density is continuous and it exhibits a tent-shaped pattern consistent with a double Pareto

wage distribution. Wage data strongly agrees with an asymmetric double Pareto distribution

(Toda [58]). To obtain a sensible wage distribution, random and directed search are needed.

Under random search, wages feature a single Pareto distribution over [−∞), and under
directed search the support of the distribution of wages is only [− +].

3.3 Labor Market Imbalances Again

In addition to the informational imperfections and market incompleteness characteristic of

the static model, workers now face costly mobility and uncertainty about future wages.

16The solution method builds on Alvarez and Shimer [4], but I focus on the stationary distribution of

wages instead of their persistence, which is central to their work. They emphasized rest unemployment,

which is determined by a worker’s preferences, independently of the job side of the match.
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As in Lucas and Prescott [42], workers in depressed labor markets leave to search

for better locations. Search unemployment represents the amount of worker reallocation

needed to ensure that log-wages remain above ̃− ≡ log− (Alvarez and Shimer [4]). How
much pressure must searchers exercise to ensure that ̃− is not crossed? Log-wages satisfy

̃() = (−1)()(), with ()() = −∗ () from expression (18). The density
of locations with log-wages reaching ̃− in a short time interval is (12)2̃(̃

−) where

(̃
−) is the density of log-wages at ̃−. The search rate needed to regulate log-wages at

the threshold is

∗ (̃
−) =

1

2

2
(1− )2

(̃
−)

1− 
. (23)

Worker search transforms () in (17) into a regulated Brownian motion (Harrison [23])

with a reflected boundary tied to the search threshold −. The distribution of local shocks

() converges asymptotically to a Pareto distribution Pr{() ≤ }→ 1− [−] for
 ≥ − and  ≡ 1− 22  0. Job and worker shortages are functions of () and also
follow Pareto-like distributions.

Demand and job shortages behave as in the static model with the appropriate distri-

bution of local shocks. As initial log-wages ̃0() depend on the deterministic values of

(0() 0()), but also on 0(), it is possible to map local demand conditions to the initial

log-wages, as in 0() = (̃0()). Initial conditions are probabilistic, so the stationary value

of demand uncertainty in the typical or representative location integrates spatial differences

in (̃0()) using 
∗(̃0()), as in ∗ ≡ E̃0()[(̃0())], with

∗ =
Z ∞

̃−
(̃0())

∗(̃0())̃0(), (24)

which depends on the distribution of the state of the local economy. The role of aggre-

gate demand on unemployment is hence mediated through the differential sensitivity across

locations (̃0()), but also through structural differences in the economy, i.e., 
∗(̃0()).

Overall, the aggregate unemployment rate converges to

̃∗ = 1− ∗| {z }
Demand shortages

+ ∗
µ

(+ )

1 + (1− )



−(1 + )

¶
| {z }

Job shortages

+
1

2

2
(1− )2



1− 

(−)1−1

(+)
1| {z }

Worker search

, (25)
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where the first two terms are averages of the local unemployment rates in (8) and the last

term is just (23). The aggregate vacancy rate converges asymptotically to

̃∗ = 1− ∗| {z }
Demand shortages

+ ∗
µ
1− + 





−(1 + )

¶
| {z }

Worker shortages

. (26)

Several features are important. First, worker search sustains frictional wage disper-

sion in (22), but inequality in unemployment and vacancy rates across locations is due to

differential local shortages. Worker search also insures workers against demand and job

shortages. Insurance is limited because searchers might arrive to inactive locations or to

active locations with job capital shortages. Unemployment rates and durations will thus

differ across markets. (In Lucas and Prescott [42], all unemployment spells last one pe-

riod.) As local shocks are asymptotically Pareto, with shape parameter , local shortages

converge to inverse Pareto distributions. Consider ∗ = 1 for illustration. The stationary

distribution of local unemployment rates is Pr{̃∗() ≤ } = [+] , defined over [0 +]
with + ≡ (+ )−(1 + (1− )).

Second, the inverse Pareto [+] characterizes the lower tail of the unemployment

distribution. This tail is associated with frequent and short unemployment durations. As

workers and jobs are movable, mismatch helps explain short unemployment spells, but not

why some workers remain unemployed for long periods of time. Third, the distribution

of local unemployment rates features a heavy tail. The shape parameter  determines

the degree of unemployment inequality. Finally, the cross-sectional dispersion of local un-

employment rates,  = ̃∗
p
(2 + ), is positively related to ̃

∗. A direct relationship

between  and ̃
∗ implies that episodes of high mean unemployment rates are accompanied

by a high cross-sectional dispersion in local unemployment rates.

4 An Illustration

This section considers a quantitative illustration of the model. I calibrate the model to

match (frictional) wage inequality and use the calibrated model to measure the contribution
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of job and demand shortages to aggregate unemployment. I also confront the distribution

of unemployment rates across different segments of the US labor market.

4.1 Calibration

Some aggregate parameters such as  = 0012,  = 0012, and  = 064 are standard at

quarterly frequencies, i.e., Cooley [12]. Not all forms of physical capital can be reallocated

in the short run. For the capital share, I assume  = 006 based on the importance of

nonresidential equipment in aggregate capital. I assume an exogenous net worker flow rate

of ̄ = 002, taken directly from Alvarez and Shimer ([4], p. 101), and normalize the direct

cost of moving to  = 1. (I provide details of the calibration in the Appendix.)

The main challenge of the calibration is identifying the data analog of an “island.” I

often consider industrial sectors due to data availability (Şahin et al. [55]), but sectors

do not discriminate across geographic and occupational categories. I calibrate demand

uncertainty using capacity utilization in manufacturing sectors, as in Michaillat and Saez

[45]. I assume that demand shortages are only relevant in low wage locations and that

demand uncertainty declines exponentially across locations at a constant rate . Matching

the empirical association between unemployment rates and the cross-sectional dispersion of

capacity utilization measures over time yields  = 00023.

The drift and diffusion coefficients,  and , and the threshold 
− that regulates local

productivity shocks are key parameters. I calibrate  and  to match the distribution of

frictional wage inequality. I use  = 010 so that log-wage dispersion is the average between

the dispersion of sectoral level log-wages at a 5-digit industry level in Alvarez and Shimer

([4], Table 1) and the dispersion of the permanent component of individual log-wages in

Heathcote et al. ([25], Figure 18). I do so because industrial sectors already aggregate

workers and jobs in different occupations and geographic areas. Given  and ̄, I use

 = −00115 to match the estimated upper Pareto tail exponent 2 = −234 in Toda ([58],
p. 368). The lower tail exponent in Toda ([58], p. 368) is 115, which is slightly lower than

here, 1 = 151. The resulting drift for log-wages is −00047 and the Pareto exponent  is
33. I normalize  to ensure that the local shock threshold satisfies − = (+ )∗.
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4.2 Frictional Wage Inequality and Unemployment

In Table 1, unemployment due to demand shortages is 245 percent, and unemployment due

to job shortages is 288 percent. The control exercised by worker search is limited, as search

unemployment is ∗(̃−) = 041 percent. Total unemployment is about 56 percent, which

agrees with postwar US data. The aggregate vacancy rate, however, is high at ̃∗ = 232

percent. Table 1 also reports the Pareto tails of the stationary wage distribution. The wage

distribution features a heavy upper tail. The Gini coefficient in a Pareto distribution is

(2|2|− 1)−1. Ignoring the lower tail, the Gini coefficient for frictional wages is 027.17

Table 1. Aggregate labor market outcomes in the calibrated model.

Unemployment rate Frictional wage

Demand Job Worker Vacancy inequality

shortages shortages search rate 1 2

Baseline calibration 2.45 2.88 0.41 23.2 1.51 −2.34
Alternate values

= −010 0.02 3.63 2.63 2.97 0.20 −17.6
= 005 0.88 3.44 0.25 8.21 2.39 −5.89

Note: The table reports the stationary values of key aggregate labor market variables. All rates

are reported in percentages. The coefficients 12 represent the Pareto exponents of the stationary

wage distribution. The parameters in the baseline calibration are discussed in the text and the

Appendix. The sensitivity analyses rely on the same normalization in the main text, but consider

different values for the drift and diffusion of the local shocks.

The model delivers a reasonable view of aggregate unemployment and frictional wage

dispersion, but vacancies that are too high. Normalizing the local shock threshold as − =

( + )∗ means that vacancy rates are ̃∗ = 1(1 + ), which only vary with . The

value of  must be small to fit a large frictional wage dispersion. A small aggregate vacancy

rate is therefore inconsistent with large frictional wage dispersion.

Why is search unemployment low? The drift of log-wages  determines the frequency

of worker reallocations. More negative values of  make  more negative and wages

17Another way to see that the wage distribution is reasonable is to consider the mean-min wage ratio, a

central measure of wage inequality in Hornstein et al. [28]. Ignoring the lower tail of the wage distribution,

the mean-min wage ratio in the baseline calibration is 2(2−1) = 17. The measured ratio of mean wages
to the lowest wage in Hornstein et al.’s [28] is 18.
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more likely to reach the search threshold ̃−. For example, Table 1 considers an alternate

value of  = −010, which is more negative than  = −00115 and implies  = 21.

(The baseline value is  = 33. I recalibrate  so that − = ( + )∗, but leave all

other parameters unchanged.) A more negative drift  yields reasonable vacancy rates of

̃∗ = 297 percent and higher search unemployment, ∗(̃−) = 263 percent. Unfortunately,

 = −010 implies counterfactual wages. The upper tail of the wage distribution becomes
2 = −176, which yields a Gini coefficient of 003. A lower dispersion parameter  = 005
also implies lower vacancy rates, but, as suggested by expression (23), an even smaller search

unemployment. Under both  = −010 and  = 005, the mass of workers in depressed

locations is smaller, hence there is a less demand-driven unemployment.

As large frictional wage dispersion can only be sustained by infrequent worker reallo-

cations, the main message of Table 1 is that frictions associated with aggregate demand

uncertainty and job shortages might be more important than worker search in accounting

for unemployment rates and the observed high dispersion in wages. In other words, “price”

frictions that limit workers from knowing what wages they will earn if hired might not be

as significant as “quantity” frictions that limit workers from knowing whether or not they

will be hired at all.

