February 9, 2010
What is Oligopoly?

- Oligopoly is a kind of market structure, like monopoly or perfect competition

- An oligopolistic industry is an industry consisting of a few firms (duopoly = two firms)

- Example industries: auto, operating systems, mp3/music players, airlines
Questions

How can we analyze an oligopolistic industry?

- How are the market prices and quantities determined?
- How does this impact welfare?
- How do we think about competition among oligopolists?
- Why might firms want to collude (form a cartel)?
- How can a cartel be sustained?
We use Game Theory to Study Oligopoly

- With PC and monopoly market structures, we analyze a firm making an individual decision
- PC: very many firms, one firm’s actions do not impact others
- Monopoly: only one firm, no one else to impact
- However, oligopoly: each firm’s p, q decisions affect competitor’s profits
- Strategic interaction/interdependence \implies apply game theory
Oligopoly models

Considerations:

- Do firms compete on price or quantity?
- Do firms act sequentially (leader/followers) or simultaneously (equilibrium)
- Stackelberg models: quantity leadership
- Cournot equilibrium models: simultaneous choice quantity competition
- Bertrand equilibrium models: simultaneous choice price competition
Oligopoly

Today:

- Cournot model
- Compare to PC, monopoly

Next time:

- Stackelberg model
- Bertrand model
- Cartels
Example: comparing market structures

- The basics:
 - Inverse demand: \(p = a - Q \) (where \(Q \) is total quantity)
 - Marginal cost: \(c \) (no fixed cost)

- First establish baseline predictions about outcomes + welfare
 - Perfect Competition \((P = MC) \)
 - Monopoly \((MR = MC) \)

- Then examine Cournot model
 - Duopoly (two firms)
 - More general oligopoly \((N \text{ firms}) \)
Example: comparing market structures

Baseline predictions:

- **Baseline: Perfect competition ($p = MC$)**
 - $p = c$, $Q = a - c$ (individual $q_i \approx 0$)
 - $\Pi = 0$, $CS = \frac{1}{2}(a - c)^2$, $W = \frac{1}{2}(a - c)^2$

- **Baseline: Monopoly ($MR = MC$)**
 - $p = \frac{a+c}{2}$, $q = Q = \frac{a-c}{2}$
 - $\Pi = \frac{1}{4}(a - c)^2$, $CS = \frac{1}{8}(a - c)^2$, $W = \frac{3}{8}(a - c)^2$
Cournot Model of Duopoly

- Two firms compete in the same market
 - Simultaneously choose q_i
 - This determines total Q...
 - ...which determines price

- Each would love to be monopolist, but can’t control behavior of other

- Each firm’s choice affects competitor
 - Given competitor’s quantity, q_j, firm i would choose q_i to max profits.
 - But given q_i, firm j might choose different q'_j to maximize profits (so q_i would change
Q: How do we make predictions about behavior?

A: Use notion of (Nash) equilibrium

- If firms keep adjusting their quantities in response to one another, where will they end up?
- At a point where each firm is maximizing profits given the behavior of the other
- \(q_i \) is the best response to \(q_j \) and \(q_j \) is the best response to \(q_i \)
- At this point, neither firm has any incentive to change its quantity
- System is in equilibrium

Nash Equilibrium: taking the behavior of others as given, each party is choosing an optimal response.
Finding Nash Equilibrium in the Cournot Model

- Suppose firm \(j \) chooses \(q_j \). What should firm \(i \) do?
- Choose \(q_i \) that maximizes profits
- Write down \(i \)'s profits, as a function of \(q_i, q_j \):
 \[
 \Pi_i(q_i, q_j) = pq_i - cq_i = (a - q_i - q_j - c)q_i
 \]
- First-order condition:
 \[
 \frac{\partial \Pi_i}{\partial q_i} = a - 2q_i - q_j - c = 0
 \]
- Solve for firm \(i \)'s reaction function (gives best response for each value of \(q_j \):
 \[
 q_i^*(q_j) = \frac{a - q_j - c}{2}
 \]
Finding Nash Equilibrium in the Cournot Model

- **reaction function:**

 \[q_i^*(q_j) = \frac{a - q_j - c}{2} \]

- Because of symmetry, firm j’s reaction function is:

 \[q_j^*(q_i) = \frac{a - q_i - c}{2} \]

- How to find equilibrium?
 - Both firms must be best responding to each other so

 \[q_j = q_j^*(q_i) \text{ and } q_i = q_i^*(q_j) \]

- Also, by symmetry, \(q_i^* = q_j^* \)

 \[q_i^* = q_j^* = \frac{a - q_i^* - c}{2} \]

- Solve:

 \[q_i^* = \frac{a - c}{3} = q_j^* \]
Finding Nash Equilibrium in the Cournot Model

- Optimal quantities:
 \[q_i^* = \frac{a - c}{3} = q_j^* \]

- So \(Q = q_i + q_j = \frac{2}{3}(a - c) \)

- and \(p = a - Q = \frac{a + 2c}{3} \)

- Calculate welfare
 - \(CS = \frac{1}{2}[a - \frac{a+2c}{3}][\frac{2}{3}(a - c)] = \frac{2}{9}(a - c)^2 \)
 - \(\pi_i = (p - c)q_i = [\frac{a+2c}{3} - c]\frac{a-c}{3} = \frac{(a-c)^2}{9} \)
 - \(W = CS + \Pi = \frac{2}{9}(a - c)^2 + 2 \times \frac{(a-c)^2}{9} = \frac{4}{9}(a - c)^2 \)

Behavior and welfare lie between PC and monopoly
Now suppose that there are \(N \) Cournot competitors

- Write down \(i \)'s profits, as a function of \(q_1, \ldots, q_N \):

\[
\Pi_i(q_1, \ldots, q_N) = (p - c)q_i = (a - (q_i - Q_{-i} - c))q_i,
\]

where \(Q_{-i} \) is the sum of all the \(N - 1 \) competitors quantities

- First-order condition:

\[
\frac{\partial \Pi_i}{\partial q_i} = a - 2q_i - Q_{-i} - c = 0
\]

- Firm \(i \)'s reaction function:

\[
q_i^*(Q_{-i}) = \frac{a - Q_{-i} - c}{2}
\]

- Because of symmetry, every firm has same reaction function and behavior, so \(q_1^* = q_2^* = \cdots = q_i^* = \cdots = q_N^* \)

- This means \(Q_{-i} = (N - 1)q_i^* \), so \(q_i^* = \frac{a - (N - 1)q_i^* - c}{2} \)

- Solve: \(q_i^* = \frac{a - c}{N + 1} \) and \(Q^* = \frac{N}{N + 1}(a - c) \)