4.3 Unemployment Inequality

The model delivers a Pareto distribution for job shortage rates across “islands.” The dis-

tribution of local shortages follows directly from that of local shocks. In the model, the

logarithm of the stationary cumulative distribution of unemployment rates should be lin-

early related to log-unemployment deviations from the logarithm of the mode, i.e.,

ln[Pr{̃∗() ≤ }] = [ln()− ln(+)]. (27)

Following (27), Table 2 uses the empirical cumulative distribution of the lower tail of the

unemployment distribution, and its relationship with the unemployment deviations from

the mode, to estimate  across several segments of the US labor market. I separately

consider the distribution of unemployment rates across 12 industries, 10 occupations, and
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51 states (including the District of Columbia) from the monthly files of the CPS, as well as

unemployment differences across large metropolitan areas from the LAUS.18

Table 2. Estimates of lower tail unemployment inequality across “islands.”

Cross-sectional unit Cross-sectional unit

I O C S I O C S

ln [̃−+ ] 2.04 0.67 4.78 3.31 2.04 0.67 4.78 3.31

(0.02) (0.01) (0.04) (0.01) (0.02) (0.01) (0.04) (0.01)

Recession 0.10 0.06 −0.02 −0.12
(0.01) (0.01) (0.02) (0.01)

R2 0.77 0.75 0.66 0.74 0.78 0.75 0.66 0.74

N. groups 12 10 36 51 12 10 36 51

N. obs. 3,421 3,453 5,646 16,136 3,421 3,453 5,646 16,136

Note: OLS estimates of equation (27) using monthly variation in unemployment rates across

(I)ndustries, (O)ccupations, (S)tates, and large metropolitan areas or (C)ities. Standard errors in

parentheses. Recession is a control according to the NBER chronology. Cross-sectional data for

seasonally adjusted unemployment rates for (I), (O), and (S) from the Current Population Survey

(CPS). Unemployment measures in (C) from the Local Area Unemployment Statistics.

The mode of the distribution of unemployment rates is a consistent estimate of +.

The observed distribution of unemployment rates, however, is unlikely to be stationary due

to business cycle fluctuations. To capture changes in aggregate conditions, I consider a

time-varying mode + . The underlying assumption is that aggregate business cycles pro-

portionally shift the distribution of local unemployment rates. I also control for recessions,

as dated by the NBER chronology. (I consider a constant mode + and many alternative

estimates of + and  in the Appendix, but the reported findings here are robust.)

The baseline calibration based on wage dispersion delivers  ≡ 1−22 = 33, which
is identical to the estimate of  across states (S) in Table 2. An advantage of considering

unemployment rates across states is the large number of “islands” relative to industries (I)

and occupations (O). These other segments deliver smaller values for , which imply heavier

tails and higher unemployment inequality. The reduced number of cross-sectional units in

18I consider the Current Population Survey (CPS, https://www.bls.gov/cps/) from 1976-01 to 2018-07. I

also consider Local Area Unemployment Statistics (LAUS, https://www.bls.gov/lau/) from 1990-01 to 2019-

10. The model has distributional implications for vacancy rates, but the normalization of − makes vacancy
rates too sensitive to the local shocks, which is an unpleasant feature of the model.
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Figure 1: Aggregate unemployment rates and cross-sectional dispersion in unemployment.

(I) and (O) is likely responsible for the higher unemployment inequality. The estimate of

 across large metropolitan areas (C) implies lower unemployment inequality, but these

estimates rely on more recent samples and fewer cross-sectional units than in (S). Table 2

also suggests that recessions shift the distribution of the lower tail of unemployment rates,

but the shifts do not alter the log-log relationship implied by expression (27).

Is the value of  reasonable? Under the alternate value of  = −010, the Pareto co-
efficient for the distribution of the unemployment rate is  = 21, which is counterfactual.

While there is no single data analog for an “island,” the degree of lower tail inequality in

unemployment rates across industries, occupations, states, and cities is roughly in line with

the baseline calibration set to match frictional wage dispersion.19 Moreover, the model also

matches the empirical relationship between the cross-sectional dispersion of local unemploy-

ment rates and their mean values. In the model, the dispersion in unemployment rates is

proportional to the aggregate unemployment rate, ̃∗, as in  = ̃∗
p
(2 + ).

Figure 1 shows that there is a strong positive relationship between the aggregate unem-

ployment rate and the cross-sectional dispersion of local unemployment rates across occupa-

tions, industries, states, and large metropolitan areas in the US. This positive relationship

19The estimates of the log-log relationship (27) in Table 2 are similar to alternative estimates in the

Appendix. The Appendix also shows that a log-log relationship accounts for more of the variability in the

empirical cumulative distribution of unemployment rates at the lower end of the distribution than at the

upper end.
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is important for two reasons. First, the baseline calibration of  = 33 matches the slope

of the observed relationship, while the alternate value of  = 21 implies that these mo-

ments are essentially unrelated. Second, there are no significant breaks in the relationship

between the first two moments of the distribution of unemployment rates during the Great

Recession. The stability of this relationship during the Great Recession, compared to pre-

vious downturns, suggests that mismatch was likely as significant then as it was in prior

downturns.

In particular, in the 12 industry monthly cross-sectional data compiled by Şahin et

al. [55] between December 2000 and June 2011, the negative correlation between the

cross-sectional average of unemployment and vacancies from the Job Openings and La-

bor Turnover Survey (JOLTS) equals the correlation between the cross-sectional dispersion

of unemployment and vacancies, as in C( ) = −0878, C( ) = −0882,
because the first two moments of the distributions of unemployment and vacancies move

together, i.e., C( ) = 0996, C( ) = 0943. During the Great Recession,

local labor markets experienced a widening of the distribution of unemployment rates and

a compression of the distribution of vacancies. These movements are consistent with the

mismatch model, but a definitive assessment of the importance of mismatch requires much

more disaggregated unemployment and vacancy data than is currently available.20

5 Some Concluding Remarks

This paper studied an economy where workers and jobs are matched and mismatched using

more explicit assumptions and aggregation principles than in the matching-function based

approach. The paper highlighted, through a simple example, that incorporating explicit

informational imperfections, market incompleteness, costly worker mobility, and general

competitive equilibrium principles do not necessarily introduce intractable complexities to

the macroeconomic study of labor markets. Macroeconomics has evolved from building ad

20Aggregate vacancy rates and their cross-sectional dispersion across metropolitan areas in the Conference

Board Help-Wanted Series are positively associated; see Andolfatto [5]. The correlation between aggregate

and the cross-sectional dispersion for unfilled vacancies across 12 regions in the UK from January 1980 to

April 2001, when the survey ended (www.nomisweb.co.uk), is 0.87.
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hoc models to directly integrating microeconomic principles and disaggregated data. The

ability to confront distributional questions that involve cross-sectional data and time series

behavior of an economy is one of the many potential benefits from peering into the “black-

box” of the aggregate matching function.
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6 Appendix: Omitted Derivations and Proofs

6.1 Contingent (First-Best) Allocations

The paper considers a non-contingent static assignment of jobs. This subsection considers

a version of the static assignment problem under contingent allocations to illustrate the

outcome if the informational frictions can be overcome. The jobs assigned can now be

indexed by , so the planner’s contingent assignment problem is:

max

Z ()

0

()min{( ) ()()}, s.t.
Z ()

0

( ) ≤ .

The First-Best (FB) optimal job assignment is ( ) = ()() for   () and

( ) = 0 for  ≥ (), thereby eliminating local imbalances in active and inactive

locations. Still, depending on the value of , the economy might exhibit either vacancies

or unemployment, but not both. Let

() ≡
Z ()

0

()(),

denote the total number of jobs needed by the informed planner. If   () then, there

is a surplus of jobs given by −(). If   (), then the least productive locations

(i.e., those with low productivities ()) will have a surplus of workers. If  = (), the

planner will have the exact same number of jobs as needed, given the state of the aggregate

demand shocks () and uncertain factor requirement ().

In the First-Best allocation, there is no coexistence of unemployment and vacancies, so it

would not be possible to construct an aggregate matching function. The First-Best contin-

gent allocation differs from the job assignment in Lagos [36] (L). In Lagos [36], the market

equalizes average productivities across active locations leading to an inefficient outcome.

Let  be the opportunity cost of a job. Suppose that local jobs are assigned to satisfy:

{()min £1 ()()( )¤− }( ) = 0,

for   () or all active locations.

In Lagos [36], the static job assignment is based on min{1 ()()( )}, which
can be interpreted as the probability of a pairwise match between workers and jobs. If

the local shock () in an active location exceeds , their assigned job capital is given by

(){()()( )} = . Jobs, in other words, are directed toward the best locations.

As ()  1, these locations have a surplus of jobs, i.e., ( ) = [()]()() 

()(). Let

() ≡
Z ()

0

( ) =

Z ()

0

[()]()(),

denote the number of jobs needed by the market assignment. If  is small, i.e.,  
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(), the economy will simultaneously exhibit a surplus of jobs in the most productive

locations as ( )  ()() in the best locations, and a surplus of workers in the least

productive locations as ( ) = 0 in such locations. The market is inefficient due to a

coordination problem, and unemployment and vacancies will coexist in the economy.

Besides coordination problems, if an active location has a productivity level given by

()  , this location should have no jobs assigned to them (i.e., ( ) = 0) as it does

not cover the opportunity cost of capital. Any assignment, even if job capital is abundant,

would be unproductive. This case resembles Akerlof [2] and adds another layer to the

potential sources of unemployment in Lagos [36].

6.2 Proofs

For convenience, I omit the index  unless it is essential for the proofs. I also suppress the

index  when () is the only random variable under consideration.

Proof of Proposition 1. Assumption 1 implies a probability density for  of the form

[1 + +]() =

½
 if 0 ≤   +
(1− )1−+ 1+(1−) if  ≥ +,

(A1)

with  and + as parameters to be determined by simple normalizations. This density

integrates to one for any positive value of  and +.

Mean output satisfies

E[min{ }] = E[|  ] Pr{  }+ Pr{ ≥ }. (A2)

The first term in (A2) satisfies:

E[|  ] Pr{  } = 

1 + +

µ
+

2
− 1− 



¶
+ +

µ
(1− )1−+

(1 + +)

¶
(1−),

(A3)

so that if +2 = (1 − ), the first term in (A3) drops out leading to E[| 

] Pr{  } = {(1 − )1−+ (1 + +)}(1−). The second term in (A2) sat-

isfies Pr{ ≥ } = [1− Pr{  }] or

Pr{ ≥ } = 

½
1−+

1 + +

¾µ




¶−1
. (A4)

Combining (A3) and (A4) yields

E[min{ }] =
½

1−+

(1 + +)

¾
(1−), (A5)

which completes the proof under the normalization 1−+ = (1 + +) = + 2(1− ).

Problem (2) is globally concave. Its first-order condition is

(∗)−1 = , with  ≡ . (A6)
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Integrating both sides of its first-order condition and using (1) yields

∗


=

1(1−)Z 1

0

1(1−)

, (A7)

or simply ∗ = ()1(1−), with  defined by (5), which shows that ∗ is increasing in
, and . Mean local output  is also increasing in , and  as  just raises (A7) to ,

and  has a direct effect on . Substituting (A7) into the maximand yields (4).

For the following proofs, I assume that the expectation terms are conditional on  

+. This assumption is not problematic as long as the level of local productivities  is

not “too small.” The dynamic case will have the relevant productivity shocks regulated by

a lower bound −. The technical issue is that if  → 0, ∗ → 0 so the unemployment

and vacancy rates would tend to ‘incorrect’ limits in (8) and (10). With a proper lower

bound for the local shocks, the following proofs are the only relevant cases to consider. For

completeness, I consider the case when the local shock is not bounded from below in an

Appendix not for publication.

Proof of Proposition 2. The first event in the unemployment equation (7) occurs with

probability (1−). The second, with probability , satisfies Pr{ ≥ }−1E[−1| ≥
] Pr{ ≥ }. (Unemployment in the third event is zero.) From (A4), the first part of
this expression is simply ()−1. The second part satisfies

1(1− )1−+

1 + +

µZ ∞


−11+(1−)

¶
= 1(1− )

(
−1+−1

(−1 + − 1)

¯̄̄̄∞


)

= 1
(1− )

(1− + 1)

µ




¶−1+−1
. (A8)

Given the previous expression, the (mean) local unemployment rate satisfies ̃ = (1− ) +

(1 + (1− ))−1
¡


¢−1
, which equals (8) after using (A6).

Proof of Proposition 3. As before, the first event in the vacancies equation (9) occurs

with probability (1−). The second, with probability , satisfies Pr{  }− E[| 
] Pr{  }. The first part of this expression uses Pr{  } = 1 − ()−1.
The second part directly divides (A3) by  to yield (1 − )()−1, so one obtains ̃ =
(1−)+{1− ()−1} = 1−()−1, which can be simplified, using (A6), to get (10).

Proof of Proposition 4. The mean conditional values of unemployment and vacancy

rates are inversely related to . The relevant variables are ̃ = 1 −  + −1([1 + (1 −
)]) and ̃ = 1 − −1(). Hence, C(̃ ̃) = − ([1 + (1− )]) ()C(−1 −1).
As V(̃) = ([1 + (1− )])

2V(−1) and V(̃) = ()
2V(−1), C(̃ ̃) =

C(̃ ̃)V(̃)12V(̃)12 = −1.
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Local wages are increasing in  hence covary negatively with unemployment rates,

C(̃ ) = ([1 + (1− )]) [(1− )()(−1)11−−1]C(−1 1(1−)).

The covariance term is of the form C(−1 1(1−)) = E[−11(1−)] − E[−1]E[1(1−)].
The first term can be written as E[(1−)]. As (1−) is a striclty concave function,
Jensen’s inequality implies that E[(1−)]  E[](1−). In the second term, as −1

and 1(1−) are striclty convex functions, Jensen’s inequality implies E[−1]  E[]−1 and
E[1(1−)]  E[]1(1−). Combining inequalities yields

E[−1]E[1(1−)]  E[]−1E[]1(1−) = E[](1−)  E[(1−)],

leading to a negative covariance.

Proof of Proposition 5. In the Cobb-Douglas production function (4),  (  1) =

 ( = 1). Hence, (  1) = ( = 1) from the Envelope Theorem. As the opportunity

cost of capital  changes with , expression (8) yields

(  1) = 

½
1− 

∙
 − 

1 + (1− )





¸¾
=  −  [ − ( = 1)] , (A9)

which gives (11). Changes in the vacancy rates can be derived analogously because

(  1) = ∗
½
1− 

∙








¸¾
= ∗ −  {∗ − ( = 1)} . (A10)

Proof of Proposition 6. In Proposition 5, unemployment shares satisfy




(  1) = (1− ) + 




( = 1), (A11)

or in the ∆ notation as ∆() = (1−)[1− ] with  ≡ ( +(1−))  .

Therefore, one can write MM as

MM(  1) ≡ 1
2

Z 1

0

³ 

(  1)− 1

´2
 =

1

2

Z 1

0

2

³ 

( = 1)− 1

´2
,

where the last expression is simply 2MM
( = 1). Hence ∆MM

 = (2 − 1)MM as

needed.

ForMM , notice that in Proposition 5, vacancy shares () shift as in (A11) but with
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 ≡ ( + (1− )). Therefore, one can write

MM(  1) ≡ 1
2

Z 1

0



³ 

( = 1)− 


( = 1)

´
+ ( − )

¯̄̄
1− 


( = 1)

¯̄̄
,

≤ MM
( = 1) +

| −  |
2

Z 1

0

¯̄̄
1− 


( = 1)

¯̄̄
,

≤ MM
( = 1) +

| −  |
2

, (A12)

where the second inequality follows when all vacancies are in a single location, which is the

highest possible concentration. Hence ∆MM
 ≤ ( − 1)MM + | −  |2.

For MM, notice that




(  1) ≥ 


( = 1) and




(  1) ≥ 


( = 1),

which implies that³ 

(  1)

´ ³ 

(  1)

´1−
≥
³ 

( = 1)

´ ³ 

( = 1)

´1−
.

so one obtains MM(  1)  MM( = 1) upon integration.

Proof of Proposition 7. Output for the new matches is min{ }, where  satisfies
Assumption 1. The number of exits from unemployment is

 =  −
½
[]1 if  ≤ 

0 if   ,
(A13)

so one needs to compute  1E[−1| ≥ ] Pr{ ≥ }. This expression is of the
same form as (A8), so one gets (15).

To verify the log-linear approximation for (  ), let  =  and write () = 1−,
with  ≡ (1−)[1+(1−)] and  ≡ −1. To log-linearize () around 0 = 1− 0,

first note (0) = −−10 0 so that using (0)(0) '  ln(0) and 00 '  ln0
gives

[ln()− ln0] ' − 0
1− 0

[ln− ln0].

At 0 = 1, the previous expression yields ln() ' ln(1 − ) − [(1 − )] ln. As

−[(1 − )] = (1 − )2[1 + (1 − )2], it is possible to write ln(  ) ' ln0 +

̃ ln[], where ̃ ≡ (1 − )2[1 + (1 − )2]  1, as in (16). The total number of

matches, (  ) = (  ) , can be approximated by ln(  ) ' ln0 + ̃ ln −
̃ ln + ln , as in the text.
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7 Appendix: Dynamic Assignment Problem

I collect here the detailed and technical solution to the dynamic assignment problem (21).

As noted in the text, the spatial allocation of workers and jobs, and the accumulation of

aggregate capital can be treated as separate problems. First, let V(0() 0(); {}≥0)
be the value of local output in location  when the initial state is (0() 0()) and

{() () ()}∈[01]≥0 are chosen to solve:

V(0() 0(); {}≥0) ≡ maxE
Z ∞

0

[()− ()− ()] exp{−}, (B1)

where  is the Lagrange multiplier on (19). Second, the capital accumulation problem is

deterministic and {}≥0 solves:

M(0) ≡ max
Z ∞

0

[ − ] exp{−}, s.t., (20). (B2)

Taking the previous two problems together yields (21) or

max

Z 1

0

V(0() 0(); {}≥0)()+M(0).

Job capital. The job capital accumulation problem (B2) is deterministic. The Hamilton-

Jacobi-Bellman (HJB) equation associated with (B2) is M() = max{ −  +

M0()[ − ]}. The first-order condition for  is of the form {M0() − 1}∗ = 0,

and the envelope condition is (+ )M0() = , as (B2) is linear in , i.e.,M00() = 0.

Preferences for consumption are linear hence, in the stationary solution,  = ∗ =  + .

If  and () are “too far” from their stationary value, one should have    +  to

prevent negative consumption, but the previous inequality can only hold in finite time. I

therefore consider only the case with ∗ = + .

Some remarks. Before considering the spatial allocations, I next present a few remarks

about the job capital accumulation in the dynamic assignment problem. In a world with

concave preferences for consumption, there would be an added self-insurance motive and a

precautionary (over)accumulation of job capital. As in traditional Bewley-Aiyagari models,

the equilibrium rate of return ∗ will be lower than the adjusted rate of time preference
 + . The rate of return would also be a function of the distribution of the state of the

economy, rather than a constant value, as in here.

It is possible to assume that households diversify the risk associated with search histories

by aggregating local consumptions internally. This would allow different locations face

different trading opportunities, while still delivering a stationary outcome where the rate of

return to capital equals the augmented rate of time preference. The downside of concave

utilities, even in this simple case, is that the allocation is no longer separable and the

stationary values of ∗ and ∗() need to be solved simultaneously instead of recursively,
as done here. I have also ignored home production and leisure. These activities can be
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implicitly included as one location in the model, or as a separate activity with additional

value. Treating home production as a separate activity would make the total labor force 

endogenous.

Spatial allocation of labor. Consider next the spatial allocation problem given the sta-

tionary value ∗. The value function V(() (); ∗) in (B1) does not depend directly on
time, so write V(() (); ∗) as V(). The HJB equation associated with (B1) is

V() = max
½
()− [(1− )()− ()− ̄]()− ∗() +

E[V()]


¾
, (B3)

where the last term, given (17) and Ito’s Lemma, is

E[V()]


= V()[(1− )()− ()− ̄]() + ()V() + 1
2
2()

2V(). (B4)

As in the static problem, the marginal product of capital equals ∗. The marginal

product of labor coincides with the local wage (), as the dynamic assignment is efficient.

I treat them interchangeably. Expressions (B3) and (B4) imply that the optimal fraction of

searchers and arrivals, ∗() and ∗(), satisfy a series of (variational) inequalities. Worker
search ∗() satisfies

{ − ()− V()} ∗() = 0, (B5)

and arrivals ∗() satisfy
(1− ) {V()− } ∗() = 0. (B6)

Proposition 8 The value function for a particular location satisfies V(() (); ∗) =
W((); ∗)(), where W((); ∗) is the present discounted value of output per worker.
There is a search threshold so that workers leave a location if wages reach −; and arrivals
are directed to a location with a wage +  −.

Proof. The proof uses a series of transformations:

(i) Net out capital choices through an indirect production function () which gives the

value of local output once capital adjusts optimally to labor reallocations.

(ii) In locations without searchers and arrivals, log-wages ̃() ≡ log(()) evolve as

̃() = +  − 

1− 




, (B7)

with drift and diffusion terms

 ≡ 

(1− )
+ 

2
2
+ (1− )̄, and 2 ≡

2
(1− )2

. (B8)

The drift  captures the random flow of workers and the amplification of local shocks

through the job assignments, i.e., set ̄ = 0 temporarily to see that    as long as

  0. Amplification follows because a positive shock makes worker and job inflows more

attractive on their own but also due to their complementarity. (This is so because wages
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are convex in (). Convexity also explains the relationship between 2 and 
2
 in (B8) and

the presence of 2 in .) The dependence of local wages on  in (B7) is problematic

under aggregate uncertainty but in a stationary environment  = ∗ and wages eventually
settle to a stationary density.

(iii) By the competitive nature of search, the value of a location for a particular worker

in (B3), should only be a function of the wage. Homogeneity in the wage function makes

possible to write (B1) in terms of the present discounted value of output per worker, i.e.,

W∗((); ∗). That is, in the inaction region, (B3) becomes

2
2
()2V() + ()V()− V() + () + [ − V()]̄() = 0, (B9)

which is a second-order partial differential equation. Homogeneity in the wage function

implies V(() (); ∗) =W((); ∗)() so, V() =W() +W 0()(− 1)(), V() =
W 0()()()(1−)(), and V() = {W 00()()2+W 0()()}()(1−)2()2.
Substitution of these expressions into (B9) yields:

2
2
W 00()()2 + W 0()()− ̄W() + ()+ ̄ = 0, (B10)

with  and  listed in (B8), and with ̄ ≡ + ̄.

This value function satisfies a second-order ordinary differential equation 2(−1)2+
 − ̄ = 0 whose solution is standard. A homogeneous part is based on 1()

1 +

2()
2, with 12 as the roots of Q() = 2(− 1)2 + − ̄ = 0, of the form

12 = (1− )2±
p
[(1− )2]2 + 2̄2, with  ≡ 22. (B11)

Under ̄  0, the roots are of opposite sign. The value of a location should go to zero as

()→ 0, so 2 = 0.

Let 1 denote the positive root. This root is associated with the option value of search.

For search to have a positive option value (i.e., 1  1) one must have Q(1) =  − ̄  0,

which, from (B8), requires the (technical) assumption that time must be discounted at a

sufficiently high rate to make search valuable, i.e.,

̄   =⇒  


(1− )
+



(1− )2
2
2
− ̄. (B12)

For a particular solution consider the adjusted wage process ()+ ̄ when workers

are required to remain in a location indefinitively (i.e., when no control is undertaken).

Then, the value function W∗() satisfies W∗((); ∗) =  + ()(̄ − ), where

̄ ≡ +̄   is the augmented discount rate and  is a constant,  ≡ ̄−1
£
1− ̄̄− ̄

¤
,

for ̄ ≡ 1(1 − 1)[(1 − 1)− 1], and with the explicit dependence of () on ∗ omitted
for convenience.

(iv) At the threshold where worker search takes place, expression (B5) corresponds to

 = () +W() − W 0()(1 − )(), while the smooth-pasting condition is 0 = 1 +

W 0() −W 00()(1 − )(). Combining these expressions yields a search threshold −
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given by

−
µ
1 +

1

̄− 

¶
= 

µ
1

1 − 1
¶µ

1− ̄

̄

¶
. (B13)

At the threshold where directed arrivals take place, (B6) is {W()−W 0()(1−)()−} =
0 with a smooth-pasting condition 0 = W 0()−W 00()(1−)(). Combining expressions
as in the other threshold yields an arrival threshold + given by

+
µ

1

̄− 

¶
= 

µ
1

1 − 1
¶µ

1− ̄

̄

¶
. (B14)

For both thresholds to be positive, the exogenous flow term 1− ̄̄ must be positive.

To understand the previous expressions, notice that the right-hand sides of (B13) and

(B14) are equal. Both expressions represent the “lifetime” cost of search: the direct cost

, times the option value multiple 1(1 − 1)  1, times a random flow adjustment. The

direct cost  and the random exit term ̄̄ are primitive parameters. The left-hand side of

(B13) is the “lifetime” benefit of staying in a location with a wage −: the current wage
and its expected present value given an adjusted growth at a rate  − ̄. Likewise, the

left-hand-side of (B14) is the “lifetime” benefit of arriving to a location with a wage +.

The ratio between the arrival and search thresholds in (B13) and (B14), +− =

1 + ̄ − , measures the opportunity cost of not working for an instant, while searching:

the lost time and the missed wage appreciation during that instant.

Derivation of the Kolmogorov Forward Equation (KFE) and boundary conditions. Before

considering the stationary distribution of wages, it is neccesary to derive the KFE and its

boundary conditions. They are related to the behavior of workers at the search and arrival

thresholds.

Because ̃() is a sufficient statistic for the local state, (() ()) = (̃()). To

derive the Kolmogorov Forward equation (KFE) for the state of the local economy (i.e.,

log-wages), notice that in the absence of any labor movement, and when  = ∗, log-
wages evolve as a regular Brownian motion with drift  and diffusion 2 in (B8). Labor

movements, however, induce changes to log-wages due to random arrivals, directed arrivals,

and worker search. Random arrivals take place at all points in the support [̃−∞)whereas
directed arrivals only take place in ̃+ and workers search once the wage reaches ̃−. There-
fore, over the support ̃ ∈ (̃− ̃+)∪ (̃+∞), that excludes the search and arrival thresh-
olds, log-wages evolve as a regular Brownian motion (B7), and their density (̃) satisfies

a Kolmogorov Forward equation (KFE)

(̃)


=

2
2
00 (̃)− 

0
(̃)− ̄(̃), (B15)

with 0(̃) ≡ (̃)̃ and 00 (̃) ≡ 2(̃)̃
2.21

21To see the connection between the KFE in the original state (() ()) and the KFE using the

sufficient statistic ̃, let the “original” density be ̃(() ()). When the state is (() ()), the

“original” KFE satisfies ̃() = (22)
2[()

2̃()]()
2 − [()̃()]() + [{((1 −

)∗ ()− ∗ ()− ̄)()}̃()](), where the first two terms are due to the diffussion of local shocks
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The previous expression must be supplemented with boundary conditions: (̃) must

satisfy integrability conditions and continuity at the wage at which workers direct their

search, i.e., −(̃+) = +(̃
+), where −(̃+) and +(̃

+) denote the left and right

limits of (̃) at ̃
+, respectively. The boundary condition at the search threshold implies

that ̃− behaves as a reflecting barrier. Integrating (B15) yieldsZ ∞

̃−

(̃)


̃ =

2
2
{[0−(̃+)− 0+(̃

+)] + [0(∞)− 0(̃
−)]}

− {[−(̃
+)− (̃

−)] + [(∞)− +(̃
+)]}

− ̄.

Integrability requires that (∞) = 0(∞) = 0 and continuity requires that −(̃+) =
+(̃

+) leading to Z ∞

̃−

(̃)


̃ =

2
2
[0−(̃

+)− 0+(̃
+)]

− 2
2
0(̃

−) + (̃
−)− ̄. (B16)

The righ-hand-side terms capture how the density (̃) changes over time in the absence

of worker search. The first line is associated with the distributional influence of arrivals at

̃+ and the second with wage behavior at the boundary ̃− and the random flow of ̄

workers. To understand the boundary behavior, the search and arrival decisions are needed.

Proposition 9 Search unemployment is determined by the outflow of workers at the search

threshold, and it is given by

∗ (̃
−) =

2
2

(̃
−)

1− 
, (B17)

while arrivals satisfy

(1− )∗ (̃
+) =

(̃
−)

(1− )
+ , (B18)

with  ≡ 2̄2.
and the third to the optimally chosen drift for the local labor force. Since ̃(() ()) = (̃()), the

changes in the wage drift due to changes in the local labor force take place in three different ways. First,

there is an inflow of ̄ in the entire support [̃−∞), an inflow of directed arrivals in ̃+, and an outflow of
searchers at ̃−. Since the first changes take place over the entire support, the change in the drift due to
random arrivals is of the form [̄()̃()]() = ̄{(̃()) + 0(̃())( − 1)}, where the second
term arises simply because ()̃()() = ()

0
(̃())̃()() = 0(̃())(−1). The other

two changes in the drift are discussed below because they take place at sets of measure zero, i.e., at the

‘exit’ and ‘entry’ points. Supplementing the diffusion terms for the log-wages with the change in drift due

to random arrivals yields

(̃)


=

2
2
00 (̃)−

µ


(1− )
+



(1− )2
2
2

¶
0(̃)− {̄(̃)− (1− )̄0(̃)},

which is the KFE (B15) in the text.
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Proof. As noted by expression (23), worker search acts as an instantaneous control to

ensure that no log-wage crosses ̃−, so that ∗ () = −(22)̃(̃
−)( − 1).22 As noted

in the text, heuristically speaking, search prevents a crossing of the search threshold. More

specifically, the variation of log-wages in a short time interval is proportional to 2, and

by symmetry half of the density of log-wages near the threshold will make its way to ̃−.
These terms yield (22)(̃

−) in (B17) (or 2(̃
−)2(1−)2 in (23)). As the control is

given in terms of workers leaving, 1(1− ) translates worker flows into log-wage changes.

The arrival of (1− )∗ (̃
+) workers takes place at a log-wage ̃+. The fact that wages

move across ̃+ and that ̃(̃) is assumed to be continuous means that lim̃↑̃+ (̃) =

lim̃↓̃+ (̃) so that the left and right derivatives of (̃) at ̃+ satisfy 0−(̃
+) −

0+(̃
+) = (1− )∗ (̃

+). For the spatial assignment of workers to be feasible,Z ∞

̃−
(̃)̃ = 1 for all , or

Z ∞

̃−

(̃)


̃ = 0,

which, from expression (B16), implies (22)(1− )∗ (̃
+)− ∗ (̃

−)− ̄ = 0 or (B18). In

other words, for the spatial assignment of workers to be feasible, the directed arrivals in

(B18) ensure that (̃) behaves like a probability density at all .

Once search behavior is taken into account, the boundary terms of the KFE at ̃−

must satisfy −(22)0(̃−) + (̃
−) − (22)( − 1)−1(̃

−) = 0. Therefore, for

 ≡ (22), the boundary condition at ̃− is

0(̃
−) = ( + (1− )−1)(̃

−). (B19)

Proposition 10 The stationary log-wage density ∗(̃) can be approximated by (22).

Proof. The stationary value of the distribution of log-wages over ̃ ∈ (̃− ̃+)∪(̃+∞)
is given by 00(̃)− 0(̃)− (̃) = 0, where  ≡ 22 and  ≡ 2̄2. A general
solution for the previous homogeneous second-order ordinary differential equation is of the

form

∗(̃) = 1 exp{1̃}+2 exp{2̃}, (B20)

where the constants 12 need to be determined, and the exponents are the roots of Q() =
2 − −  = 0, i.e.,

12 = 2±
p
(2)2 + .

For the roots to be real, (2)
2
 −, which holds immediately if ̄  0. Since Q(0) =

− = 12, if ̄  0, and if both roots are real, the roots will be positive and no solution

of the form (B20) converges to zero as ̃→∞. For the existence of a stationary density it
is then neccesary to assume that ̄  0.

22This term can be obtained in multiple ways. Alvarez and Shimer ([4], equation 16) contain a derivation

based on the approximation of a discrete grid. An alternative derivation based on the hypothetical movement

of wages below the threshold, and the amount of control needed to bring them back to the set [̃−∞) is
available upon request.
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If ̄  0, the roots are not only real but they are of opposite sign, 1  0  2. The

numerical value of negative root is important to guarantee the existence of mean values

associated with ̃∗(̃). If Q(−1) = 1 +  −   0, then 2  −1. This requires ̄ 

22+, which assumes a ‘large’ fraction of random flows relative to the log-wage process

or a sufficiently negative drift in wages. Moreover, as 1 + 2 = , 1 ≷ −2 iff  ≷ 0, with
the roots being symmetric (i.e., 1 = −2) if  = 0 and asymmetric if  6= 0.
The stationary density ∗(̃) can be solved as a pair of second-order ordinary differential

equations, one on (̃− ̃+), and the other on (̃+∞), with boundary conditions that ensure
that the density is continuous at the threshold ̃+. Consider first the support (̃− ̃+).
Using the threshold condition for ̃− given by (B19) in (B20) implies that

∗(̃) = 2 exp{2̃}
½
1− [2 − ( + (1− )−1)]

[1 − ( + (1− )−1)]
exp{(1 − 2)[̃ − ̃−]}

¾
, (B21)

for ̃ ∈ [̃− ̃+). Consider next (̃+∞). For the boundary condition ∗(∞) = 0 to hold
in (B20), only the negative root must be active so 01 = 0, and

∗(̃) = 02 exp{2̃}, for ̃ ∈ (̃+∞). (B22)

The densities (B21) and (B22) must agree on ̃+ so over [̃− ̃+] one has ̃∗(̃) =
02 exp{2̃+}[exp{1[̃ − ̃+]}+ ̄(exp{2[̃ − ̃+]− exp{1[̃ − ̃+]})] with

̄ ≡ [1 − ( + (1− )−1)]2[̃
+−̃−]

[1 − ( + (1− )−1)] 2[̃+−̃−] − [2 − ( + (1− )−1)] 1[̃+−̃−]
,

while ̃∗(̃) = 02 exp{2̃+} exp{2[̃− ̃+]} over [̃+∞). As an approximation, one can
write

∗(̃) ' 02 exp{2̃+}
½
exp{1[̃ − ̃+]} for ̃ ∈ [̃− ̃+]
exp{2[̃ − ̃+]} for ̃ ∈ [̃+∞), (B23)

which can be used to obtain (22). As the density must integrate to one, the constant term

 is such that one obtains 
0
2 exp{2̃+}[−11 (1−exp{1[̃−−̃+])+̄−12 (1−exp{2[̃−−

̃+])− −11 ((1− exp{1[̃− − ̃+]}))− −12 ] = 1.

Some remarks on the wage density. The approximation in (B23) is proportional to

̄(exp{2[̃− ̃+]− exp{1[̃− ̃+]}), which has been dropped from ∗(̃) over [̃− ̃+].
Since the density of wages is ∗(log), applying exp{1[̃ − ̃+]} ≡ exp{1 log[+]}
makes the double Pareto nature of the density of wages evident. In terms of wages,

∗(log) ' 

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1−1

(+)1
for − ≤  ≤ +

2−1

(+)2
for   +.

(B24)

Also, notice that the stationary values of search unemployment and arrivals are directly
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obtainable from ∗(̃). Search under  = 0, for example, satisfies

∗(̃−) ' 
p
̄2

(1− ){1 + 2[1 + + ̄]
√
2̄2}

, (B25)

which is increasing in wage dispersion  due to a higher likelihood of reaching the search

threshold. When  = 0, arrivals 
∗(̃+) are

∗(̃+) ' 2∗(̃+)
p
̄2

(1− )(2)
. (B26)

These are closed-form solutions to the stationary wage density and the frictional worker

flows.

Local labor force and job assignments. One needs to still determine the the stationary

density of the labor force, as a function of the local state ̃. Let such density be denoted by

∗(̃). I assume that ∗(̃) is a piecewise continuous function of the state (i.e., log-wages).
Consider a path for log-wages with a starting value of ̃0. The labor force (18) evolves as

a stochastic differential equation which, when integrated, yields a realization

(̃) = (̃0) exp

½
−̄− ( − 1)∗(̃+)

Z 

0

I{̃+} − ∗(̃−)
Z 

0

I{̃−}
¾
, (B27)

where I{̃−+()} denote the indicator functions that equal one when log-wages reach the
thresholds. This expression can be written as

(̃) = (̃0) exp
©−̄− ( − 1)∗(̃+)L+ − ∗(̃−)L−

ª
, (B28)

where L−+ denote the local times of the log-wage process at ̃− and ̃+. The local times

at ̃− and ̃+ are defined by L−+ ≡ R 
0
I{̃−+} so (B27) and (B28) are identical.23

Proposition 11 The stationary density of the local labor force can be approximated by

∗(̃) ' 

©
exp{−̃}+ exp{̃}I{[̃−̃+)}

ª
, (B29)

where  is a constant,  =
√
2̄  0, and I{[̃−̃+)} is an indicator function.

Proof. The stationary density of the labor force ∗(̃) satisfies an ordinary second-order
differential equation with a jump discontinuity at the arrival threshold ̃+ and an elastic

barrier that “kills” workers at a rate ∗(̃−) when log-wages reach ̃−. The density can be
computed using (B27) and the functional equation

∗(̃) ≡ E̃
Z ∞

0

(̃).

23Local times measure the time log-wages spend in the states ̃− and ̃+, as in L− ≡
R 
0
I{̃−} and

L+ ≡
R 
0
I{̃+} , where I{}is an indicator function; see Karatzas and Shreve [33].
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By the Feynman-Kac formula (Karatzas and Shreve [33], Section 4.4), ∗(̃) satisfies an
ordinary second-order homogeneous ordinary differential equation (12)00(̃) = ̄(̃) over

̃ ∈ (̃− ̃+) ∪ (̃+∞), where 00(̃) ≡ 2∗(̃)̃2. The general solution ∗(̃) is of the
form

∗(̃) = 1 exp{̃}+2 exp{−̃}, (B30)

for  =
√
2̄  0, and with the constants 12 to be determined by the boundary conditions.

A finite value of the aggregate labor input ∗ requires that 2 and  are sufficiently negative,

i.e., −2 +   1.

Treat ∗(̃) as a pair of differential equations, one on (̃− ̃+), and the other on (̃+∞).
Boundary conditions ensure that ∗(̃) is integrable, jump discontinuous at the arrival
threshold, and such that workers leave at an exponential rate at the search threshold. That

is, in the limit, ∗(∞) = 0 to ensure integrability. The boundary condition at ̃+ reflects
the proportional entry of directed arrivals, as in 0−(̃

+) − 0+(̃
+) = (1 − )∗(̃+)(̃+).

The left and right derivatives at ̃+ are not equal due to the entry of directed arrivals so

∗(̃) experiences a jump discontinuity at ̃+. The boundary at ̃− is treated as an elastic
barrier, as in 0(̃−) = −∗(̃−)(̃−). This condition implies that workers are “killed” at
an exponential rate ∗(̃−) whenever the wage reaches the threshold ̃−.
With the previous boundary conditions, the construction of the solution is standard.

The elastic barrier gives a linear relationship between 1 and 2 over [̃
− ̃+): 1 =

2[(−∗(̃−))(+∗(̃−))] exp{−2̃−}. Over (̃+∞), 01 = 0 since only the negative
root remains to ensure integrability. The entry condition at ̃+ gives a linear relationship

between 2 and 02 so one can write

∗(̃) = 02 [̄2 exp{̃}+ ̄1 exp{−̃}] ,

over [̃− ̃+) with

̄1 ≡

h³
(1−)∗(̃+)



´
− 1
i

³
−∗(̃−)
+

∗(̃−)

´
2[̃

+−̃−] − 1
, and ̄2 ≡ ̄1

µ
 − ∗(̃−)
 + ∗(̃−)

¶
−2̃

−
,

and ∗(̃) = 02 exp{−̃} over [̃+∞). The constant 02 =  is determined since the

density ∗(̃) integrates to 1 (i.e., 02{(̄2)[exp{̃+}−exp{̃−}]−(̄1)[exp{̃+}−
exp{̃−}] + [exp{−̃+}]} = 1). As an approximation, small values of search imply
that ̄2 ' ̄1. If one further approximates ̄1 to one, the previous solution yields (B29).

The stationary density ∗(̃) is jump-discontinuous and composed of two exponential
functions. The first function, defined over [̃− ̃+), is of the form exp{−̃}+ exp{̃}.
As ̃ ↑ ̃+, ∗(̃) jumps down. This downward jump at ̃+ accounts for the arrival of
workers and ensures that the stationary density of wages is continuous. (The approximation

in (B29) is about the size of that jump.) The second function is defined over [̃+∞) where
∗(̃) decreases at a rate  =

√
2̄ determined by the exogenous worker separation rate.
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Since ∗ (̃) is proportional to (̃) in (B31), the stationary assignment of jobs satisfies

∗(̃) =
 exp{̃}∗(̃)
(1− )(+ )

, (B31)

where exp{̃} is the local wage and ∗(̃) is the stationary density (B29). Local output is
(̃) = (̃) so aggregate output and capital equal

 ∗ =
∗


, and ∗ =

∗

(1− )(+ )
, (B32)

where ∗ is the aggregate labor input, defined by

∗ ≡
Z ∞

̃−
exp{̃}∗(̃)∗(̃)̃. (B33)

The previous expressions provide a closed-form characterization of the ex ante spatial

allocation of workers and jobs, the stationary wage distribution, and all aggregate variables.

Local imbalances. Local shocks behave as a geometric Brownian motion of the form

()() =  + , with probabilistic initial conditions 0() and a reflecting

barrier − ≡ (+ )[(−(+ ))∗(̃−)1−]1−{−[(1− )]−(1−)}. This barrier is asso-
ciated with the search threshold and ensures that local shocks will not cross −. Consider
̃() ≡ log(()

−) such that ̃() = ̃+, with ̃ ≡ −22, and a reflecing
barrier at zero. The stationary distribution of the log-shocks is standard and given by

Pr{̃() ≤ ̃} = N
µ
̃− ̃

12

¶
− exp{2̃̃2}N

µ−̃− ̃

12

¶
, for all  ≥ 0,

where N is the standard normal distribution; see, e.g., Harrison ([23], p. 15). In the limit,

as  → ∞, Pr{̃() ≤ ̃} → 1 − exp{2̃̃2} for ̃  0. The log-shock’s limiting

density, − exp{2̃2}{2̃̃2}, is exponential and can be written as  exp{−̃} for
 ≡ −2̃2  0 or  ≡ 1 − 22 . The stationary distribution of the local shocks is
therefore Pareto and given by Pr{() ≤ }→ 1− [−].
The stationary distributions of local imbalances follow from the previous derivations

and the static imbalances. Job-shortages are distributed as an inverse Pareto distribution

[+] defined over a support [0 +] with upper bound + ≡ ( + )−(1 + (1 − )).

(The distribution is also known as the Power Function Distribution.) The inverse Pareto

characterizes the lower tail of the unemployment distribution. Job shortage rates in the

typical location are 
+(1 + ) and the cross-sectional variance in unemployment rates

is

2 =
(+)2

(1 + )2(2 + )
=

(̃∗)2

(2 + )
.

A feature of the distribution of unemployment is that the cross-sectional dispersion of

unemployment rates, defined by , is positively related to the mean unemployment rate

̃∗, i.e., both moments proportional and are functions of +, for instance. Although there are
no aggregate shocks introducing business cycle dynamics, the positive relationship between
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these moments is consistent with the time series evidence presented in the quantitative

section. Moreover, the shape parameter  ≡ 1 − 22 determines the heaviness of
the inverse Pareto tail. A smaller value of  yields a heavier tail and therefore higher

unemployment inequality across locations. I confronted the tail behavior in the main text,

and provide some additional empirical analyses below.

Vacancy rates also have a stationary distribution of the Pareto type, i.e., 1− is inverse

Pareto [(1 − )(1 − −)] defined over [1 − − 1] with 1 − − ≡ ( + )−. In the
calibration exercise, I assume − = ( + )− = 1 leading to a support [0 1]. The

relevant moments for the vacancy rate can be calculated as in the case of job shortages. As

noted in the text, and for the case of unemployment, the cross-sectional dispersion of job

shortages and vacancies is positively related to the mean job shortages and vacancies across

locations.
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8 Appendix: Calibration and Quantitative Analyses

[Not needed for publication]

This Appendix collects details about the calibration of the parameters used in the baseline

model. I also provide additional quantitative analyses to complement those in the text.

Aggregate parameters. As noted in the text, I consider a depreciation rate of  = 0012

and a discount rate of  = 0012, as it is standard at quarterly frequencies from Cooley

([12], p. 22). I calibrate  using the value for the labor share commonly used in equilibrium

search models, i.e.,  = 064; see, e.g., Alvarez and Shimer ([4], p. 102). This value assumes

that capital adjusts in response to labor flows, as in the indirect production function ()

considered here.

The relevant share of capital in national income is often computed as one minus the

labor share. Not all physical capital, however, is reproducible or relevant for the notion of

job capital used here. In the US, nonresidential equipment is on average about 15 percent of

the Net Stock of Private Fixed Assets according to the BEA (Table 2.1). Since equipment

is more in line with the notion of job capital used here, I assume that the job capital share

is  = 015× (1− 064) = 006. The job shortage rate in the typical location depends on 

and , and it is moderately sensitive to , as I show below in Table C2.

The value of  plays a secondary role overall so long   0. The reason is that the

relevant flow is given by the total number of arrivals (1− )() and not by the separate

values for the fraction of direct arrivals  and the number of arrivals. In other words, since

̄ ≡ ̄−̄, the gross flow rates ̄ are ̄ undetermined and so is . Because only net flows are
relevant, provided that   0, I assume an exogenous net worker flow rate of ̄ = 002 which

is the average quit rate that matches wage persistence under random search in Alvarez and

Shimer ([4], p. 101). Their value for exogenous worker flows under directed search is only

marginally different.

Demand shortages. I assume that the survival function that determines demand short-

ages is

(̃0()) = min{exp{−[(̃+ − ̃0())(̃
+ − ̃−)]} 1},

for   0. Thus, demand uncertainty is relevant only in low wage locations. At the search

threshold, 1−(̃−) = 1−exp{−} whereas 1−(̃0()) = 0 for any wage above the arrival
threshold ̃0() ≥ ̃+. Demand uncertainty, i.e., 1− (̃0()) thus declines exponentially

at the rate .

To calibrate , I use measures of unused capacity in the product market for manufac-

turing goods, as in Michaillat and Saez [45]. The Federal Reserve Board (FRB) publishes

monthly measures of capacity utilization (https://www.federalreserve.gov/datadownload/).

Data is available since 1948 for a fewer sectors, but I use data for 12 manufacturing sectors

consistently available since January 1972. I measure the importance of demand shortages

on aggregate unemployment using a simple (i.e., naïve) OLS regression between the cross-

sectional standard deviation of capacity utilization on aggregate monthly unemployment.

Table C1 reports an OLS coefficient of the cross-sectional standard deviation of capacity

utilization on aggregate monthly unemployment of 042 (s.e., 0046). The OLS coefficient of
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the monthly interquantile range (IQR) of capacity utilization on aggregate unemployment is

030 (s.e., 0020). On average, the standard deviation of capacity utilization in the sample is

654 percent and the average IQR is 770 percent. Both measures of dispersion suggest that

demand shortages associated with cross-sectional differences in capacity utilization amount

to about 2 percent unemployment (i.e., 00654× 042 = 0027, for the standard deviation,
or 0077×030 = 0023, for the IQR). Using  = 00023 and the stationary density of wages
∗(̃0()) in (24) yields this naïve estimate.

Table C1. Predicted aggregate unemployment due to demand shortages.

Dep. Var: Monthly aggregate unemployment rate Predicted

Mean OLS OLS unempl.

STDev 6.54 0.29 0.42 1.89 2.74

(1.71) (0.038) (0.046)

IQR 7.70 0.19 0.30 1.46 2.31

(3.90) (0.019) (0.020)

Controls No Yes No Yes

Months 683 683 683 683

Note: OLS regression between monthly aggregate unemployment rates and cross-sectional dis-

persion measures of capacity utilization in manufacturing. Controls include and indicator for

recessions, as well as linear and quadratic time trends. The predicted values represent the naïve

estimate of demand-driven unemployment rates. The sectors in durable manufacturing are: Elec-

trical equipment, appliance, and component; motor vehicles and parts; aerospace and miscella-

neous transportation equipment; furniture and related product; miscellaneous. The sectors in

non-durable manufacturing are: Food, beverage, and tobacco; textiles and products; apparel and

leather goods; paper; printing and related support activities; petroleum and coal products; and

chemical.

The calibration of  relies on the cross-sectional dispersion of utilization measures, rather

than on mean values of capacity utilization, which is the main measure in the empirical

analysis in Michaillat and Saez [45]. Capacity utilization averages 079 in the data, which

would imply very high demand-driven unemployment rates if taken at face value. I rely

on cross-sectional dispersion measures because in an exponential distribution,  controls

the mean and the standard deviation. A separate difficulty with the use of mean values

is that in the national accounts there is no room for imbalances in the output market, as

only actual transactions are measured. This can be interpreted as assuming that the output

markets clear ex post, as I assumed in the model developed here.

Wage inequality. I calibrate the local productivity shocks to match the stationary distri-

bution of frictional wage inequality. Alvarez and Shimer ([4], Table 1) measured the disper-

sion of sectoral level log-wages at a 5 digit industry level and report ̂ = 0037. I updated

their auxiliary statistical model of industry wages. Given an industry fixed-effect  and an

across-industries average log-wage ̃, I estimate: ̃− ̃ = +(̃−1− ̃−1)+.

Time series estimates for 5-digit level NAICS industries with data from the Current Em-

ployment Statistics (CES, https://www.bls.gov/ces/) from January 1990 until February 2019

yield ̂ = 005, with ̂ = 004 if the Great Recession is dropped, consistent with their

slightly smaller estimates of .
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Figure 2: Sensitivity analyses to changes in local shock dispersion and capital share.

As I noted in the text, industrial sectors alone are too broad to be consistent with

the notion of a “island” as sectors do not discriminate across geographic and occupational

categories. To calibrate the dispersion of wages I consider more disaggregated information.

In particular, the residual dispersion of individual log-wages is larger than at the sectoral

level. Heathcote et al. ([25], Figure 18), for instance, considered an individual log-wage

process

̃ = ̃

 + ̃

 , where ̃

 = ̃


−1 +  


 ,

and report a dispersion of the permanent component of ̂ ≈ 014. I consider  = 010
so that  = (1 − ) = 0106, which is an intermediate value between sectoral and

individual data.

Given , I calibrate  to match the estimated heavy upper tail of wages in Toda

([58], p. 368). I focus on the upper Pareto tail exponent, as I treated the lower tail as an

approximation. In addition, the upper tail is a more relevant metric for wage inequality.

Toda [58] examined, conditional on education and experience, cross-sectional and panel

wage data in the US from the Current Population Survey (CPS) and the Panel Study of

Income Dynamics (PSID). He showed, and checked by goodness-of-fit tests, that wages

are well approximated by a double Pareto distribution. I associate his estimates to the

distribution of frictional wage inequality. His estimated upper tail exponent is −234. Given
 and ̄, a value  = −00115 yields 2 = −234. For illustration, the Gini coefficient
in a Pareto distribution is (2|2| − 1)−1 so, ignoring the lower tail in wages, the baseline
parameterization yields a Gini coefficient for wages of 027. The resulting growth rate of log-

wages is  = −00047 and the mode/min ratio for wages is+− = 1++̄− = 10167.
Toda’s ([58], p. 368) lower tail exponent is 115 which is slightly lower than the resulting

value here, 1 = 151.

The stationary density of local productivities is governed by a Pareto exponent  ≡
1 − 22 = 33. The upper tail of the density of the labor force is governed by an
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exponent  ≡
√
2̄ = 02. The previous densities are stationary while the US economy

features sustained growth. This means that the negative drift terms  and  should be

interpreted as productivity and wage growth relative to aggregate growth not modeled here.

Normalization. I normalize  = 000021 to ensure that − = (+)∗ in (26). Higher
values of  yield higher values of − and higher vacancy rates, whereas lower values of 
yield lower vacancy rates. For instance, expression (26) would suggest negative vacancies.

This expression, however, only applies to values of  above +. Smaller values of  or

assuming −  ( + )∗ delivers small values of the vacancy rate by using the ‘flat’
segment of the uncertain factor requirement shock with values of  below the threshold +.

An Appendix not for publication considers the flat segments for completeness, but to keep

the message of the model consistent, I do not consider values of  below +.

Table C2. Selected aggregate labor market outcomes.

Aggregate unemployment rates Aggregate Frictional

Demand Job Search Vacancy wage

shortages shortages unemployment rate inequality

1− ∗ ∗(̃−) ̃∗ 1 2
Baseline calibration 2.45 2.88 0.41 23.2 1.51 −2.34
= −005 0.21 3.44 1.39 8.16 0.41 −8.48
= −010 0.02 3.63 2.63 2.97 0.20 −17.6
= 005 0.88 3.44 0.25 8.21 2.39 −5.89
= 011 2.78 2.79 0.44 25.6 1.40 −2.08
 = 015 2.67 7.48 0.46 23.0 1.36 −2.12
 = 001 10.0 2.64 0.41 29.6 1.51 −2.34

Note: The table reports the stationary values of key aggregate labor market variables. All rates

are reported in percentages. The coefficients 12 represent the Pareto exponents of the stationary

wage distribution. The parameters used in the baseline calibration are  = 006,  = 00023,

= −00115, and = 010.

Sensitivity analysis. Table C2 presents the baseline calibration and several alternate

values for the main parameters, all under the normalization − = (+ )∗, achieved by
changing the value of . As noted in the text, a more negative drift increases the importance

of search unemployment at the expense of demand shortages, and it reduces the mean value

of the aggregate vacancy rate. While demand shortages are exogenous, demand-driven

unemployment changes by the associated shifting of the stationary distribution of the local

state ∗(̃()). The downside of lower values of  is a reduced frictional wage dispersion.
Table C2 also considers alternate values of  and . A higher value for  implies higher

job shortages, which is consistent with the closed-form solution in the text, while changes

in  mostly influence demand without altering the other unemployment types. Across the

alternate parameterization, the value of the job shortages tends to remain stable except

when  changes, as  has a direct effect on ̃∗, as seen in the text.
Panels (a)-(c) in Figure 2 examine the sensitivity to changes in the local shock dispersion.

Panel (a) shows that demand shortages in the representative location increase due to a shift

in the stationary density ∗(̃0). Job shortages , including the highest job shortage rate
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Figure 3: Stationary distributions of unemployment and vacancies.

+, also increase. These changes are also evident in Panel (b) which considers  = 015.

An increase in local shock dispersion translates into higher local unemployment rates and

higher dispersion in local unemployment rates. Panel (c) confirms that vacancy rates are

insensitive to , due to the normalization used here. Finally, panel (d) shows the double

Pareto nature of frictional wages.

Lower tail unemployment inequality. Figure 3 plots the stationary distributions of local

unemployment rates (job shortages) and vacancy rates (worker shortages). The left panel,

(a) and (c), shows the functional relationship between local shocks (̃) and the unemploy-

ment and vacancy rates. The right panel, (b) and (d), depicts the cumulative distribution

functions of unemployment and vacancies across locations. There are substantial differences

in the cross-sectional dispersions of unemployment and vacancies with unproductive loca-

tions having higher unemployment and lower vacancy rates in equilibrium. The predicted

Pareto tails of unemployment are also evident in panel (b).

Table C3 presents alternative estimates of the lower Pareto tail of the unemployment

distribution . Panel A considers a time-invariant mode in (27). The point of the time

invariant estimates is to show that the tail behavior reported in text is robust to considering a

single unemployment mode, rather than a mode that varies over time. A time varying mode

+ is meant to capture shifts in the distribution of unemployment rates across locations.

The fact that the estimates for  in Table C3 are similar to those in Table 2 imply that the

shape of the distribution of unemployment rates is not too drastically perturbed by business

cycle fluctuations. I used the mode of the unemployment rates to estimate + , as the mode

is a consistent estimate. Panel B looks at deviations from the median unemployment rate

rather than the mode. The tail behavior, again, is consistent with the estimates reported

in Table 2 suggesting that the lower tail behavior is not heavily dependent on the cut-off
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point used to measure + .

The previous estimates and the text focused on lower tail inequality in unemployment

rates. Table C3, Panel C, also reports estimates for the upper tail coefficients of the dis-

tribution of unemployment rates across the same cross-sectional units as in Table 2. Two

observations are important. First, the order of estimates coincides with those of the lower

tail. That is, estimates based on (O) are lower than those in (I), (S), and (C). This ranking,

as noted in text, is likely due to the different time periods under consideration, and the

differences in the cross-sectional coverage.

In addition, while the estimates of the upper tail inequality are more stable across

“islands,” and suggest higher unemployment inequality than in the lower part of the dis-

tribution, the R2 in Panel C are lower than in the lower tail. The lower R2 imply that a

log-log relationship such as (27) is unable to account for a large fraction of the variability

in the upper end of the distribution of unemployment rates.

Table C3. Empirical estimates of the lower tail of unemployment distribution.

Cross-sectional unit Cross-sectional unit

A. Time invariant + I O C S I O C S

ln [̃−+] 3.02 1.21 5.28 3.86 3.02 1.21 5.28 3.86

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01)

Recession 0.10 0.01 −0.02 −0.01
(0.01) (0.01) (0.02) (0.01)

R2 0.91 0.98 0.94 0.95 0.91 0.98 0.94 0.95

B. Median estimate +
ln [̃−+ ] 1.79 0.59 5.30 3.80 1.79 0.59 5.30 3.80

(0.02) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

Recession −0.01 −0.01 0.06 −0.06
(0.02) (0.02) (0.01) (0.01)

R2 0.74 0.76 0.85 0.87 0.74 0.76 0.85 0.87

C. Upper tail

ln [̃
+

 − ] 1.03 0.67 1.46 1.03 1.03 0.67 1.47 1.03

(0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01)

Recession 0.03 0.04 −0.05 −0.01
(0.01) (0.01) (0.01) (0.01)

R2 0.47 0.71 0.38 0.45 0.47 0.72 0.38 0.45

Note: For definitions see Table 2 in the text.

Finally, the evolution of unemployment shares during recessions is important for the

measurement of mismatch unemployment in the mismatch indices discussed in the text. I

examined the relationship between local unemployment rates and their mean values across

the cross-section, as a function of the NBER recession indicators. Regardless of the definition

of “islands,” along the lines previoulsy discussed, there is no significant difference in the share

of the unemployment rate attributed to particular sub-market and the NBER recession

indicators. The findings are available upon request.

Unemployment moments. Table C4 report estimates of the time series relationship be-
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tween the first two moments of the distribution of unemployment rates. These moments are

positively associated for the cross-sectional units considered in Tables 2 and C3, and their

positive association is not a consequence of the business cycle. To the extent that cyclical

conditions are controlled by the NBER Recession indicator, episodes of high aggregate un-

employment rates are associated with high cross-sectional dispersion regardless of the stage

of the business cycle. More importantly, the relationship between these moments roughly

aligns with the distributional implications of the model, as discussed in the text.

Table C4. Relationship between mean and cross-sectional dispersion in unemployment rates.

Cross-sectional unit Cross-sectional unit

I O C S I O C S

̃ 0.41 0.45 0.20 0.25 0.40 0.45 0.20 0.25

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Recession 0.15 0.23 0.10 -0.07

(0.03) (0.06) (0.03) (0.03)

R2 0.83 0.67 0.76 0.72 0.85 0.68 0.76 0.72

N. groups 12 10 36 51 12 10 36 51

N. obs. 500 500 358 500 500 500 358 500

Note: OLS estimates of the relationship between the first two moments of the distribution of

unemployment rates across (I)ndustries, (O)ccupations, (S)tates, and large metropolitan areas or

(C)ities. Standard errors in parenthesis. Recession is a control according to the NBER chronology.

Unemployment Dynamics. I next consider the speed at which labor markets reach their

stationary equilibrium following a simple aggregate “shock.” I start with the economy in the

stationary equilibrium in which the distribution of the augmented local shocks is Pr{∗() ≤
} = 1 − [−] . I then assume that local productivities decline unexpectedly to −. I
focus on the deterministic transitional dynamics of the aggregate job shortage rate ̃ as it

returns back towards ̃∗.
Figure 4(a) depicts the adjustment path for the augmented productivity in the typical

location,  ≡ E̃() [()], as deviations from the stationary equilibrium. Figure 4(b)

reports the aggregate job shortage rate ̃, taking demand conditions as fixed at 
∗. (This

is done to focus on the local imbalances only.) There are several notable features in the

adjustment paths of  and ̃. First, as expected, the aggregate “shock” is recessionary

as productivities reach their lowest possible value. Second, the aggregate “shock” is large.

Relative to its stationary value, a decline in local productivities to − lowers the productivity
of the typical location by about 25 percent. Third, the adjustment path for  and ̃ is

fairly persistent. After the initial shock, it takes about 20 quarters to reach |−∗| = 09,
and over 80 quarters to return to  = ∗. The persistent path is also evident in the job
shortage rate ̃, that also converges slowly to ̃

∗. Finally, while  has a wide range, there

is virtually no amplification in the job shortage rates, as ̃ varies by very small amounts,

Panel (b). At its peak, for example, the job shortage rate is at most 338 percent. The

lack of amplification is expected. Local productivities matter for job shortages depending

on [1 + (1− )], which is fixed by technological conditions. In the baseline calibration,

amplification is minimal as [1+(1−)] = 004. Finally, panel (c) reports the aggregate

vacancy rate ̃. Vacancies are procyclical and trace a Beveridge curve, but they exhibit a
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Figure 4: Adjustment to negative aggregate productivity shocks.

large range of variation in the baseline calibration.
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9 Appendix: Complementary Results [Not needed for

publication]

This subsection collects findings that are not of central importance to the main findings but

serve as complements or as verification of claims in the text.

Microfounded aggregate demand uncertainty. The paper considers aggregate demand

as uncertain in the extensive margin. This subsection considers a more explicit model of

demand uncertainty. The objective of this extension is to show how to obtain an objective

function for the assignment problem with the same functional form as (2) but with a more

micro-founded structure than the original problem studied in the text.

Consumers are of two types, active and inactive. Let  and  index their types so

that their consumptions are ()  0 and () = 0. The fraction of active consumers

in the aggregate is () and the fraction of inactive consumers is 1 − (). Active and

inactive consumers need to be assigned across locations such that the total fraction of

active consumes equals (). Let () denote the fraction of active consumers assigned

to . The consumer assignment problem is feasible if the total assigned mass of active

consumers equals (), with nonnegativity constraints on (), i.e., 0 ≤ () ≤ 1.
Individual demands are strongly complementary, as inmin{() ()} = (), with all

other possible pairs giving zero consumption. The probability that an active consumer meets

another active consumer is proportional to the fraction of active consumers in the location,

as in ()2. Likewise, meetings between active and inactive consumers have a likelihood

of 2()(1 − ()) and meetings between inactive consumers one with (1 − ())2. The

planner faces an assignment problem:

max

Z 1

0

2()(), s.t.,

Z 1

0

() = ().

Due to the convexity of the objective function, it is optimal to have ∗() = 1 in a total

mass of () locations and ∗() = 0 in a mass 1 − (). The maximized value of the

consumer assignment problem once active consumers are sorted isZ ()

0

(),

which is of the same form as (2).

Aggregate demand uncertainty is captured by the size of the set of active locations, ().

As there are no additional interactions between the location of active consumers and the

spatial allocation of capital, the more micro-founded model sketched here does not offer

new insights and it will instead divert the attention from the ultimate source of imbalances.

It is also possible to consider more general demand schedules in which demand responds to

local prices. For instance, an inverse demand schedule of the form

( ) =

½
( )− if   ()

0 if  ≥ (),
(D1)
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allows for price-sensitivity since  denotes the price-elasticity of demand. Firms face a local

revenue, ( )( ), with an uncertain extensive margin that would still give rise to the

same type of demand-driven unemployment as discussed in the baseline model. In other

words, the baseline model assumes an insensitive demand function with  = 0 in (D1), but

demand sensitivities can be added leaving the results virtually unchanged as long there is

uncertainty on the extensive margin of demand.

Remarks about concave utilities and home production. The baseline model assumed

linear preferences. It is possible to consider a concave utility for consumption assuming

that households diversify the risk associated with local imbalances and search histories by

aggregating local consumption ‘internally.’ Let () denote the utility associated with this

aggregate consumption,

 = − +
Z 1

0

[()− ()](),

so that the objective of the dynamic assignment problem is

max

Z ∞

0

½
 ()− 

Z 1

0

()()+ 

¾
exp{−}, s.t. (20).

The static and dynamic problems cannot be treated as independent. The Hamilton-

Jacobi-Bellman (HJB) equation associated with the previous problem is

W() = max

½


µ
− +

Z 1

0

[()− ()]()

¶
− 

Z 1

0

()()+  + W()[ − ]} .

+

Z 1

0

∙
W()()[(1− )()− ()− ̄]() + ()W()( )

+
1

2
2()

2W()()()

¸
().

The first-order condition for  is of the form {W( )− 0()}∗ = 0. Under posi-
tive investment, this means that the marginal value of job capital equals the marginal utility

of consumption. For the optimal distribution of labor ∗ (), that needs to be determined
simultaneously, the first-order condition for () is 

0 ()()[
∗
 ()

∗
 ()

]−1 = ,

which upon aggregation can be written as

−1


∙Z 1

0

∗ ()
()

1(1−)()

¸1−
=



 0()
.

As this expression shows, the rental rate for capital is now a function of the entire

distribution of the labor force across locations, and the distribution of the state of the local

economy. It is still possible to derive the stationary value for aggregate stock of capital, but
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that derivation is not independent of the derivation of the distribution of the local state.

For instance, since the envelope condition is (+ )W( ) = +W( ),

combining previous expressions yields a standard Euler equationµ
−

00()

 0()

¶



= −1



∙Z 1

0

∗ ()
()

1(1−)()

¸1−
− − ,

that determines the stationary value of ∗ as an implicit function of the distribution of the
labor force and the local state. The first-order conditions for the spatial allocation of labor

can be derived following the same steps as before with the amendment that the indirect

production function () would now be a function of 
0() which is the relevant market

price for job capital. The stationary equilibrium would not be solved recursively, but one

must find joint conditions on () and  consistent with the Euler equation and the KFE.

I have also abstained form considering home production or leisure. It is possible to cons-

dier a home sector as an additional location leading to a simple relabeling of the problem. It

is also possible to consider the home sector as an alternative activity which requires  time

units. Given a time constraint, such as 1 = +, leisure valuations would make the total

size of the labor force endogenous. This margin seems important to consider movements

into and out of the labor force, but as with workser rest, treating home production would

require a dedicated paper.

Remarks about the shock bound in the static model. For completeness, consider the

conditional expectation in the case when the random variable  is below the threshold +
or when the local shock is not bounded from below so that  is “too low.” The first part

in the proof of Proposition 2 remains unchanged, but the second event in (7) becomes

1

1 + +

µ


Z +


−1+ (1− )1−+

Z ∞

+

−11+(1−)

¶
,

instead of (A8). In terms of the unemployment rate, the previous expression can be written

as

()1

1 + +

"

¡


¢1−1
1− 1 − 

1−1
+

1− 1 +
(1− )

−1
+

(1− + 1)

#
.

As  = ()
1(1−)

, from (A6), one can write the previous expression in terms of

the same terms as in (8) with a limiting behavior that differs from (8) as → 0. Instead of

exhibiting a strictly declining function of , local unemployment rates have an inverse U-

shape relationship with the local shock. For instance, the flat part of () in (A1) ensures

that local unemploment rates tend to zero as  tends to zero. Similarly, for vacancies, being

on the flat part of () implies that Pr{  }− E[|  ] Pr{  } is given
by




1 + +

µ




¶
− 

"
1

2

µ




¶2


1 + +

#
,
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so that, in general,



∗
= (1− ) + 

⎧⎪⎨⎪⎩


2(1 + +)

³


´1(1−)
if   1−+ 

1− 


if  ≥ 1−+ 

.

Vacancy rates are strictly increasing in the local shocks  regardless of its value.

Remarks about demand uncertainty. Drop the location indicator  for notational conve-

nience. Conditional on , the variance of the distribution of local output is V{()|} =
V{E[()|() ]} + E[V{()|() }]. The second term is driven by (). The

first term is the variance of the distribution of local output due to demand uncertainty,

i.e., (1 − )[(∗)(1−)]2, which is a function of . The variance of () when demand
uncertainty is the only source of randomness is:

2(){()} ≡ E{[()2|()]|)}− E[()]2,
= )[∗(1−)]2 − 2,

= (−1 − 1)2.

By the law of total variance, the variance of () when () and  are both a source of

randomness is 2{()} = E[2{E[()|()]|}]+2{} = (−1−1)E[2]+2{} ()2,
which varies with  due to the first term. The variance is hence increasing in the degree of

demand uncertainty.

The variance of () when demand uncertainty is the only source of randomness is

2(){()} ≡ E{[()2|()]|} − E[()]2. Let ̃ ≡ (1 + (1 − )). For the first

term, notice that E{[()2|()]|)} = {(1−  + 
£


¤2}2, so
2(){()} =

£
(1− )− (1− )2̃+ (1− )̃2

¤
2.

This yields
2(){()}


= 1− 2 + 2̃− ̃2

2
.

A sufficient condition for the previous derivative to be negative is   12+ ̃. The variance

of () when demand uncertainty is the only source of randomness is

2(){()} ≡ E{[()2|()]|}− E[()]2.

The first term equals (1− )∗2+  [∗ − ∗()]2 whereas the second is (∗− ∗)2.
Hence, 2(){()} = {(1−  +  (1− )

2 − (1− )2}∗2, which can be written as

2(){()} = (−1 − 1) (∗)2 ,

which declines as () increases, as noted in the text.

Remarks about approximation of aggregate matching function. The static model was
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Figure 5: Exact and approximate hiring rates.

used to construct an aggregate matching function. The approximated aggregate matching

function is Cobb-Douglas. Figure 5 plots the exact and the approximate exit rates from

unemployment. By the exact exit rate, the figure considers

(  ) = 1− (1− )

1 + (1− )

µ




¶−1
.

Both time series are computed in response to the simple aggregate “shock” considered in

the text. That is, to an unexpected decline in local productivities to −. The deterministic
transitional dynamics of the aggregate job shortage rate ̃ as it returns back towards ̃

∗

were depicted in Figure 4.

Figure 5 shows that the non-linear adjustment patterns in aggregate unemployment and

vacancy rates translate into a non-linear adjustment for hires. As the range of variation

in aggregate variables is small since there is no amplification (Figure 4), the range of the

hiring rate is also small. The approximate hiring rate exhibits a higher range, since the

approximation has not been scaled. Panel (c) shows the nonlinear nature of the relationship

between market tightness and hires, and the ‘errors’ associated with the log-approximation.
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